Compare commits

..

1 Commits

Author SHA1 Message Date
9cb69ebc75 Implement hyperparam. context based normalization 2021-04-15 02:13:30 +02:00
34 changed files with 695 additions and 1863 deletions

View File

@@ -1,56 +0,0 @@
name: "CodeQL"
on:
push:
branches: [ master ]
pull_request:
# The branches below must be a subset of the branches above
branches: [ master ]
schedule:
- cron: '16 17 * * 3'
jobs:
analyze:
name: Analyze
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
language: [ 'python' ]
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
# Learn more:
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
steps:
- name: Checkout repository
uses: actions/checkout@v2
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v1
with:
languages: ${{ matrix.language }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# queries: ./path/to/local/query, your-org/your-repo/queries@main
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
# If this step fails, then you should remove it and run the build manually (see below)
- name: Autobuild
uses: github/codeql-action/autobuild@v1
# Command-line programs to run using the OS shell.
# 📚 https://git.io/JvXDl
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
# and modify them (or add more) to build your code if your project
# uses a compiled language
#- run: |
# make bootstrap
# make release
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v1

View File

@@ -12,7 +12,7 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [macos-latest, ubuntu-latest, windows-latest]
os: [macos-latest, ubuntu-latest]
python: [3.8]
steps:

View File

@@ -1,37 +0,0 @@
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Montañana"
given-names: "Ricardo"
orcid: "https://orcid.org/0000-0003-3242-5452"
- family-names: "Gámez"
given-names: "José A."
orcid: "https://orcid.org/0000-0003-1188-1117"
- family-names: "Puerta"
given-names: "José M."
orcid: "https://orcid.org/0000-0002-9164-5191"
title: "STree"
version: 1.2.3
doi: 10.5281/zenodo.5504083
date-released: 2021-11-02
url: "https://github.com/Doctorado-ML/STree"
preferred-citation:
type: article
authors:
- family-names: "Montañana"
given-names: "Ricardo"
orcid: "https://orcid.org/0000-0003-3242-5452"
- family-names: "Gámez"
given-names: "José A."
orcid: "https://orcid.org/0000-0003-1188-1117"
- family-names: "Puerta"
given-names: "José M."
orcid: "https://orcid.org/0000-0002-9164-5191"
doi: "10.1007/978-3-030-85713-4_6"
journal: "Lecture Notes in Computer Science"
month: 9
start: 54
end: 64
title: "STree: A Single Multi-class Oblique Decision Tree Based on Support Vector Machines"
volume: 12882
year: 2021

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2020-2021, Ricardo Montañana Gómez
Copyright (c) 2020 Doctorado-ML
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -1,56 +0,0 @@
SHELL := /bin/bash
.DEFAULT_GOAL := help
.PHONY: coverage deps help lint push test doc build
coverage: ## Run tests with coverage
coverage erase
coverage run -m unittest -v stree.tests
coverage report -m
deps: ## Install dependencies
pip install -r requirements.txt
devdeps: ## Install development dependencies
pip install black pip-audit flake8 mypy coverage
lint: ## Lint and static-check
black stree
flake8 stree
mypy stree
push: ## Push code with tags
git push && git push --tags
test: ## Run tests
python -m unittest -v stree.tests
doc: ## Update documentation
make -C docs --makefile=Makefile html
build: ## Build package
rm -fr dist/*
rm -fr build/*
python setup.py sdist bdist_wheel
doc-clean: ## Update documentation
make -C docs --makefile=Makefile clean
audit: ## Audit pip
pip-audit
help: ## Show help message
@IFS=$$'\n' ; \
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
printf "%s\n\n" "Usage: make [task]"; \
printf "%-20s %s\n" "task" "help" ; \
printf "%-20s %s\n" "------" "----" ; \
for help_line in $${help_lines[@]}; do \
IFS=$$':' ; \
help_split=($$help_line) ; \
help_command=`echo $${help_split[0]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
help_info=`echo $${help_split[2]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
printf '\033[36m'; \
printf "%-20s %s" $$help_command ; \
printf '\033[0m'; \
printf "%s\n" $$help_info; \
done

