mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-18 00:46:03 +00:00
Commit Inicial
This commit is contained in:
28065
data/tanveer/chess-krvk/chess-krvk.arff
Executable file
28065
data/tanveer/chess-krvk/chess-krvk.arff
Executable file
File diff suppressed because it is too large
Load Diff
21
data/tanveer/chess-krvk/chess-krvk.cost
Executable file
21
data/tanveer/chess-krvk/chess-krvk.cost
Executable file
@@ -0,0 +1,21 @@
|
||||
% Rows Columns
|
||||
18 18
|
||||
% Matrix elements
|
||||
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0
|
||||
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0
|
8
data/tanveer/chess-krvk/chess-krvk.txt
Executable file
8
data/tanveer/chess-krvk/chess-krvk.txt
Executable file
@@ -0,0 +1,8 @@
|
||||
n_entradas= 6
|
||||
n_clases= 18
|
||||
n_arquivos= 1
|
||||
fich1= chess-krvk_R.dat
|
||||
n_patrons1= 28056
|
||||
n_patrons_entrena= 14028
|
||||
n_patrons_valida= 14028
|
||||
n_conxuntos= 1
|
28057
data/tanveer/chess-krvk/chess-krvk_R.dat
Executable file
28057
data/tanveer/chess-krvk/chess-krvk_R.dat
Executable file
File diff suppressed because it is too large
Load Diff
2
data/tanveer/chess-krvk/conxuntos.dat
Executable file
2
data/tanveer/chess-krvk/conxuntos.dat
Executable file
File diff suppressed because one or more lines are too long
8
data/tanveer/chess-krvk/conxuntos_kfold.dat
Executable file
8
data/tanveer/chess-krvk/conxuntos_kfold.dat
Executable file
File diff suppressed because one or more lines are too long
28056
data/tanveer/chess-krvk/krkopt.data
Executable file
28056
data/tanveer/chess-krvk/krkopt.data
Executable file
File diff suppressed because it is too large
Load Diff
183
data/tanveer/chess-krvk/krkopt.info
Executable file
183
data/tanveer/chess-krvk/krkopt.info
Executable file
@@ -0,0 +1,183 @@
|
||||
1. Title:
|
||||
Chess Endgame Database for White King and Rook against Black King (KRK) -
|
||||
Black-to-move Positions Drawn or Lost in N Moves.
|
||||
|
||||
2. Source Information:
|
||||
-- Creators: Database generated by Michael Bain and Arthur van Hoff
|
||||
at the Turing Institute, Glasgow, UK.
|
||||
-- Donor: Michael Bain (mike@cse.unsw.edu.au), AI Lab, Computer Science,
|
||||
University of New South Wales, Sydney 2052, Australia.
|
||||
(tel) +61 2 385 3939
|
||||
(fax) +61 2 663 4576
|
||||
-- Date: June, 1994.
|
||||
|
||||
3. Past Usage:
|
||||
|
||||
Chess endgames are complex domains which are enumerable. Endgame
|
||||
databases are tables of stored game-theoretic values for the enumerated
|
||||
elements (legal positions) of the domain. The game-theoretic values stored
|
||||
denote whether or not positions are won for either side, or include also
|
||||
the depth of win (number of moves) assuming minimax-optimal play. From the
|
||||
point of view of experiments on computer induction such databases provide
|
||||
not only a source of examples but also an oracle (Roycroft, 1986) for
|
||||
testing induced rules. However a chess endgame database differs from, say,
|
||||
a relational database containing details of parts and suppliers in the
|
||||
following important respect. The combinatorics of computing the required
|
||||
game-theoretic values for individual position entries independently would
|
||||
be prohibitive. Therefore all the database entries are generated in a single
|
||||
iterative process using the ``standard backup'' algorithm (Thompson, 1986).
|
||||
|
||||
A KRK database was described by Clarke (1977). The current database was
|
||||
described and used for machine learning experiments in Bain (1992; 1994). It
|
||||
should be noted that our database is not guaranteed correct, but the class
|
||||
distribution is the same as Clarke's database. In (Bain 1992; 1994) the
|
||||
task was classification of positions in the database as won for white in a
|
||||
fixed number of moves, assuming optimal play by both sides. The problem was
|
||||
structured into separate sub-problems by depth-of-win ordered draw, zero,
|
||||
one, ..., sixteen. When learning depth d all examples at depths > d are
|
||||
used as negatives. Quinlan (1994) applied Foil to learn a complete and
|
||||
correct solution for this task.
