import time from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris from stree import Stree random_state = 1 X, y = load_iris(return_X_y=True) Xtrain, Xtest, ytrain, ytest = train_test_split( X, y, test_size=0.2, random_state=random_state ) now = time.time() print("Predicting with max_features=sqrt(n_features)") clf = Stree(C=0.01, random_state=random_state, max_features="auto") clf.fit(Xtrain, ytrain) print(f"Took {time.time() - now:.2f} seconds to train") print(clf) print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}") print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}") print("=" * 40) print("Predicting with max_features=n_features") clf = Stree(C=0.01, random_state=random_state) clf.fit(Xtrain, ytrain) print(f"Took {time.time() - now:.2f} seconds to train") print(clf) print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}") print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")