View File

@@ -1,12 +1,8 @@
![CI](https://github.com/Doctorado-ML/STree/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/Doctorado-ML/STree.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/Doctorado-ML/STree/context:python)
[![PyPI version](https://badge.fury.io/py/STree.svg)](https://badge.fury.io/py/STree)
![https://img.shields.io/badge/python-3.8%2B-blue](https://img.shields.io/badge/python-3.8%2B-brightgreen)
[![DOI](https://zenodo.org/badge/262658230.svg)](https://zenodo.org/badge/latestdoi/262658230)
# STree
# Stree
Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.
@@ -18,14 +14,12 @@ Oblique Tree classifier based on SVM nodes. The nodes are built and splitted wit
pip install git+https://github.com/doctorado-ml/stree
```
## Documentation
Can be found in [stree.readthedocs.io](https://stree.readthedocs.io/en/stable/)
## Examples
### Jupyter notebooks
- [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/notebooks/benchmark.ipynb) Benchmark
- [![benchmark](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/benchmark.ipynb) Benchmark
- [![features](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/features.ipynb) Some features
@@ -36,23 +30,21 @@ Can be found in [stree.readthedocs.io](https://stree.readthedocs.io/en/stable/)
## Hyperparameters
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
| --- | ------------------- | -------------------------------------------------------------- | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf, poly and sigmoid.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random", "trandom", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **trandom”**: The algorithm generates only one random combination. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter. **"iwss"**: IWSS based algorithm |
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
| --- | ------------------ | ------------------------------------------------------ | ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"linear", "poly", "rbf"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of linear, poly or rbf. |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf and poly.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\* |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random"} | random | The strategy used to choose the feature set at each node (only used if max_features != num_features). <br>Supported strategies are “best” to choose the best feature set and “random” to choose a random combination. <br>The algorithm generates 5 candidates at most to choose from in both strategies. |
\* Hyperparameter used by the support vector classifier of every node
@@ -69,11 +61,3 @@ Once we have the column to take into account for the split, the algorithm splits
```bash
python -m unittest -v stree.tests
```
## License
STree is [MIT](https://github.com/doctorado-ml/stree/blob/master/LICENSE) licensed
## Reference
R. Montañana, J. A. Gámez, J. M. Puerta, "STree: a single multi-class oblique decision tree based on support vector machines.", 2021 LNAI 12882, pg. 54-64

View File

@@ -1,8 +1,8 @@
coverage:
overage:
status:
project:
default:
target: 100%
target: 90%
comment:
layout: "reach, diff, flags, files"
behavior: default

View File

@@ -1,20 +0,0 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = source
BUILDDIR = build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View File

@@ -1,4 +0,0 @@
sphinx
sphinx-rtd-theme
myst-parser
mufs

View File

@@ -1,9 +0,0 @@
Siterator
=========
.. automodule:: Splitter
.. autoclass:: Siterator
:members:
:undoc-members:
:private-members:
:show-inheritance:

View File

@@ -1,9 +0,0 @@
Snode
=====
.. automodule:: Splitter
.. autoclass:: Snode
:members:
:undoc-members:
:private-members:
:show-inheritance:

View File

@@ -1,9 +0,0 @@
Splitter
========
.. automodule:: Splitter
.. autoclass:: Splitter
:members:
:undoc-members:
:private-members:
:show-inheritance:

View File

@@ -1,9 +0,0 @@
Stree
=====
.. automodule:: stree
.. autoclass:: Stree
:members:
:undoc-members:
:private-members:
:show-inheritance:

View File

@@ -1,11 +0,0 @@
API index
=========
.. toctree::
:maxdepth: 2
:caption: Contents:
Stree
Siterator
Snode
Splitter

View File

@@ -1,57 +0,0 @@
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
import stree
sys.path.insert(0, os.path.abspath("../../stree/"))
# -- Project information -----------------------------------------------------
project = "STree"
copyright = "2020 - 2021, Ricardo Montañana Gómez"
author = "Ricardo Montañana Gómez"
# The full version, including alpha/beta/rc tags
version = stree.__version__
release = version
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = ["myst_parser", "sphinx.ext.autodoc", "sphinx.ext.viewcode"]
