mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-15 23:46:03 +00:00
Add resport score for stree
update param_analysis for stree only
This commit is contained in:
236
report_score.py
Normal file
236
report_score.py
Normal file
@@ -0,0 +1,236 @@
|
||||
import argparse
|
||||
import random
|
||||
import time
|
||||
from datetime import datetime
|
||||
import json
|
||||
import numpy as np
|
||||
from stree import Stree
|
||||
from sklearn.model_selection import KFold, cross_validate
|
||||
from experimentation.Sets import Datasets
|
||||
from experimentation.Database import MySQL
|
||||
|
||||
8
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument(
|
||||
"-S",
|
||||
"--set-of-files",
|
||||
type=str,
|
||||
choices=["aaai", "tanveer"],
|
||||
required=False,
|
||||
default="tanveer",
|
||||
)
|
||||
ap.add_argument(
|
||||
"-m",
|
||||
"--model",
|
||||
type=str,
|
||||
required=False,
|
||||
default="stree",
|
||||
help="model name, default stree",
|
||||
)
|
||||
ap.add_argument(
|
||||
"-d",
|
||||
"--dataset",
|
||||
type=str,
|
||||
required=True,
|
||||
help="dataset to process, all for everyone",
|
||||
)
|
||||
ap.add_argument(
|
||||
"-s",
|
||||
"--sql",
|
||||
default=False,
|
||||
type=bool,
|
||||
required=False,
|
||||
help="generate report_score.sql",
|
||||
)
|
||||
ap.add_argument(
|
||||
"-p",
|
||||
"--param",
|
||||
default=False,
|
||||
type=bool,
|
||||
required=False,
|
||||
help="Auto generate params",
|
||||
)
|
||||
args = ap.parse_args()
|
||||
return (args.set_of_files, args.model, args.dataset, args.sql, args.param)
|
||||
|
||||
|
||||
def compute_auto_hyperparams(X, y):
|
||||
params = {"max_iter": 1e4, "C": 0.1}
|
||||
classes = len(np.unique(y))
|
||||
if classes > 2:
|
||||
params["split_criteria"] = "max_samples"
|
||||
return params
|
||||
|
||||
|
||||
def process_dataset(dataset, verbose, model, auto_params):
|
||||
X, y = dt.load(dataset)
|
||||
scores = []
|
||||
times = []
|
||||
if verbose:
|
||||
print(
|
||||
f"* Processing dataset [{dataset}] from Set: {set_of_files} with "
|
||||
f"{model}"
|
||||
)
|
||||
print(f"X.shape: {X.shape}")
|
||||
print(f"{X[:4]}")
|
||||
print(f"Random seeds: {random_seeds}")
|
||||
if auto_params:
|
||||
hyperparameters = compute_auto_hyperparams(X, y)
|
||||
else:
|
||||
hyperparameters = {}
|
||||
for random_state in random_seeds:
|
||||
random.seed(random_state)
|
||||
np.random.seed(random_state)
|
||||
kfold = KFold(shuffle=True, random_state=random_state, n_splits=5)
|
||||
clf = Stree(random_state=random_state)
|
||||
clf.set_params(**hyperparameters)
|
||||
res = cross_validate(clf, X, y, cv=kfold)
|
||||
scores.append(res["test_score"])
|
||||
times.append(res["fit_time"])
|
||||
if verbose:
|
||||
print(
|
||||
f"Random seed: {random_state:5d} Accuracy: "
|
||||
f"{res['test_score'].mean():6.4f}±"
|
||||
f"{res['test_score'].std():6.4f} "
|
||||
f"{res['fit_time'].mean():5.3f}s"
|
||||
)
|
||||
return scores, times, json.dumps(hyperparameters)
|
||||
|
||||
|
||||
def store_string(dataset, model, accuracy, time_spent, hyperparameters):
|
||||
attributes = [
|
||||
"date",
|
||||
"time",
|
||||
"type",
|
||||
"accuracy",
|
||||
"accuracy_std",
|
||||
"dataset",
|
||||
"classifier",
|
||||
"norm",
|
||||
"stand",
|
||||
"time_spent",
|
||||
"time_spent_std",
|
||||
"parameters",
|
||||
]
|
||||
command_insert = (
|
||||
"replace into results ("
|
||||
+ ",".join(attributes)
|
||||
+ ") values("
|
||||
+ ("'%s'," * len(attributes))[:-1]
|
||||
+ ");"
|
||||
)
|
||||
now = datetime.now()
|
||||
date = now.strftime("%Y-%m-%d")
|
||||
time = now.strftime("%H:%M:%S")
|
||||
values = (
|
||||
date,
|
||||
