mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-15 23:46:02 +00:00
152 lines
5.4 KiB
Python
152 lines
5.4 KiB
Python
'''
|
|
__author__ = "Ricardo Montañana Gómez"
|
|
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
|
__license__ = "MIT"
|
|
__version__ = "0.9"
|
|
Build an oblique tree classifier based on SVM Trees
|
|
Uses LinearSVC
|
|
'''
|
|
|
|
import numpy as np
|
|
import typing
|
|
from sklearn.svm import LinearSVC
|
|
|
|
from trees.Snode import Snode
|
|
|
|
|
|
class Stree:
|
|
"""
|
|
"""
|
|
|
|
def __init__(self, C=1.0, max_iter: int = 1000, random_state: int = 0, use_predictions: bool = False):
|
|
self._max_iter = max_iter
|
|
self._C = C
|
|
self._random_state = random_state
|
|
self._outcomes = None
|
|
self._tree = None
|
|
self.__folder = 'data/'
|
|
self.__use_predictions = use_predictions
|
|
self.__trained = False
|
|
|
|
def _split_data(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray) -> list:
|
|
if self.__use_predictions:
|
|
yp = clf.predict(X)
|
|
down = (yp == 1).reshape(-1, 1)
|
|
else:
|
|
# doesn't work with multiclass as each sample has to do inner product with its own coeficients
|
|
# computes positition of every sample is w.r.t. the hyperplane
|
|
coef = clf.coef_[0, :].reshape(-1, X.shape[1])
|
|
intercept = clf.intercept_[0]
|
|
res = X.dot(coef.T) + intercept
|
|
down = res > 0
|
|
up = ~down
|
|
X_down = X[down[:, 0]] if any(down) else None
|
|
y_down = y[down[:, 0]] if any(down) else None
|
|
X_up = X[up[:, 0]] if any(up) else None
|
|
y_up = y[up[:, 0]] if any(up) else None
|
|
return [X_up, y_up, X_down, y_down]
|
|
|
|
def fit(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> 'Stree':
|
|
self._tree = self.train(X, y.ravel(), title)
|
|
self._build_predictor()
|
|
self.__trained = True
|
|
return self
|
|
|
|
def _build_predictor(self):
|
|
"""Process the leaves to make them predictors
|
|
"""
|
|
def run_tree(node: Snode):
|
|
if node.is_leaf():
|
|
node.make_predictor()
|
|
return
|
|
run_tree(node.get_down())
|
|
run_tree(node.get_up())
|
|
run_tree(self._tree)
|
|
|
|
def train(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> Snode:
|
|
if np.unique(y).shape[0] == 1:
|
|
# only 1 class => pure dataset
|
|
return Snode(None, X, y, title + ', <pure> ')
|
|
# Train the model
|
|
clf = LinearSVC(max_iter=self._max_iter, C=self._C,
|
|
random_state=self._random_state)
|
|
clf.fit(X, y)
|
|
tree = Snode(clf, X, y, title)
|
|
X_U, y_u, X_D, y_d = self._split_data(clf, X, y)
|
|
if X_U is None or X_D is None:
|
|
# didn't part anything
|
|
return Snode(clf, X, y, title + ', <couldn\'t go any further>')
|
|
tree.set_up(self.train(X_U, y_u, title + ' - Up'))
|
|
tree.set_down(self.train(X_D, y_d, title + ' - Down'))
|
|
return tree
|
|
|
|
def predict(self, X: np.array) -> np.array:
|
|
def predict_class(xp: np.array, tree: Snode) -> np.array:
|
|
if tree.is_leaf():
|
|
return tree._class
|
|
coef = tree._vector[0, :].reshape(-1, xp.shape[1])
|
|
if xp.dot(coef.T) + tree._interceptor[0] > 0:
|
|
return predict_class(xp, tree.get_down())
|
|
return predict_class(xp, tree.get_up())
|
|
y = np.array([], dtype=int)
|
|
for xp in X:
|
|
y = np.append(y, predict_class(xp.reshape(-1, X.shape[1]), self._tree))
|
|
return y
|
|
|
|
def score(self, X: np.array, y: np.array, print_out=True) -> float:
|
|
if not self.__trained:
|
|
self.fit(X, y)
|
|
yp = self.predict(X).reshape(y.shape)
|
|
right = (yp == y).astype(int)
|
|
accuracy = np.sum(right) / len(y)
|
|
if print_out:
|
|
print(f"Accuracy: {accuracy:.6f}")
|
|
return accuracy
|
|
|
|
def __print_tree(self, tree: Snode, only_leaves=False) -> str:
|
|
if not only_leaves:
|
|
output = str(tree)
|
|
else:
|
|
output = ''
|
|
if tree.is_leaf():
|
|
if only_leaves:
|
|
output = str(tree)
|
|
return output
|
|
output += self.__print_tree(tree.get_down(), only_leaves)
|
|
output += self.__print_tree(tree.get_up(), only_leaves)
|
|
return output
|
|
|
|
def show_tree(self, only_leaves=False):
|
|
if only_leaves:
|
|
print(self.__print_tree(self._tree, only_leaves=True))
|
|
else:
|
|
print(self)
|
|
|
|
def __str__(self):
|
|
return self.__print_tree(self._tree)
|
|
|
|
def _save_datasets(self, tree: Snode, catalog: typing.TextIO, number: int):
|
|
"""Save the dataset of the node in a csv file
|
|
|
|
Arguments:
|
|
tree {Snode} -- node with data to save
|
|
number {int} -- a number to make different file names
|
|
"""
|
|
data = np.append(tree._X, tree._y.reshape(-1, 1), axis=1)
|
|
name = f"{self.__folder}dataset{number}.csv"
|
|
np.savetxt(name, data, delimiter=",")
|
|
catalog.write(f"{name}, - {str(tree)}")
|
|
if tree.is_leaf():
|
|
return
|
|
self._save_datasets(tree.get_down(), catalog, number + 1)
|
|
self._save_datasets(tree.get_up(), catalog, number + 2)
|
|
|
|
def get_catalog_name(self):
|
|
return self.__folder + "catalog.txt"
|
|
|
|
def save_sub_datasets(self):
|
|
"""Save the every dataset stored in the tree to check with manual classifier
|
|
"""
|
|
with open(self.get_catalog_name(), 'w', encoding='utf-8') as catalog:
|
|
self._save_datasets(self._tree, catalog, 1)
|