mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-15 15:36:01 +00:00
Commit Inicial
This commit is contained in:
153
report_mysql.py
Normal file
153
report_mysql.py
Normal file
@@ -0,0 +1,153 @@
|
||||
import argparse
|
||||
from typing import Tuple
|
||||
from experimentation.Sets import Datasets
|
||||
from experimentation.Utils import TextColor, MySQL
|
||||
|
||||
models = ["stree", "adaBoost", "bagging", "odte"]
|
||||
|
||||
|
||||
def parse_arguments() -> Tuple[str, str, str, bool, bool]:
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument(
|
||||
"-m",
|
||||
"--model",
|
||||
type=str,
|
||||
choices=["any"] + models,
|
||||
required=False,
|
||||
default="any",
|
||||
)
|
||||
ap.add_argument(
|
||||
"-x",
|
||||
"--excludeparams",
|
||||
default=False,
|
||||
required=False,
|
||||
action="store_true",
|
||||
help="Exclude parameters in reports",
|
||||
)
|
||||
args = ap.parse_args()
|
||||
return (
|
||||
args.model,
|
||||
args.excludeparams,
|
||||
)
|
||||
|
||||
|
||||
def find_best(dataset):
|
||||
cursor = database.cursor(buffered=True)
|
||||
if classifier == "any":
|
||||
command = (
|
||||
f"select * from results r inner join reference e on "
|
||||
f"r.dataset=e.dataset where r.dataset='{dataset}' "
|
||||
)
|
||||
else:
|
||||
command = (
|
||||
f"select * from results r inner join reference e on "
|
||||
f"r.dataset=e.dataset where r.dataset='{dataset}' and classifier"
|
||||
f"='{classifier}'"
|
||||
)
|
||||
command += (
|
||||
" order by r.dataset, accuracy desc, classifier desc, type, date, time"
|
||||
)
|
||||
cursor.execute(command)
|
||||
return cursor.fetchone()
|
||||
|
||||
|
||||
def report_header_content(title):
|
||||
length = sum(lengths) + len(lengths) - 1
|
||||
output = "\n" + "*" * length + "\n"
|
||||
title = title + f" -- {classifier} classifier --"
|
||||
num = (length - len(title) - 2) // 2
|
||||
num2 = length - len(title) - 2 - 2 * num
|
||||
output += "*" + " " * num + title + " " * (num + num2) + "*\n"
|
||||
output += "*" * length + "\n\n"
|
||||
lines = ""
|
||||
for item, data in enumerate(fields):
|
||||
output += f"{fields[item]:{lengths[item]}} "
|
||||
lines += "=" * lengths[item] + " "
|
||||
output += f"\n{lines}"
|
||||
return output
|
||||
|
||||
|
||||
def report_header(exclude_params):
|
||||
print(TextColor.HEADER + report_header_content(title) + TextColor.ENDC)
|
||||
|
||||
|
||||
def report_line(record, agg):
|
||||
accuracy = record[5]
|
||||
expected = record[10]
|
||||
if accuracy < expected:
|
||||
agg["worse"] += 1
|
||||
sign = "-"
|
||||
elif accuracy > expected:
|
||||
agg["better"] += 1
|
||||
sign = "+"
|
||||
else:
|
||||
agg["equal"] += 1
|
||||
sign = "="
|
||||
model = record[3]
|
||||
agg[model] += 1
|
||||
output = (
|
||||
f"{record[0]:%Y-%m-%d} {str(record[1]):>8s} {record[2]:10s} "
|
||||
f"{model:10s} {record[4]:30s} "
|
||||
f"{record[6]:3d} {record[7]:3d} {accuracy:8.7f} {expected:8.7f} "
|
||||
f"{sign}"
|
||||
)
|
||||
if not exclude_parameters:
|
||||
output += f" {record[8]}"
|
||||
return output
|
||||
|
||||
|
||||
def report_footer(agg):
|
||||
print(TextColor.GREEN + f"we have better results {agg['better']:2d} times")
|
||||
print(TextColor.RED + f"we have worse results {agg['worse']:2d} times")
|
||||
print(
|
||||
TextColor.MAGENTA + f"we have equal results {agg['equal']:2d} times"
|
||||
)
|
||||
color = TextColor.LINE1
|
||||
for item in ["stree", "bagging", "adaBoost", "odte"]:
|
||||
print(color + f"{item:10s} used {agg[item]:2d} times")
|
||||
color = (
|
||||
TextColor.LINE2 if color == TextColor.LINE1 else TextColor.LINE1
|
||||
)
|
||||
|
||||
|
||||
(
|
||||
classifier,
|
||||
exclude_parameters,
|
||||
) = parse_arguments()
|
||||
database = MySQL.get_connection()
|
||||
dt = Datasets(False, False, "tanveer")
|
||||
title = "Best Hyperparameters found for datasets"
|
||||
lengths = (10, 8, 10, 10, 30, 3, 3, 9, 11)
|
||||
fields = (
|
||||
"Date",
|
||||
"Time",
|
||||
"Type",
|
||||
"Classifier",
|
||||
"Dataset",
|
||||
"Nor",
|
||||
"Std",
|
||||
"Accuracy",
|
||||
"Reference",
|
||||
)
|
||||
if not exclude_parameters:
|
||||
fields += ("Parameters",)
|
||||
lengths += (30,)
|
||||
report_header(title)
|
||||
color = TextColor.LINE1
|
||||
agg = {}
|
||||
for item in [
|
||||
"equal",
|
||||
"better",
|
||||
"worse",
|
||||
] + models:
|
||||
agg[item] = 0
|
||||
for dataset in dt:
|
||||
record = find_best(dataset[0])
|
||||
if record is None:
|
||||
print(TextColor.FAIL + f"*No results found for {dataset[0]}")
|
||||
else:
|
||||
color = (
|
||||
TextColor.LINE2 if color == TextColor.LINE1 else TextColor.LINE1
|
||||
)
|
||||
print(color + report_line(record, agg))
|
||||
report_footer(agg)
|
Reference in New Issue
Block a user