time,
|
||||
"crossval",
|
||||
np.mean(accuracy),
|
||||
np.std(accuracy),
|
||||
dataset,
|
||||
model,
|
||||
True,
|
||||
False,
|
||||
np.mean(time_spent),
|
||||
np.std(time_spent),
|
||||
hyperparameters,
|
||||
)
|
||||
result = command_insert % values
|
||||
return result
|
||||
|
||||
|
||||
random_seeds = [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]
|
||||
normalize = True
|
||||
standardize = False
|
||||
(set_of_files, model, dataset, sql, auto_params) = parse_arguments()
|
||||
dbh = MySQL()
|
||||
if sql:
|
||||
sql_output = open("report_score.sql", "w")
|
||||
database = dbh.get_connection()
|
||||
dt = Datasets(normalize, standardize, set_of_files)
|
||||
start = time.time()
|
||||
if dataset == "all":
|
||||
print(
|
||||
f"* Process all datasets set with {model}: {set_of_files} "
|
||||
f"norm: {normalize} std: {standardize}"
|
||||
)
|
||||
print(f"5 Fold Cross Validation with 10 random seeds {random_seeds}\n")
|
||||
print(
|
||||
"{0:30s} {5:4s} {6:3s} {7:2s} {1:13s} {2:13s} {3:8s} {4:90s}".format(
|
||||
"Dataset",
|
||||
"Acc. computed",
|
||||
"Best Accuracy",
|
||||
"Diff.",
|
||||
"Best accuracy hyperparameters",
|
||||
"Samp",
|
||||
"Var",
|
||||
"Cls",
|
||||
)
|
||||
)
|
||||
print("=" * 30, end=" ")
|
||||
print("=" * 4, end=" ")
|
||||
print("=" * 3, end=" ")
|
||||
print("=" * 3, end=" ")
|
||||
print("=" * 13, end=" ")
|
||||
print("=" * 13, end=" ")
|
||||
print("=" * 8, end=" ")
|
||||
print("=" * 90)
|
||||
for dataset in dt:
|
||||
X, y = dt.load(dataset[0]) # type: ignore
|
||||
samples, features = X.shape
|
||||
classes = len(np.unique(y))
|
||||
print(
|
||||
f"{dataset[0]:30s} {samples:4d} {features:3d} " f"{classes:3d} ",
|
||||
end="",
|
||||
)
|
||||
scores, times, hyperparameters = process_dataset(
|
||||
dataset[0], verbose=False, model=model, auto_params=auto_params
|
||||
)
|
||||
record = dbh.find_best(dataset[0], model, "crossval")
|
||||
if record is not None:
|
||||
parameters = json.loads(record[8] if record[8] != "" else "{}")
|
||||
parameters.pop("random_state", None)
|
||||
accuracy_best = record[5]
|
||||
acc_best_std = record[11]
|
||||
else:
|
||||
parameters = json.loads("{}")
|
||||
accuracy_best = 0.0
|
||||
acc_best_std = 0.0
|
||||
accuracy_computed = np.mean(scores)
|
||||
diff = accuracy_best - accuracy_computed
|
||||
print(
|
||||
f"{accuracy_computed:6.4f}±{np.std(scores):6.4f} "
|
||||
f"{accuracy_best:6.4f}±{acc_best_std:6.4f} {diff:8.5f} "
|
||||
f"{json.dumps(parameters):40s}"
|
||||
)
|
||||
if sql:
|
||||
command = store_string(
|
||||
dataset[0], model, scores, times, hyperparameters
|
||||
)
|
||||
print(command, file=sql_output)
|
||||
else:
|
||||
scores, times, hyperparameters = process_dataset(
|
||||
dataset, verbose=True, model=model, auto_params=auto_params
|
||||
)
|
||||
record = dbh.find_best(dataset, model, "crossval")
|
||||
accuracy = np.mean(scores)
|
||||
accuracy_best = record[5] if record is not None else 0.0
|
||||
acc_best_std = record[11] if record is not None else 0.0
|
||||
print(
|
||||
f"* Accuracy Computed : {accuracy:6.4f}±{np.std(scores):6.4f} "
|
||||
f"{np.mean(times):5.3f}s"
|
||||
)
|
||||
print(f"* Accuracy Best ....: {accuracy_best:6.4f}±{acc_best_std:6.4f}")
|
||||
print(f"* Difference .......: {accuracy_best - accuracy:6.4f}")
|
||||
stop = time.time()
|
||||
print(f"- Auto Hyperparams .: {hyperparameters}")
|
||||
hours, rem = divmod(stop - start, 3600)
|
||||
minutes, seconds = divmod(rem, 60)
|
||||
print(f"Time: {int(hours):2d}h {int(minutes):2d}m {int(seconds):2d}s")
|
||||
if sql:
|
||||
sql_output.close()
|
||||
dbh.close()
|
Reference in New Issue
Block a user