mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-16 07:56:07 +00:00
Add wodt clf
Add execution results of RaF, RoF and RRoF Fix fit time in database records
This commit is contained in:
289
wodt/WODT.py
Normal file
289
wodt/WODT.py
Normal file
@@ -0,0 +1,289 @@
|
||||
########################
|
||||
"""import"""
|
||||
import numpy as np
|
||||
import random
|
||||
from scipy.optimize import minimize
|
||||
from sklearn.base import BaseEstimator, ClassifierMixin
|
||||
|
||||
|
||||
"""global var"""
|
||||
epsilonepsilon = 1e-220
|
||||
epsilon = 1e-50
|
||||
|
||||
"""class"""
|
||||
|
||||
|
||||
class SplitQuestion(object):
|
||||
"""docstring for SplitQuestion"""
|
||||
|
||||
def __init__(self, attrIDs=[0], paras=[0], threshold=0):
|
||||
super(SplitQuestion, self).__init__()
|
||||
self.attrIDs = attrIDs
|
||||
self.paras = paras
|
||||
self.threshold = threshold
|
||||
|
||||
# we only consider continuous attributes for simplicity
|
||||
def test_forOneInstance(self, x):
|
||||
return np.dot(x[self.attrIDs], self.paras) <= self.threshold
|
||||
|
||||
def test(self, X):
|
||||
return np.dot(X[:, self.attrIDs], self.paras) <= self.threshold
|
||||
|
||||
|
||||
class Node(object):
|
||||
"""docstring for RBNode"""
|
||||
|
||||
def __init__(self, depth, split, sample_ids, X, Y, class_num):
|
||||
super(Node, self).__init__()
|
||||
self.sample_ids = sample_ids
|
||||
self.split = split
|
||||
self.depth = depth
|
||||
self.X = X
|
||||
self.Y = Y
|
||||
self.class_num = class_num
|
||||
self.is_leaf = False
|
||||
# after grow_stump, set the node as an internal node
|
||||
|
||||
def find_best_split(self, max_features="sqrt"):
|
||||
feature_num = self.X.shape[1]
|
||||
subset_feature_num = feature_num
|
||||
if max_features == "sqrt":
|
||||
subset_feature_num = int(np.sqrt(feature_num))
|
||||
if max_features == "all":
|
||||
subset_feature_num = feature_num
|
||||
if max_features == "log":
|
||||
subset_feature_num = int(np.log2(feature_num))
|
||||
if isinstance(max_features, int):
|
||||
subset_feature_num = max_features
|
||||
if isinstance(max_features, float):
|
||||
subset_feature_num = int(feature_num * max_features)
|
||||
|
||||
# ### get random subset of features
|
||||
# ### feature 0 is threshold
|
||||
feature_ids = range(feature_num)
|
||||
subset_feature_ids = random.sample(feature_ids, subset_feature_num)
|
||||
self.split.attrIDs = subset_feature_ids
|
||||
subset_feature_ids = np.array(subset_feature_ids)
|
||||
|
||||
X = self.X
|
||||
subFeatures_X = X[
|
||||
self.sample_ids[:, None], subset_feature_ids[None, :]
|
||||
]
|
||||
Y = self.Y[self.sample_ids]
|
||||
class_num = self.class_num
|
||||
|
||||
# ##############################
|
||||
# define func and func_gradient for optimization
|
||||
def func(a):
|
||||
paras = a[1:]
|
||||
threshold = a[0]
|
||||
p = sigmoid(np.dot(subFeatures_X, paras) - threshold)
|
||||
w_R = p
|
||||
w_L = 1 - w_R
|
||||
w_R_sum = w_R.sum()
|
||||
w_L_sum = w_L.sum()
|
||||
