Files
stree/tests/Stree_test.py
Ricardo Montañana e56b955b92 Implement predict_proba with test.
Fix tree overload with dataset in nodes only needed in tests
2020-05-14 18:42:17 +02:00

160 lines
5.9 KiB
Python

import unittest
from sklearn.datasets import make_classification
import os
import numpy as np
import csv
from trees.Stree import Stree, Snode
class Stree_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
os.environ['TESTING'] = '1'
self._random_state = 1
self._clf = Stree(random_state=self._random_state,
use_predictions=False)
self._clf.fit(*self._get_Xy())
super(Stree_test, self).__init__(*args, **kwargs)
@classmethod
def tearDownClass(cls):
try:
os.environ.pop('TESTING')
except:
pass
def _get_Xy(self):
X, y = make_classification(n_samples=1500, n_features=3, n_informative=3,
n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,
class_sep=1.5, flip_y=0, weights=[0.5, 0.5], random_state=self._random_state)
return X, y
def _check_tree(self, node: Snode):
if node.is_leaf():
return
y_prediction = node._clf.predict(node._X)
y_down = node.get_down()._y
y_up = node.get_up()._y
# Is a correct partition in terms of cadinality?
# i.e. The partition algorithm didn't forget any sample
self.assertEqual(node._y.shape[0], y_down.shape[0] + y_up.shape[0])
unique_y, count_y = np.unique(node._y, return_counts=True)
_, count_d = np.unique(y_down, return_counts=True)
_, count_u = np.unique(y_up, return_counts=True)
for i in unique_y:
try:
number_down = count_d[i]
except:
number_down = 0
try:
number_up = count_u[i]
except:
number_up = 0
self.assertEqual(count_y[i], number_down + number_up)
# Is the partition made the same as the prediction?
# as the node is not a leaf...
unique_yp, count_yp = np.unique(y_prediction, return_counts=True)
self.assertEqual(count_yp[1], y_down.shape[0])
self.assertEqual(count_yp[0], y_up.shape[0])
self._check_tree(node.get_down())
self._check_tree(node.get_up())
def test_build_tree(self):
"""Check if the tree is built the same way as predictions of models
"""
self._check_tree(self._clf._tree)
def _get_file_data(self, file_name: str) -> tuple:
"""Return X, y from data, y is the last column in array
Arguments:
file_name {str} -- the file name
Returns:
tuple -- tuple with samples, categories
"""
data = np.genfromtxt(file_name, delimiter=',')
data = np.array(data)
column_y = data.shape[1] - 1
fy = data[:, column_y]
fx = np.delete(data, column_y, axis=1)
return fx, fy
def _find_out(self, px: np.array, x_original: np.array, y_original) -> list:
"""Find the original values of y for a given array of samples
Arguments:
px {np.array} -- array of samples to search for
x_original {np.array} -- original dataset
y_original {[type]} -- original classes
Returns:
np.array -- classes of the given samples
"""
res = []
for needle in px:
for row in range(x_original.shape[0]):
if all(x_original[row, :] == needle):
res.append(y_original[row])
return res
def test_subdatasets(self):
"""Check if the subdatasets files have the same predictions as the tree itself
"""
model = self._clf._tree._clf
X, y = self._get_Xy()
model.fit(X, y)
self._clf.save_sub_datasets()
with open(self._clf.get_catalog_name()) as cat_file:
catalog = csv.reader(cat_file, delimiter=',')
for row in catalog:
X, y = self._get_Xy()
x_file, y_file = self._get_file_data(row[0])
y_original = np.array(self._find_out(x_file, X, y), dtype=int)
self.assertTrue(np.array_equal(y_file, y_original))
def test_single_prediction(self):
X, y = self._get_Xy()
yp = self._clf.predict((X[0, :].reshape(-1, X.shape[1])))
self.assertEqual(yp[0], y[0])
def test_multiple_prediction(self):
# First 27 elements the predictions are the same as the truth
num = 27
X, y = self._get_Xy()
yp = self._clf.predict(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp.tolist())
def test_score(self):
X, y = self._get_Xy()
accuracy_score = self._clf.score(X, y, print_out=False)
yp = self._clf.predict(X)
right = (yp == y).astype(int)
accuracy_computed = sum(right) / len(y)
self.assertEqual(accuracy_score, accuracy_computed)
def test_single_predict_proba(self):
# Element 28 has a different prediction than the truth
X, y = self._get_Xy()
yp = self._clf.predict_proba(X[28, :].reshape(-1, X.shape[1]))
self.assertEqual(0, yp[0:, 0])
self.assertEqual(0.9282970550576184, yp[0:, 1])
def test_multiple_predict_proba(self):
# First 27 elements the predictions are the same as the truth
num = 27
X, y = self._get_Xy()
yp = self._clf.predict_proba(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp[:, 0].tolist())
expected_proba = [0.9759887, 0.92829706, 0.9759887, 0.92829706, 0.92829706, 0.9759887,
0.92829706, 0.9759887, 0.9759887, 0.9759887, 0.9759887, 0.92829706,
0.92829706, 0.9759887, 0.92829706, 0.92829706, 0.92829706, 0.92829706,
0.9759887, 0.92829706, 0.9759887, 0.92829706, 0.92829706, 0.92829706,
0.92829706, 0.92829706, 0.9759887 ]
self.assertListEqual(expected_proba, np.round(yp[:, 1], decimals=8).tolist())