from sklearn.datasets import make_classification def load_dataset(random_state=0, n_classes=2): X, y = make_classification( n_samples=1500, n_features=3, n_informative=3, n_redundant=0, n_repeated=0, n_classes=n_classes, n_clusters_per_class=2, class_sep=1.5, flip_y=0, random_state=random_state, ) return X, y