|
||||
|
||||
The typical complexity of induced classifiers in this domain suggest
|
||||
that the task is demanding when background knowledge is restricted.
|
||||
|
||||
|
||||
4. Relevant Information:
|
||||
An Inductive Logic Programming (ILP) or relational learning framework is
|
||||
assumed (Muggleton, 1992). The learning system is provided with examples
|
||||
of chess positions described only by the coordinates of the pieces on the
|
||||
board. Background knowledge in the form of row and column differences is
|
||||
also supplied. The relations necessary to form a correct and concise
|
||||
classifier for the target concept must be discovered by the learning system
|
||||
(the examples already provide a complete extensional definition).
|
||||
The task is closely related to Quinlan's (1983) application of ID3 to
|
||||
classify White King and Rook against Black King and Knight (KRKN) positions
|
||||
as lost 2-ply or lost 3-ply. The framework is similar in that the example
|
||||
positions supply only low-grade data. An important difference is that
|
||||
additional background predicates of the kind supplied in the KRKN study via
|
||||
hand-crafted attributes are not provided for this KRK domain.
|
||||
|
||||
5. Number of Instances: 28056
|
||||
|
||||
6. Number of Attributes:
|
||||
There are six attribute variables and one class variable.
|
||||
|
||||
7. Attribute Information:
|
||||
1. White King file (column)
|
||||
2. White King rank (row)
|
||||
3. White Rook file
|
||||
4. White Rook rank
|
||||
5. Black King file
|
||||
6. Black King rank
|
||||
7. optimal depth-of-win for White in 0 to 16 moves, otherwise drawn
|
||||
{draw, zero, one, two, ..., sixteen}.
|
||||
|
||||
|
||||
8. Missing Attribute Values: None
|
||||
|
||||
9. Class Distribution:
|
||||
|
||||
draw 2796
|
||||
zero 27
|
||||
one 78
|
||||
two 246
|
||||
three 81
|
||||
four 198
|
||||
five 471
|
||||
six 592
|
||||
seven 683
|
||||
eight 1433
|
||||
nine 1712
|
||||
ten 1985
|
||||
eleven 2854
|
||||
twelve 3597
|
||||
thirteen 4194
|
||||
fourteen 4553
|
||||
fifteen 2166
|
||||
sixteen 390
|
||||
|
||||
Total 28056
|
||||
|
||||
|
||||
10. Note: Foil is available by anonymous ftp from ftp.cs.su.oz.au, file
|
||||
pub/foil6.sh.
|
||||
|
||||
|
||||
References: (BibTeX format)
|
||||
|
||||
@incollection{bain_1992,
|
||||
AUTHOR = "M. Bain",
|
||||
TITLE = "Learning optimal chess strategies",
|
||||
BOOKTITLE = "{ILP 92}: {P}roc. {I}ntl. {W}orkshop on
|
||||
{I}nductive {L}ogic {P}rogramming",
|
||||
YEAR = 1992,
|
||||
VOLUME = "ICOT TM-1182",
|
||||
EDITOR = "S. Muggleton",
|
||||
PUBLISHER = "Institute for New Generation Computer Technology",
|
||||
ADDRESS = "Tokyo, Japan"}
|
||||
|
||||
@phdthesis{bain_1994,
|
||||
TITLE = "Learning {L}ogical {E}xceptions in {C}hess",
|
||||
AUTHOR = "M. Bain",
|
||||
SCHOOL = "University of Strathclyde",
|
||||
YEAR = "1994"}
|
||||
|
||||
@incollection{clarke_1977,
|
||||
AUTHOR = "M. R. B. Clarke",
|
||||
TITLE = "A {Q}uantitative {S}tudy of {K}ing and {P}awn
|
||||
{A}gainst {K}ing",
|
||||
BOOKTITLE = "Advances in Computer Chess",
|
||||
VOLUME = 1,
|
||||
PAGES = "108--118",