w_R_eachClass = np.array(
|
||||
[sum(w_R[Y == k]) for k in range(class_num)]
|
||||
)
|
||||
w_L_eachClass = np.array(
|
||||
[sum(w_L[Y == k]) for k in range(class_num)]
|
||||
)
|
||||
fun = (
|
||||
w_L_sum * np.log2(w_L_sum + epsilonepsilon)
|
||||
+ w_R_sum * np.log2(w_R_sum + epsilonepsilon)
|
||||
- np.sum(
|
||||
w_R_eachClass * np.log2(w_R_eachClass + epsilonepsilon)
|
||||
)
|
||||
- np.sum(
|
||||
w_L_eachClass * np.log2(w_L_eachClass + epsilonepsilon)
|
||||
)
|
||||
)
|
||||
# fun = w_L.sum() * compute_entropy(Y, w_L) + w_R.sum()
|
||||
# * compute_entropy(Y, w_R)
|
||||
return fun
|
||||
|
||||
def func_gradient(a):
|
||||
paras = a[1:]
|
||||
threshold = a[0]
|
||||
|
||||
p = sigmoid(np.dot(subFeatures_X, paras) - threshold)
|
||||
w_R = p
|
||||
w_L = 1 - w_R
|
||||
w_R_eachClass = np.array(
|
||||
[sum(w_R[Y == k]) for k in range(class_num)]
|
||||
)
|
||||
w_L_eachClass = np.array(
|
||||
[sum(w_L[Y == k]) for k in range(class_num)]
|
||||
)
|
||||
la = np.log2(
|
||||
w_L_eachClass[Y] * w_R.sum() + epsilonepsilon
|
||||
) - np.log2(w_R_eachClass[Y] * w_L.sum() + epsilonepsilon)
|
||||
beta = la * p * (1 - p)
|
||||
|
||||
jac = np.zeros(a.shape)
|
||||
jac[0] = -np.sum(beta)
|
||||
jac[1:] = np.dot(subFeatures_X.T, beta)
|
||||
|
||||
return jac
|
||||
|
||||
################################################
|
||||
initial_a = np.random.rand(subset_feature_num + 1) - 0.5
|
||||
result = minimize(
|
||||
func,
|
||||
initial_a,
|
||||
method="L-BFGS-B",
|
||||
jac=func_gradient,
|
||||
options={"maxiter": 10, "disp": False},
|
||||
)
|
||||
|
||||
##########################################
|
||||
self.split.paras = result.x[1:]
|
||||
self.split.threshold = result.x[0]
|
||||
|
||||
return 1
|
||||
|
||||
def grow_stump(self):
|
||||
L_bool = self.split.test(self.X[self.sample_ids])
|
||||
L_sample_ids = self.sample_ids[L_bool]
|
||||
R_sample_ids = self.sample_ids[~L_bool]
|
||||
# if len(R_sample_ids) * len(L_sample_ids) == 0 :
|
||||
# print('some branch is 0 sample')
|
||||
LChild = Node(
|
||||
self.depth + 1,
|
||||
SplitQuestion(),
|
||||
L_sample_ids,
|
||||
self.X,
|
||||
self.Y,
|
||||
self.class_num,
|
||||
)
|
||||
RChild = Node(
|
||||
self.depth + 1,
|
||||
SplitQuestion(),
|
||||
R_sample_ids,
|
||||
self.X,
|
||||
self.Y,
|
||||
self.class_num,
|
||||
)
|
||||
|
||||
if len(L_sample_ids) == 0:
|
||||
LChild.is_leaf = True
|
||||
LChild.class_distribution = compute_class_distribution(
|
||||
self.Y[self.sample_ids], self.class_num
|
||||
)
|
||||
if len(R_sample_ids) == 0:
|
||||
RChild.is_leaf = True
|
||||
RChild.class_distribution = compute_class_distribution(
|
||||
self.Y[self.sample_ids], self.class_num
|
||||
)
|
||||
|
||||
self.LChild = LChild
|
||||
self.RChild = RChild
|
||||
|
||||
|
||||
class TreeClassifier(BaseEstimator, ClassifierMixin):
|
||||
"""docstring for TreeClassifier"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_depth=50,
|
||||
min_samples_split=2,
|
||||
max_features="all",
|
||||
random_state=None,
