mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-18 08:56:01 +00:00
Commit Inicial
This commit is contained in:
120
data/tanveer/primary-tumor/primary-tumor.names
Executable file
120
data/tanveer/primary-tumor/primary-tumor.names
Executable file
@@ -0,0 +1,120 @@
|
||||
Citation Request:
|
||||
This primary tumor domain was obtained from the University Medical Centre,
|
||||
Institute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and
|
||||
M. Soklic for providing the data. Please include this citation if you plan
|
||||
to use this database.
|
||||
|
||||
1. Title: Primary Tumor Domain
|
||||
|
||||
2. Sources:
|
||||
(a) Source:
|
||||
(b) Donors: Igor Kononenko,
|
||||
University E.Kardelj
|
||||
Faculty for electrical engineering
|
||||
Trzaska 25
|
||||
61000 Ljubljana (tel.: (38)(+61) 265-161
|
||||
|
||||
Bojan Cestnik
|
||||
Jozef Stefan Institute
|
||||
Jamova 39
|
||||
61000 Ljubljana
|
||||
Yugoslavia (tel.: (38)(+61) 214-399 ext.287)
|
||||
(c) Date: November 1988
|
||||
|
||||
3. Past Usage: (sveral)
|
||||
1. Cestnik,G., Konenenko,I, & Bratko,I. (1987). Assistant-86: A
|
||||
Knowledge-Elicitation Tool for Sophisticated Users. In I.Bratko
|
||||
& N.Lavrac (Eds.) Progress in Machine Learning, 31-45, Sigma Press.
|
||||
-- Assistant-86: 44% accuracy
|
||||
2. Clark,P. & Niblett,T. (1987). Induction in Noisy Domains. In
|
||||
I.Bratko & N.Lavrac (Eds.) Progress in Machine Learning, 11-30,
|
||||
Sigma Press.
|
||||
-- Simple Bayes: 48% accuracy
|
||||
-- CN2 (95% threshold): 45%
|
||||
3. Michalski,R., Mozetic,I. Hong,J., & Lavrac,N. (1986). The Multi-Purpose
|
||||
Incremental Learning System AQ15 and its Testing Applications to Three
|
||||
Medical Domains. In Proceedings of the Fifth National Conference on
|
||||
Artificial Intelligence, 1041-1045. Philadelphia, PA: Morgan Kaufmann.
|
||||
-- Experts: 42% accuracy
|
||||
-- AQ15: 29-41%
|
||||
|
||||
4. Relevant Information:
|
||||
This is one of three domains provided by the Oncology Institute
|
||||
that has repeatedly appeared in the machine learning literature.
|
||||
(See also breast-cancer and lymphography.)
|
||||
|
||||
5. Number of Instances: 339
|
||||
|
||||
6. Number of Attributes: 18 including the class attribute
|
||||
|
||||
7. Attribute Information: (class is location of tumor)
|
||||
--- NOTE: All attribute values in the database have been entered as
|
||||
numeric values corresponding to their index in the list
|
||||
of attribute values for that attribute domain as given below.
|
||||
1. class: lung, head & neck, esophasus, thyroid, stomach, duoden & sm.int,
|
||||
colon, rectum, anus, salivary glands, pancreas, gallblader,
|
||||
liver, kidney, bladder, testis, prostate, ovary, corpus uteri,
|
||||
cervix uteri, vagina, breast
|
||||
2. age: <30, 30-59, >=60
|
||||
3. sex: male, female
|
||||
4. histologic-type: epidermoid, adeno, anaplastic
|
||||
5. degree-of-diffe: well, fairly, poorly
|
||||
6. bone: yes, no
|
||||
7. bone-marrow: yes, no
|
||||
8. lung: yes, no
|
||||
9. pleura: yes, no
|
||||
10. peritoneum: yes, no
|
||||
11. liver: yes, no
|
||||
12. brain: yes, no
|
||||
13. skin: yes, no
|
||||
14. neck: yes, no
|
||||
15. supraclavicular: yes, no
|
||||
16. axillar: yes, no
|
||||
17. mediastinum: yes, no
|
||||
18. abdominal: yes, no
|
||||
|
||||
8. Missing Attribute Values: (? indicates unknown value)
|
||||
Attribute#: Number of missing values
|
||||
1: 0
|
||||
2: 0
|
||||
3: 1
|
||||
4: 67
|
||||
5: 155
|
||||
6: 0
|
||||
7: 0
|
||||
8: 0
|
||||
9: 0
|
||||
10: 0
|
||||
11: 0
|
||||
12: 0
|
||||
13: 1
|
||||
14: 0
|
||||
15: 0
|
||||
16: 1
|
||||
17: 0
|
||||
18: 0
|
||||
|
||||
9. Class Distribution:
|
||||
Class Index: Number of instances in class:
|
||||
1: 84
|
||||
2: 20
|
||||
3: 9
|
||||
4: 14
|
||||
5: 39
|
||||
6: 1
|
||||
7: 14
|
||||
8: 6
|
||||
9: 0
|
||||
10: 2
|
||||
11: 28
|
||||
12: 16
|
||||
13: 7
|
||||
14: 24
|
||||
15: 2
|
||||
16: 1
|
||||
17: 10
|
||||
18: 29
|
||||
19: 6
|
||||
20: 2
|
||||
21: 1
|
||||
22: 24
|
Reference in New Issue
Block a user