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = []
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = "sphinx_rtd_theme"
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = []

View File

@@ -1,42 +0,0 @@
# Examples
## Notebooks
- [![benchmark](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/benchmark.ipynb) Benchmark
- [![features](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/features.ipynb) Some features
- [![Gridsearch](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/gridsearch.ipynb) Gridsearch
- [![Ensemble](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/ensemble.ipynb) Ensembles
## Sample Code
```python
import time
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from stree import Stree
random_state = 1
X, y = load_iris(return_X_y=True)
Xtrain, Xtest, ytrain, ytest = train_test_split(
X, y, test_size=0.2, random_state=random_state
)
now = time.time()
print("Predicting with max_features=sqrt(n_features)")
clf = Stree(random_state=random_state, max_features="auto")
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")
print(clf)
print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")
print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")
print("=" * 40)
print("Predicting with max_features=n_features")
clf = Stree(random_state=random_state)
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")
print(clf)
print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")
print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")
```

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.1 MiB

View File

@@ -1,29 +0,0 @@
# Hyperparameters
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
| --- | ------------------- | -------------------------------------------------------------- | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf, poly and sigmoid.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random", "trandom", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **trandom”**: The algorithm generates only one random combination. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter. **"iwss"**: IWSS based algorithm |
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
\* Hyperparameter used by the support vector classifier of every node
\*\* **Splitting in a STree node**
The decision function is applied to the dataset and distances from samples to hyperplanes are computed in a matrix. This matrix has as many columns as classes the samples belongs to (if more than two, i.e. multiclass classification) or 1 column if it's a binary class dataset. In binary classification only one hyperplane is computed and therefore only one column is needed to store the distances of the samples to it. If three or more classes are present in the dataset we need as many hyperplanes as classes are there, and therefore one column per hyperplane is needed.
In case of multiclass classification we have to decide which column take into account to make the split, that depends on hyperparameter _split_criteria_, if "impurity" is chosen then STree computes information gain of every split candidate using each column and chooses the one that maximize the information gain, otherwise STree choses the column with more samples with a predicted class (the column with more positive numbers in it).
Once we have the column to take into account for the split, the algorithm splits samples with positive distances to hyperplane from the rest.

View File

@@ -1,15 +0,0 @@
Welcome to STree's documentation!
=================================
.. toctree::
:caption: Contents:
:titlesonly:
stree
install
hyperparameters
example
api/index
* :ref:`genindex`

View File

@@ -1,16 +0,0 @@
Install
=======
The main stable release
``pip install stree``
or the last development branch
``pip install git+https://github.com/doctorado-ml/stree``
Tests
*****
``python -m unittest -v stree.tests``

View File

@@ -1,17 +0,0 @@
# STree
![CI](https://github.com/Doctorado-ML/STree/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/Doctorado-ML/STree.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/Doctorado-ML/STree/context:python)
[![PyPI version](https://badge.fury.io/py/STree.svg)](https://badge.fury.io/py/STree)
![https://img.shields.io/badge/python-3.8%2B-blue](https://img.shields.io/badge/python-3.8%2B-brightgreen)
[![DOI](https://zenodo.org/badge/262658230.svg)](https://zenodo.org/badge/latestdoi/262658230)
Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.
![Stree](./example.png)
## License
STree is [MIT](https://github.com/doctorado-ml/stree/blob/master/LICENSE) licensed

29
main.py Normal file
View File

@@ -0,0 +1,29 @@
import time
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from stree import Stree
