mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-17 16:36:02 +00:00
Commit Inicial
This commit is contained in:
3235
data/tanveer/chess-krvkp/chess-krvkp.arff
Executable file
3235
data/tanveer/chess-krvkp/chess-krvkp.arff
Executable file
File diff suppressed because it is too large
Load Diff
5
data/tanveer/chess-krvkp/chess-krvkp.cost
Executable file
5
data/tanveer/chess-krvkp/chess-krvkp.cost
Executable file
@@ -0,0 +1,5 @@
|
||||
% Rows Columns
|
||||
2 2
|
||||
% Matrix elements
|
||||
0.0 1.0
|
||||
1.0 0.0
|
8
data/tanveer/chess-krvkp/chess-krvkp.txt
Executable file
8
data/tanveer/chess-krvkp/chess-krvkp.txt
Executable file
@@ -0,0 +1,8 @@
|
||||
n_entradas= 36
|
||||
n_clases= 2
|
||||
n_arquivos= 1
|
||||
fich1= chess-krvkp_R.dat
|
||||
n_patrons1= 3196
|
||||
n_patrons_entrena= 1598
|
||||
n_patrons_valida= 1598
|
||||
n_conxuntos= 1
|
3197
data/tanveer/chess-krvkp/chess-krvkp_R.dat
Executable file
3197
data/tanveer/chess-krvkp/chess-krvkp_R.dat
Executable file
File diff suppressed because it is too large
Load Diff
2
data/tanveer/chess-krvkp/conxuntos.dat
Executable file
2
data/tanveer/chess-krvkp/conxuntos.dat
Executable file
File diff suppressed because one or more lines are too long
8
data/tanveer/chess-krvkp/conxuntos_kfold.dat
Executable file
8
data/tanveer/chess-krvkp/conxuntos_kfold.dat
Executable file
File diff suppressed because one or more lines are too long
3198
data/tanveer/chess-krvkp/kr-vs-kp.data
Executable file
3198
data/tanveer/chess-krvkp/kr-vs-kp.data
Executable file
File diff suppressed because it is too large
Load Diff
66
data/tanveer/chess-krvkp/kr-vs-kp.names
Executable file
66
data/tanveer/chess-krvkp/kr-vs-kp.names
Executable file
@@ -0,0 +1,66 @@
|
||||
1. Title: Chess End-Game -- King+Rook versus King+Pawn on a7
|
||||
(usually abbreviated KRKPA7). The pawn on a7 means it is one square
|
||||
away from queening. It is the King+Rook's side (white) to move.
|
||||
|
||||
2. Sources:
|
||||
(a) Database originally generated and described by Alen Shapiro.
|
||||
(b) Donor/Coder: Rob Holte (holte@uottawa.bitnet). The database
|
||||
was supplied to Holte by Peter Clark of the Turing Institute
|
||||
in Glasgow (pete@turing.ac.uk).
|
||||
(c) Date: 1 August 1989
|
||||
|
||||
3. Past Usage:
|
||||
- Alen D. Shapiro (1983,1987), "Structured Induction in Expert Systems",
|
||||
Addison-Wesley. This book is based on Shapiro's Ph.D. thesis (1983)
|
||||
at the University of Edinburgh entitled "The Role of Structured
|
||||
Induction in Expert Systems".
|
||||
- Stephen Muggleton (1987), "Structuring Knowledge by Asking Questions",
|
||||
pp.218-229 in "Progress in Machine Learning", edited by I. Bratko
|
||||
and Nada Lavrac, Sigma Press, Wilmslow, England SK9 5BB.
|
||||
- Robert C. Holte, Liane Acker, and Bruce W. Porter (1989),
|
||||
"Concept Learning and the Problem of Small Disjuncts",
|
||||
Proceedings of IJCAI. Also available as technical report AI89-106,
|
||||
Computer Sciences Department, University of Texas at Austin,
|
||||
Austin, Texas 78712.
|
||||
|
||||
4. Relevant Information:
|
||||
The dataset format is described below. Note: the format of this
|
||||
database was modified on 2/26/90 to conform with the format of all
|
||||
the other databases in the UCI repository of machine learning databases.
