import time from sklearn.model_selection import train_test_split from stree import Stree random_state = 1 def load_creditcard(n_examples=0): import pandas as pd import numpy as np import random df = pd.read_csv("data/creditcard.csv") print( "Fraud: {0:.3f}% {1}".format( df.Class[df.Class == 1].count() * 100 / df.shape[0], df.Class[df.Class == 1].count(), ) ) print( "Valid: {0:.3f}% {1}".format( df.Class[df.Class == 0].count() * 100 / df.shape[0], df.Class[df.Class == 0].count(), ) ) y = np.expand_dims(df.Class.values, axis=1) X = df.drop(["Class", "Time", "Amount"], axis=1).values if n_examples > 0: # Take first n_examples samples X = X[:n_examples, :] y = y[:n_examples, :] else: # Take all the positive samples with a number of random negatives if n_examples < 0: Xt = X[(y == 1).ravel()] yt = y[(y == 1).ravel()] indices = random.sample(range(X.shape[0]), -1 * n_examples) X = np.append(Xt, X[indices], axis=0) y = np.append(yt, y[indices], axis=0) print("X.shape", X.shape, " y.shape", y.shape) print( "Fraud: {0:.3f}% {1}".format( len(y[y == 1]) * 100 / X.shape[0], len(y[y == 1]) ) ) print( "Valid: {0:.3f}% {1}".format( len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0]) ) ) Xtrain, Xtest, ytrain, ytest = train_test_split( X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y, ) return Xtrain, Xtest, ytrain, ytest # data = load_creditcard(-5000) # Take all true samples + 5000 of the others # data = load_creditcard(5000) # Take the first 5000 samples data = load_creditcard() # Take all the samples Xtrain = data[0] Xtest = data[1] ytrain = data[2] ytest = data[3] now = time.time() clf = Stree(C=0.01, random_state=random_state) clf.fit(Xtrain, ytrain) print(f"Took {time.time() - now:.2f} seconds to train") print(clf) print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}") print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")