|
||||
EDITOR = "M. R. B. Clarke",
|
||||
PUBLISHER = "Edinburgh University Press",
|
||||
ADDRESS = "Edinburgh",
|
||||
YEAR = "1977"}
|
||||
|
||||
@incollection{muggleton_1992,
|
||||
AUTHOR = "S. Muggleton",
|
||||
TITLE = "Inductive {L}ogic {P}rogramming",
|
||||
BOOKTITLE = "Inductive {L}ogic {P}rogramming",
|
||||
PAGES = "3--27",
|
||||
EDITOR = "S. Muggleton",
|
||||
PUBLISHER = "Academic Press",
|
||||
ADDRESS = "London",
|
||||
YEAR = "1992"}
|
||||
|
||||
@incollection{quinlan_1983,
|
||||
AUTHOR = "J. R. Quinlan",
|
||||
TITLE = "Learning {E}fficient {C}lassification {P}rocedures and their
|
||||
{A}pplication to {C}hess {E}nd {G}ames",
|
||||
YEAR = 1983,
|
||||
PAGES = "464--482",
|
||||
BOOKTITLE = "Machine Learning: An Artificial Intelligence
|
||||
Approach",
|
||||
EDITOR = "R. Michalski and J. Carbonnel and T. Mitchell",
|
||||
PUBLISHER = "Tioga",
|
||||
ADDRESS = "Palo Alto, CA"}
|
||||
|
||||
@misc{quinlan_1994,
|
||||
AUTHOR = "J. R. Quinlan",
|
||||
YEAR = 1994,
|
||||
NOTE = "Personal Communication"}
|
||||
|
||||
@article{roycroft_1986,
|
||||
AUTHOR = "A. J. Roycroft",
|
||||
TITLE = "Database ``{O}racles'': {N}ecessary and desirable features",
|
||||
JOURNAL = "International Computer Chess Association Journal",
|
||||
YEAR = "1986",
|
||||
VOLUME = 8,
|
||||
NUMBER = 2,
|
||||
PAGES = "100--104"}
|
||||
|
||||
@article{thompson_1986,
|
||||
AUTHOR = "K. Thompson",
|
||||
TITLE = "Retrograde {A}nalysis of {C}ertain {E}ndgames",
|
||||
JOURNAL = "International Computer Chess Association Journal",
|
||||
YEAR = "1986",
|
||||
VOLUME = "8",
|
||||
NUMBER = "3",
|
||||
PAGES = "131--139"}
|
||||
|
||||
|
||||
|
41
data/tanveer/chess-krvk/le_datos.m
Executable file
41
data/tanveer/chess-krvk/le_datos.m
Executable file
@@ -0,0 +1,41 @@
|
||||
printf('lendo problema %s ...\n', problema);
|
||||
|
||||
n_entradas= 6; n_clases= 18; n_fich= 1; fich{1}= 'krkopt.data'; n_patrons(1)= 28056;
|
||||
|
||||
n_max= max(n_patrons);
|
||||
x = zeros(n_fich, n_max, n_entradas); cl= zeros(n_fich, n_max);
|
||||
|
||||
n_patrons_total = sum(n_patrons); n_iter=0;
|
||||
val={'a','b','c','d','e','f','g','h'};
|
||||
n=length(val); a=2/(n-1); b=(1+n)/(1-n);
|
||||
clase={'draw','zero','one','two','three','four','five','six','seven','eight','nine','ten','eleven','twelve','thirteen','fourteen','fifteen','sixteen'};
|
||||
for i_fich=1:n_fich
|
||||
f=fopen(fich{i_fich}, 'r');
|
||||
if -1==f
|
||||
error('erro en fopen abrindo %s\n', fich{i_fich});
|
||||
end
|
||||
for i=1:n_patrons(i_fich)
|
||||
fprintf(2,'%5.1f%%\r', 100*n_iter++/n_patrons_total);
|
||||
for j = 1:n_entradas
|
||||
if mod(j,2)==1
|
||||
t = fscanf(f,'%c',1);
|
||||
for k=1:n
|
||||
if strcmp(t,val{k})
|
||||
x(i_fich,i,j)=a*k+b; break
|
||||
end
|
||||
end
|
||||
else
|
||||
x(i_fich,i,j) = fscanf(f, '%i',1);
|
||||
end
|
||||
fscanf(f,'%c',1); % le e descarta a coma
|
||||
end
|
||||
t = fscanf(f,'%s',1);
|
||||
for j=1:n_clases % lectura da clase
|
||||
if strcmp(t,clase{j})
|
||||
cl(i_fich,i)=j-1; break
|
||||
end
|
||||
end
|
||||
fscanf(f,'%c',1);
|
||||
end
|
||||
fclose(f);
|
||||
end
|
Reference in New Issue
Block a user