|
||||
|
||||
5. Number of Instances: 3196 total
|
||||
|
||||
6. Number of Attributes: 36
|
||||
|
||||
7. Attribute Summaries:
|
||||
Classes (2): -- White-can-win ("won") and White-cannot-win ("nowin").
|
||||
I believe that White is deemed to be unable to win if the Black pawn
|
||||
can safely advance.
|
||||
Attributes: see Shapiro's book.
|
||||
|
||||
8. Missing Attributes: -- none
|
||||
|
||||
9. Class Distribution:
|
||||
In 1669 of the positions (52%), White can win.
|
||||
In 1527 of the positions (48%), White cannot win.
|
||||
|
||||
The format for instances in this database is a sequence of 37 attribute values.
|
||||
Each instance is a board-descriptions for this chess endgame. The first
|
||||
36 attributes describe the board. The last (37th) attribute is the
|
||||
classification: "win" or "nowin". There are 0 missing values.
|
||||
A typical board-description is
|
||||
|
||||
f,f,f,f,f,f,f,f,f,f,f,f,l,f,n,f,f,t,f,f,f,f,f,f,f,t,f,f,f,f,f,f,f,t,t,n,won
|
||||
|
||||
The names of the features do not appear in the board-descriptions.
|
||||
Instead, each feature correponds to a particular position in the
|
||||
feature-value list. For example, the head of this list is the value
|
||||
for the feature "bkblk". The following is the list of features, in
|
||||
the order in which their values appear in the feature-value list:
|
||||
|
||||
[bkblk,bknwy,bkon8,bkona,bkspr,bkxbq,bkxcr,bkxwp,blxwp,bxqsq,cntxt,dsopp,dwipd,
|
||||
hdchk,katri,mulch,qxmsq,r2ar8,reskd,reskr,rimmx,rkxwp,rxmsq,simpl,skach,skewr,
|
||||
skrxp,spcop,stlmt,thrsk,wkcti,wkna8,wknck,wkovl,wkpos,wtoeg]
|
||||
|
||||
In the file, there is one instance (board position) per line.
|
||||
|
43
data/tanveer/chess-krvkp/le_datos.m
Executable file
43
data/tanveer/chess-krvkp/le_datos.m
Executable file
@@ -0,0 +1,43 @@
|
||||
printf('lendo problema %s ...\n', problema);
|
||||
|
||||
n_entradas= 36; n_clases= 2; n_fich= 1; fich{1}= 'kr-vs-kp.data'; n_patrons(1)= 3196;
|
||||
|
||||
n_max= max(n_patrons);
|
||||
x = zeros(n_fich, n_max, n_entradas); cl= zeros(n_fich, n_max);
|
||||
|
||||
n_patrons_total = sum(n_patrons); n_iter=0;
|
||||
clase={'nowin', 'won'};
|
||||
for i_fich=1:n_fich
|
||||
f=fopen(fich{i_fich}, 'r');
|
||||
if -1==f
|
||||
error('erro en fopen abrindo %s\n', fich{i_fich});
|
||||
end
|
||||
for i=1:n_patrons(i_fich)
|
||||
fprintf(2,'%5.1f%%\r', 100*n_iter++/n_patrons_total);
|
||||
for j = 1:n_entradas
|
||||
t = fscanf(f,'%s',1);
|
||||
if j==13
|
||||
val={'l','g'};
|
||||
elseif j==15
|
||||
val={'b','n','w'};
|
||||
elseif j==36
|
||||
val={'n','t'};
|
||||
else
|
||||
val={'f','t'};
|
||||
end
|
||||
n=length(val);
|
||||
for k=1:n
|
||||
if strcmp(t,val{k})
|
||||
x(i_fich,i,j)=k; break
|
||||
end
|
||||
end
|
||||
end
|
||||
t = fscanf(f,'%s',1);
|
||||
for j=1:n_clases % lectura da clase
|
||||
if strcmp(t,clase{j})
|
||||
cl(i_fich,i)=j-1; break
|
||||
end
|
||||
end
|
||||
end
|
||||
fclose(f);
|
||||
end
|
Reference in New Issue
Block a user