mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-18 08:56:01 +00:00
Commit Inicial
This commit is contained in:
2
data/tanveer/statlog-image/conxuntos.dat
Executable file
2
data/tanveer/statlog-image/conxuntos.dat
Executable file
File diff suppressed because one or more lines are too long
8
data/tanveer/statlog-image/conxuntos_kfold.dat
Executable file
8
data/tanveer/statlog-image/conxuntos_kfold.dat
Executable file
File diff suppressed because one or more lines are too long
23
data/tanveer/statlog-image/le_datos.m
Executable file
23
data/tanveer/statlog-image/le_datos.m
Executable file
@@ -0,0 +1,23 @@
|
||||
printf('lendo problema %s ...\n', problema);
|
||||
|
||||
n_entradas= 19; n_clases= 7; n_fich= 1; fich{1}= 'segment.dat'; n_patrons(1)= 2310;
|
||||
|
||||
n_max= max(n_patrons);
|
||||
x = zeros(n_fich, n_max, n_entradas); cl= zeros(n_fich, n_max);
|
||||
|
||||
n_patrons_total = sum(n_patrons); n_iter=0;
|
||||
|
||||
for i_fich=1:n_fich
|
||||
f=fopen(fich{i_fich}, 'r');
|
||||
if -1==f
|
||||
error('erro en fopen abrindo %s\n', fich{i_fich});
|
||||
end
|
||||
for i=1:n_patrons(i_fich)
|
||||
fprintf(2,'%5.1f%%\r', 100*n_iter++/n_patrons_total);
|
||||
for j = 1:n_entradas
|
||||
x(i_fich,i,j) = fscanf(f,'%g',1);
|
||||
end
|
||||
cl(i_fich,i) = fscanf(f,'%i',1) - 1; % lectura da clase
|
||||
end
|
||||
fclose(f);
|
||||
end
|
2310
data/tanveer/statlog-image/segment.dat
Executable file
2310
data/tanveer/statlog-image/segment.dat
Executable file
File diff suppressed because it is too large
Load Diff
68
data/tanveer/statlog-image/segment.doc
Executable file
68
data/tanveer/statlog-image/segment.doc
Executable file
@@ -0,0 +1,68 @@
|
||||
Description of Datasets
|
||||
|
||||
|
||||
1. Title: Image Segmentation data
|
||||
|
||||
2. Source Information
|
||||
-- Creators: Vision Group, University of Massachusetts
|
||||
-- Donor: Vision Group (Carla Brodley, brodley@cs.umass.edu)
|
||||
-- Date: November, 1990
|
||||
|
||||
3. Past Usage: None yet published
|
||||
|
||||
4. Relevant Information:
|
||||
|
||||
The instances were drawn randomly from a database of 7 outdoor
|
||||
images. The images were handsegmented to create a classification
|
||||
for every pixel.
|
||||
|
||||
Each instance is a 3x3 region.
|
||||
|
||||
5. Number of Instances: 2310
|
||||
|
||||
6. Number of Attributes: 19 continuous attributes
|
||||
|
||||
7. Attribute Information:
|
||||
|
||||
1. region-centroid-col: the column of the center pixel of the region.
|
||||
2. region-centroid-row: the row of the center pixel of the region.
|
||||
3. region-pixel-count: the number of pixels in a region = 9.
|
||||
4. short-line-density-5: the results of a line extractoin algorithm that
|
||||
counts how many lines of length 5 (any orientation) with
|
||||
low contrast, less than or equal to 5, go through the region.
|
||||
5. short-line-density-2: same as short-line-density-5 but counts lines
|
||||
of high contrast, greater than 5.
|
||||
6. vedge-mean: measure the contrast of horizontally
|
||||
adjacent pixels in the region. There are 6, the mean and
|
||||
standard deviation are given. This attribute is used as
|
||||
a vertical edge detector.
|
||||
7. vegde-sd: (see 6)
|
||||
8. hedge-mean: measures the contrast of vertically adjacent
|
||||
pixels. Used for horizontal line detection.
|
||||
9. hedge-sd: (see 8).
|
||||
10. intensity-mean: the average over the region of (R + G + B)/3
|
||||
11. rawred-mean: the average over the region of the R value.
|
||||
12. rawblue-mean: the average over the region of the B value.
|
||||
13. rawgreen-mean: the average over the region of the G value.
|
||||
14. exred-mean: measure the excess red: (2R - (G + B))
|
||||
15. exblue-mean: measure the excess blue: (2B - (G + R))
|
||||
16. exgreen-mean: measure the excess green: (2G - (R + B))
|
||||
17. value-mean: 3-d nonlinear transformation
|
||||
of RGB. (Algorithm can be found in Foley and VanDam, Fundamentals
|
||||
of Interactive Computer Graphics)
|
||||
18. saturatoin-mean: (see 17)
|
||||
19. hue-mean: (see 17)
|
||||
|
||||
8. Missing Attribute Values: None
|
||||
|
||||
9. Class Distribution:
|
||||
|
||||
Classes: 1 = brickface,
|
||||
2 = sky,
|
||||
3 = foliage,
|
||||
4 = cement,
|
||||
5 = window,
|
||||
6 = path,
|
||||
7 = grass.
|
||||
|
||||
|
2331
data/tanveer/statlog-image/statlog-image.arff
Executable file
2331
data/tanveer/statlog-image/statlog-image.arff
Executable file
File diff suppressed because it is too large
Load Diff
10
data/tanveer/statlog-image/statlog-image.cost
Executable file
10
data/tanveer/statlog-image/statlog-image.cost
Executable file
@@ -0,0 +1,10 @@
|
||||
% Rows Columns
|
||||
7 7
|
||||
% Matrix elements
|
||||
0.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 0.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 0.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 0.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 0.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 0.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 0.0
|
8
data/tanveer/statlog-image/statlog-image.txt
Executable file
8
data/tanveer/statlog-image/statlog-image.txt
Executable file
@@ -0,0 +1,8 @@
|
||||
n_entradas= 18
|
||||
n_clases= 7
|
||||
n_arquivos= 1
|
||||
fich1= statlog-image_R.dat
|
||||
n_patrons1= 2310
|
||||
n_patrons_entrena= 1155
|
||||
n_patrons_valida= 1155
|
||||
n_conxuntos= 1
|
2311
data/tanveer/statlog-image/statlog-image_R.dat
Executable file
2311
data/tanveer/statlog-image/statlog-image_R.dat
Executable file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user