Files
stree/trees/Stree.py

116 lines
4.3 KiB
Python

'''
__author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
__license__ = "MIT"
__version__ = "1.0"
Create a oblique tree classifier based on SVM Trees
Uses LinearSVC
'''
import numpy as np
import typing
from sklearn.svm import LinearSVC
from trees.Snode import Snode
class Stree:
"""
"""
def __init__(self, max_iter: int = 1000, random_state: int = 0, use_predictions: bool = False):
self._max_iter = max_iter
self._random_state = random_state
self._outcomes = None
self._tree = None
self.__folder = 'data/'
self.__use_predictions = use_predictions
def _split_data(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray) -> list:
if self.__use_predictions:
yp = clf.predict(X)
down = (yp == 1).reshape(-1, 1)
else:
# doesn't work with multiclass as each sample has to do inner product with its own coeficients
# computes positition of every sample is w.r.t. the hyperplane
coef = clf.coef_[0, :].reshape(-1, X.shape[1])
intercept = clf.intercept_[0]
res = X.dot(coef.T) + intercept
down = res > 0
up = ~down
X_down = X[down[:, 0]] if any(down) else None
y_down = y[down[:, 0]] if any(down) else None
X_up = X[up[:, 0]] if any(up) else None
y_up = y[up[:, 0]] if any(up) else None
return [X_up, y_up, X_down, y_down]
def fit(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> 'Stree':
self._tree = self.train(X, y, title)
self._predictor()
return self
def _predictor(self):
"""Process the leaves to make them predictors
"""
def run_tree(node: Snode):
if node.is_leaf():
node.make_predictor()
return
run_tree(node.get_down())
run_tree(node.get_up())
run_tree(self._tree)
def train(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> Snode:
if np.unique(y).shape[0] == 1:
# only 1 class => pure dataset
return Snode(None, X, y, title + f', class={np.unique(y)}, items={y.shape[0]}, rest=0, <pure> ')
# Train the model
clf = LinearSVC(max_iter=self._max_iter,
random_state=self._random_state)
clf.fit(X, y)
tree = Snode(clf, X, y, title)
X_U, y_u, X_D, y_d = self._split_data(clf, X, y)
if X_U is None or X_D is None:
# didn't part anything
return Snode(clf, X, y, title + f', classes={np.unique(y)}, items<0>={y[y==0].shape[0]}, items<1>={y[y==1].shape[0]}, <couldn\'t go any further>')
tree.set_up(self.train(X_U, y_u, title + ' - Up' +
str(np.unique(y_u, return_counts=True))))
tree.set_down(self.train(X_D, y_d, title + ' - Down' +
str(np.unique(y_d, return_counts=True))))
return tree
def __str__(self):
def print_tree(tree: Snode) -> str:
output = str(tree)
if tree.is_leaf():
return output
output += print_tree(tree.get_down())
output += print_tree(tree.get_up())
return output
return print_tree(self._tree)
def _save_datasets(self, tree: Snode, catalog: typing.TextIO, number: int):
"""Save the dataset of the node in a csv file
Arguments:
tree {Snode} -- node with data to save
number {int} -- a number to make different file names
"""
data = np.append(tree._X, tree._y.reshape(-1, 1), axis=1)
name = f"{self.__folder}dataset{number}.csv"
np.savetxt(name, data, delimiter=",")
catalog.write(f"{name}, - {str(tree)}")
if tree.is_leaf():
return
self._save_datasets(tree.get_down(), catalog, number + 1)
self._save_datasets(tree.get_up(), catalog, number + 2)
def get_catalog_name(self):
return self.__folder + "catalog.txt"
def save_sub_datasets(self):
"""Save the every dataset stored in the tree to check with manual classifier
"""
with open(self.get_catalog_name(), 'w', encoding='utf-8') as catalog:
self._save_datasets(self._tree, catalog, 1)