|
||||
):
|
||||
# super(TreeClassifier, self).__init__()
|
||||
self.max_depth = max_depth
|
||||
self.min_samples_split = min_samples_split
|
||||
self.max_features = max_features
|
||||
self.random_state = random_state
|
||||
|
||||
def fit(self, X, Y):
|
||||
self.X = X
|
||||
self.Y = Y
|
||||
self.classNum = self.Y.max() + 1
|
||||
self.sampleNum = self.X.shape[0]
|
||||
if self.random_state is not None:
|
||||
random.seed(self.random_state)
|
||||
###########
|
||||
self.root_node = Node(
|
||||
1,
|
||||
SplitQuestion(),
|
||||
np.arange(self.sampleNum, dtype=np.uint32),
|
||||
self.X,
|
||||
self.Y,
|
||||
self.classNum,
|
||||
)
|
||||
self.leaf_num = 1
|
||||
self.tree_depth = self.bulid_subtree(self.root_node)
|
||||
|
||||
def bulid_subtree(self, node):
|
||||
if node.is_leaf:
|
||||
return node.depth
|
||||
|
||||
# stopping conditions
|
||||
is_leaf = (
|
||||
node.depth >= self.max_depth
|
||||
or len(node.sample_ids) < self.min_samples_split
|
||||
or is_all_equal(self.Y[node.sample_ids])
|
||||
)
|
||||
|
||||
if is_leaf or node.find_best_split(self.max_features) < 0:
|
||||
node.is_leaf = True
|
||||
node.class_distribution = compute_class_distribution(
|
||||
self.Y[node.sample_ids], self.classNum
|
||||
)
|
||||
return node.depth
|
||||
|
||||
node.grow_stump()
|
||||
node.is_leaf = False
|
||||
self.leaf_num += 1
|
||||
L_subtree_depth = self.bulid_subtree(node.LChild)
|
||||
R_subtree_depth = self.bulid_subtree(node.RChild)
|
||||
return max(L_subtree_depth, R_subtree_depth)
|
||||
|
||||
def predict_forOneInstance(self, x):
|
||||
present_node = self.root_node
|
||||
while not (present_node.is_leaf):
|
||||
if present_node.split.test_forOneInstance(x):
|
||||
present_node = present_node.LChild
|
||||
else:
|
||||
present_node = present_node.RChild
|
||||
return np.argmax(present_node.class_distribution)
|
||||
|
||||
def predict(self, X):
|
||||
m = X.shape[0]
|
||||
Y_predicted = np.zeros((m,), dtype=int)
|
||||
for i in range(m):
|
||||
x = X[i]
|
||||
Y_predicted[i] = self.predict_forOneInstance(x)
|
||||
return Y_predicted
|
||||
|
||||
def score(
|
||||
self, X: np.array, y: np.array, sample_weight: np.array = None
|
||||
) -> float:
|
||||
y_pred = self.predict(X)
|
||||
return np.mean(y_pred == y)
|
||||
|
||||
|
||||
####################
|
||||
"""function"""
|
||||
|
||||
|
||||
def sigmoid(z):
|
||||
# because that -z is too big will arise runtimeWarning in np.exp()
|
||||
if isinstance(z, float) and (z < -500):
|
||||
z = -500
|
||||
elif not (isinstance(z, float)):
|
||||
z[z < -500] = (-500) * np.ones(sum(z < -500))
|
||||
|
||||
return 1 / (np.exp(-z) + 1)
|
||||
|
||||
|
||||
def is_all_equal(x):
|
||||
x_min, x_max = x.min(), x.max()
|
||||
return x_min == x_max
|
||||
|
||||
|
||||
def compute_class_distribution(Y, class_num):
|
||||
sample_num = len(Y)
|
||||
ratio_each_class = [sum(Y == k) / sample_num for k in range(class_num)]
|
||||
return np.array(ratio_each_class)
|
Reference in New Issue
Block a user