from trees.Stree import Stree from sklearn.datasets import make_classification random_state = 1 X, y = make_classification(n_samples=1500, n_features=3, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2, class_sep=1.5, flip_y=0, weights=[0.5, 0.5], random_state=random_state) model = Stree(random_state=random_state) model.fit(X, y) print(model) model.save_sub_datasets() print(f"Prediciting [{y[0]}] we have {model.predict(X[0, :].reshape(-1, X.shape[1]))}")