mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-15 15:36:01 +00:00
Fix normalization & standard. columnwise
This commit is contained in:
@@ -24,21 +24,20 @@ def header():
|
||||
print("Processing Datasets with stree default.\n")
|
||||
print(
|
||||
f"{'Dataset':30s} {'No Norm.':9s} {'Normaliz.':9s} "
|
||||
f"{'Col.Norm.':9s} {'Best score in crossval':25s}"
|
||||
f"{'Col.Norm.':9s} {'Context B':9s} {'Best score in crossval':25s}"
|
||||
)
|
||||
print("=" * 30 + " " + ("=" * 9 + " ") * 3 + "=" * 25)
|
||||
print("=" * 30 + " " + ("=" * 9 + " ") * 4 + "=" * 25)
|
||||
|
||||
|
||||
def process_dataset(X, y):
|
||||
def process_dataset(X, y, normalize):
|
||||
scores = []
|
||||
# return random.uniform(0, 1)
|
||||
# Get the optimized parameters
|
||||
for random_state in random_seeds:
|
||||
random.seed(random_state)
|
||||
clf_test = Stree(random_state=random_state, normalize=normalize)
|
||||
np.random.seed(random_state)
|
||||
kfold = KFold(shuffle=True, random_state=random_state, n_splits=5)
|
||||
clf = Stree(random_state=random_state)
|
||||
res = cross_validate(clf, X, y, cv=kfold, return_estimator=True)
|
||||
res = cross_validate(clf_test, X, y, cv=kfold, return_estimator=True)
|
||||
scores.append(res["test_score"])
|
||||
return np.mean(scores)
|
||||
|
||||
@@ -58,7 +57,7 @@ database = dbh.get_connection()
|
||||
random_seeds = [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]
|
||||
dt = Datasets(normalize=False, standardize=False, set_of_files="tanveer")
|
||||
header()
|
||||
total = [0, 0, 0]
|
||||
total = [0, 0, 0, 0]
|
||||
line = TextColor.LINE1
|
||||
for data in dt:
|
||||
name = data[0]
|
||||
@@ -66,22 +65,31 @@ for data in dt:
|
||||
record = dbh.find_best(name, models_tree, "crossval")
|
||||
X2 = normalize(X)
|
||||
X3 = normalize_rows(X)
|
||||
clf = Stree(random_state=1)
|
||||
ac1 = process_dataset(X, y)
|
||||
ac2 = process_dataset(X2, y)
|
||||
ac3 = process_dataset(X3, y)
|
||||
max_value = max(ac1, ac2, ac3)
|
||||
ac1 = process_dataset(X, y, False)
|
||||
ac2 = process_dataset(X2, y, False)
|
||||
ac3 = process_dataset(X3, y, False)
|
||||
ac4 = process_dataset(X, y, True)
|
||||
max_value = round(max(ac1, ac2, ac3, ac4), 6)
|
||||
line = TextColor.LINE2 if line == TextColor.LINE1 else TextColor.LINE1
|
||||
print(line + f"{name:30s} ", end="", flush=True)
|
||||
total[np.argmax([ac1, ac2, ac3])] += 1
|
||||
total[np.argmax([ac1, ac2, ac3, ac4])] += 1
|
||||
color1 = TextColor.SUCCESS if ac1 == max_value else line
|
||||
color2 = TextColor.SUCCESS if ac2 == max_value else line
|
||||
color3 = TextColor.SUCCESS if ac3 == max_value else line
|
||||
color4 = TextColor.SUCCESS if ac4 == max_value else line
|
||||
print(color1 + f"{ac1:9.6f} " + TextColor.ENDC, end="", flush=True)
|
||||
print(color2 + f"{ac2:9.6f} " + TextColor.ENDC, end="", flush=True)
|
||||
print(color3 + f"{ac3:9.6f}" + TextColor.ENDC, end="", flush=True)
|
||||
print(line + f"{record[5]:9.6f} {record[3]}" + TextColor.ENDC)
|
||||
print(f"{'Total':30s} {total[0]:9d} {total[1]:9d} {total[2]:9d}")
|
||||
print(color3 + f"{ac3:9.6f} " + TextColor.ENDC, end="", flush=True)
|
||||
print(color4 + f"{ac4:9.6f}" + TextColor.ENDC, end="", flush=True)
|
||||
best_accuracy = round(record[5], 6)
|
||||
best_color = TextColor.UNDERLINE if best_accuracy >= max_value else ""
|
||||
print(
|
||||
line
|
||||
+ best_color
|
||||
+ f"{best_accuracy:9.6f} {record[3]}"
|
||||
+ TextColor.ENDC
|
||||
)
|
||||
print(f"{'Total':30s} {total[0]:9d} {total[1]:9d} {total[2]:9d} {total[3]:9d}")
|
||||
stop = time.time()
|
||||
hours, rem = divmod(stop - start, 3600)
|
||||
minutes, seconds = divmod(rem, 60)
|
||||
|
Reference in New Issue
Block a user