mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-18 00:46:03 +00:00
Commit Inicial
This commit is contained in:
2
data/tanveer/optical/conxuntos.dat
Executable file
2
data/tanveer/optical/conxuntos.dat
Executable file
File diff suppressed because one or more lines are too long
8
data/tanveer/optical/conxuntos_kfold.dat
Executable file
8
data/tanveer/optical/conxuntos_kfold.dat
Executable file
File diff suppressed because one or more lines are too long
24
data/tanveer/optical/le_datos.m
Executable file
24
data/tanveer/optical/le_datos.m
Executable file
@@ -0,0 +1,24 @@
|
||||
printf('lendo problema %s ...\n', problema);
|
||||
|
||||
n_entradas= 64; n_clases= 10;
|
||||
n_fich= 2; fich{1}= 'optdigits.tra'; n_patrons(1)= 3823; fich{2}= 'optdigits.tes'; n_patrons(2)= 1797;
|
||||
|
||||
n_max= max(n_patrons);
|
||||
x = zeros(n_fich, n_max, n_entradas); cl= zeros(n_fich, n_max);
|
||||
|
||||
n_patrons_total = sum(n_patrons); n_iter=0;
|
||||
|
||||
for i_fich=1:n_fich
|
||||
f=fopen(fich{i_fich}, 'r');
|
||||
if -1==f
|
||||
error('erro en fopen abrindo %s\n', fich{i_fich});
|
||||
end
|
||||
for i=1:n_patrons(i_fich)
|
||||
fprintf(2,'%5.1f%%\r', 100*n_iter++/n_patrons_total);
|
||||
for j = 1:n_entradas
|
||||
x(i_fich,i,j) = fscanf(f,'%i',1);
|
||||
end
|
||||
cl(i_fich,i) = fscanf(f,'%i',1); % lectura da clase
|
||||
end
|
||||
fclose(f);
|
||||
end
|
93
data/tanveer/optical/optdigits.names
Executable file
93
data/tanveer/optical/optdigits.names
Executable file
@@ -0,0 +1,93 @@
|
||||
|
||||
1. Title of Database: Optical Recognition of Handwritten Digits
|
||||
|
||||
2. Source:
|
||||
E. Alpaydin, C. Kaynak
|
||||
Department of Computer Engineering
|
||||
Bogazici University, 80815 Istanbul Turkey
|
||||
alpaydin@boun.edu.tr
|
||||
July 1998
|
||||
|
||||
3. Past Usage:
|
||||
C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their
|
||||
Applications to Handwritten Digit Recognition,
|
||||
MSc Thesis, Institute of Graduate Studies in Science and
|
||||
Engineering, Bogazici University.
|
||||
|
||||
E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika,
|
||||
to appear. ftp://ftp.icsi.berkeley.edu/pub/ai/ethem/kyb.ps.Z
|
||||
|
||||
4. Relevant Information:
|
||||
We used preprocessing programs made available by NIST to extract
|
||||
normalized bitmaps of handwritten digits from a preprinted form. From
|
||||
a total of 43 people, 30 contributed to the training set and different
|
||||
13 to the test set. 32x32 bitmaps are divided into nonoverlapping
|
||||
blocks of 4x4 and the number of on pixels are counted in each block.
|
||||
This generates an input matrix of 8x8 where each element is an
|
||||
integer in the range 0..16. This reduces dimensionality and gives
|
||||
invariance to small distortions.
|
||||
|
||||
For info on NIST preprocessing routines, see
|
||||
M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist,
|
||||
P. J. Grother, S. A. Janet, and C. L. Wilson, NIST Form-Based
|
||||
Handprint Recognition System, NISTIR 5469, 1994.
|
||||
|
||||
5. Number of Instances
|
||||
optdigits.tra Training 3823
|
||||
optdigits.tes Testing 1797
|
||||
|
||||
The way we used the dataset was to use half of training for
|
||||
actual training, one-fourth for validation and one-fourth
|
||||
for writer-dependent testing. The test set was used for
|
||||
writer-independent testing and is the actual quality measure.
|
||||
|
||||
6. Number of Attributes
|
||||
64 input+1 class attribute
|
||||
|
||||
7. For Each Attribute:
|
||||
All input attributes are integers in the range 0..16.
|
||||
The last attribute is the class code 0..9
|
||||
|
||||
8. Missing Attribute Values
|
||||
None
|
||||
|
||||
9. Class Distribution
|
||||
Class: No of examples in training set
|
||||
0: 376
|
||||
1: 389
|
||||
2: 380
|
||||
3: 389
|
||||
4: 387
|
||||
5: 376
|
||||
6: 377
|
||||
7: 387
|
||||
8: 380
|
||||
9: 382
|
||||
|
||||
Class: No of examples in testing set
|
||||
0: 178
|
||||
1: 182
|
||||
2: 177
|
||||
3: 183
|
||||
4: 181
|
||||
5: 182
|
||||
6: 181
|
||||
7: 179
|
||||
8: 174
|
||||
9: 180
|
||||
|
||||
Accuracy on the testing set with k-nn
|
||||
using Euclidean distance as the metric
|
||||
|
||||
k = 1 : 98.00
|
||||
k = 2 : 97.38
|
||||
k = 3 : 97.83
|
||||
k = 4 : 97.61
|
||||
k = 5 : 97.89
|
||||
k = 6 : 97.77
|
||||
k = 7 : 97.66
|
||||
k = 8 : 97.66
|
||||
k = 9 : 97.72
|
||||
k = 10 : 97.55
|
||||
k = 11 : 97.89
|
||||
|
1797
data/tanveer/optical/optdigits.tes
Executable file
1797
data/tanveer/optical/optdigits.tes
Executable file
File diff suppressed because it is too large
Load Diff
3823
data/tanveer/optical/optdigits.tra
Executable file
3823
data/tanveer/optical/optdigits.tra
Executable file
File diff suppressed because it is too large
Load Diff
13
data/tanveer/optical/optical.cost
Executable file
13
data/tanveer/optical/optical.cost
Executable file
@@ -0,0 +1,13 @@
|
||||
% Rows Columns
|
||||
10 10
|
||||
% Matrix elements
|
||||
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0
|
10
data/tanveer/optical/optical.txt
Executable file
10
data/tanveer/optical/optical.txt
Executable file
@@ -0,0 +1,10 @@
|
||||
n_entradas= 62
|
||||
n_clases= 10
|
||||
n_arquivos= 2
|
||||
fich1= optical_train_R.dat
|
||||
n_patrons1= 3823
|
||||
fich2= optical_test_R.dat
|
||||
n_patrons2= 1797
|
||||
n_patrons_entrena= 1912
|
||||
n_patrons_valida= 1911
|
||||
n_conxuntos= 1
|
1862
data/tanveer/optical/optical_test.arff
Executable file
1862
data/tanveer/optical/optical_test.arff
Executable file
File diff suppressed because it is too large
Load Diff
1798
data/tanveer/optical/optical_test_R.dat
Executable file
1798
data/tanveer/optical/optical_test_R.dat
Executable file
File diff suppressed because it is too large
Load Diff
3888
data/tanveer/optical/optical_train.arff
Executable file
3888
data/tanveer/optical/optical_train.arff
Executable file
File diff suppressed because it is too large
Load Diff
3824
data/tanveer/optical/optical_train_R.dat
Executable file
3824
data/tanveer/optical/optical_train_R.dat
Executable file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user