mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-18 00:46:03 +00:00
Commit Inicial
This commit is contained in:
44
notes.txt
Executable file
44
notes.txt
Executable file
@@ -0,0 +1,44 @@
|
||||
iris.csv
|
||||
vehicle.csv
|
||||
wine.csv
|
||||
glass.csv
|
||||
heart.csv # spaces
|
||||
breast # 683 vs 690 samples in dataset
|
||||
diabetes # from Kaggle
|
||||
fourclass # taken from libsvm samples TKH96a Tin Kam Ho and Eugene M. Kleinberg.
|
||||
#Building projectable classifiers of arbitrary complexity.
|
||||
#In Proceedings of the 13th International Conference on Pattern Recognition, pages 880-885, Vienna, Austria, August 1996.
|
||||
segment # sparse libsvm para cargar X, y = np.load("data/segment.npy", allow_pickle=True) para leer .scale sklearn.datasets.load_svmlight_file
|
||||
letter
|
||||
sat (has to be satimage)
|
||||
usps # kaggle import h5py
|
||||
with h5py.File(path, 'r') as hf:
|
||||
train = hf.get('train')
|
||||
X_tr = train.get('data')[:]
|
||||
y_tr = train.get('target')[:]
|
||||
test = hf.get('test')
|
||||
X_te = test.get('data')[:]
|
||||
y_te = test.get('target')[:]
|
||||
|
||||
pendigits
|
||||
protein # https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#connect-4
|
||||
dna # openml
|
||||
connect 4 # https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#connect-4
|
||||
ijcnn1 # libsvm https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
|
||||
|
||||
Datasets que hay que cargar X e y y son sparse matrices
|
||||
=======================================================
|
||||
(X, y= np.load("data/connect4.npy", allow_pickle=True))
|
||||
connect4
|
||||
fourclass
|
||||
ijcnn1
|
||||
protein
|
||||
segment
|
||||
vehicle
|
||||
|
||||
from svmlight_loader import (load_svmlight_file, load_svmlight_files,
|
||||
dump_svmlight_file)
|
||||
|
||||
para enlazar matrices sparse:
|
||||
from scipy.sparse import vstack
|
||||
X = vstack((Xs, Xt))
|
Reference in New Issue
Block a user