random_state = 1
X, y = load_iris(return_X_y=True)
Xtrain, Xtest, ytrain, ytest = train_test_split(
X, y, test_size=0.3, random_state=random_state
)
now = time.time()
print("Predicting with max_features=sqrt(n_features)")
clf = Stree(C=0.01, random_state=random_state, max_features="auto")
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")
print(clf)
print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")
print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")
print("=" * 40)
print("Predicting with max_features=n_features")
clf = Stree(C=0.01, random_state=random_state)
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")
print(clf)
print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")
print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")

View File

@@ -178,7 +178,7 @@
"outputs": [],
"source": [
"# Stree\n",
"stree = Stree(random_state=random_state, C=.01, max_iter=1e3, kernel=\"liblinear\", multiclass_strategy=\"ovr\")"
"stree = Stree(random_state=random_state, C=.01, max_iter=1e3)"
]
},
{

View File

@@ -1,2 +1 @@
scikit-learn>0.24
mufs

View File

@@ -1,5 +1,7 @@
import setuptools
import os
__version__ = "1.0rc1"
__author__ = "Ricardo Montañana Gómez"
def readme():
@@ -7,46 +9,28 @@ def readme():
return f.read()
def get_data(field):
item = ""
file_name = "_version.py" if field == "version" else "__init__.py"
with open(os.path.join("stree", file_name)) as f:
for line in f.readlines():
if line.startswith(f"__{field}__"):
delim = '"' if '"' in line else "'"
item = line.split(delim)[1]
break
else:
raise RuntimeError(f"Unable to find {field} string.")
return item
setuptools.setup(
name="STree",
version=get_data("version"),
license=get_data("license"),
version=__version__,
license="MIT License",
description="Oblique decision tree with svm nodes",
long_description=readme(),
long_description_content_type="text/markdown",
packages=setuptools.find_packages(),
url="https://github.com/Doctorado-ML/STree#stree",
project_urls={
"Code": "https://github.com/Doctorado-ML/STree",
"Documentation": "https://stree.readthedocs.io/en/latest/index.html",
},
author=get_data("author"),
author_email=get_data("author_email"),
url="https://github.com/doctorado-ml/stree",
author=__author__,
author_email="ricardo.montanana@alu.uclm.es",
keywords="scikit-learn oblique-classifier oblique-decision-tree decision-\
tree svm svc",
classifiers=[
"Development Status :: 5 - Production/Stable",
"License :: OSI Approved :: " + get_data("license"),
"Development Status :: 4 - Beta",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.8",
"Natural Language :: English",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Intended Audience :: Science/Research",
],
install_requires=["scikit-learn", "mufs"],
install_requires=["scikit-learn", "numpy", "ipympl"],
test_suite="stree.tests",
zip_safe=False,
)

View File

@@ -1,10 +0,0 @@
version: 2
sphinx:
configuration: docs/source/conf.py
python:
version: 3.8
install:
- requirements: requirements.txt
- requirements: docs/requirements.txt

View File

@@ -1,809 +0,0 @@
"""
Oblique decision tree classifier based on SVM nodes
Splitter class
"""
import os
import warnings
import random
from math import log, factorial
import numpy as np
from sklearn.feature_selection import SelectKBest, mutual_info_classif
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.exceptions import ConvergenceWarning
from mufs import MUFS
class Snode:
"""
Nodes of the tree that keeps the svm classifier and if testing the
dataset assigned to it
Parameters
----------
clf : SVC
Classifier used
X : np.ndarray
input dataset in train time (only in testing)
y : np.ndarray
input labes in train time
features : np.array
features used to compute hyperplane
impurity : float
impurity of the node
title : str
label describing the route to the node
weight : np.ndarray, optional
weights applied to input dataset in train time, by default None
scaler : StandardScaler, optional
scaler used if any, by default None
"""
def __init__(
self,
clf: SVC,
X: np.ndarray,
y: np.ndarray,
features: np.array,
impurity: float,
title: str,
weight: np.ndarray = None,
scaler: StandardScaler = None,
):
self._clf = clf
self._title = title
self._belief = 0.0
# Only store dataset in Testing
self._X = X if os.environ.get("TESTING", "NS") != "NS" else None
self._y = y
self._down = None
self._up = None
self._class = None
self._feature = None
self._sample_weight = (
weight if os.environ.get("TESTING", "NS") != "NS" else None
)
self._features = features
self._impurity = impurity
self._partition_column: int = -1
self._scaler = scaler
@classmethod
def copy(cls, node: "Snode") -> "Snode":
return cls(
node._clf,
node._X,
node._y,
node._features,
node._impurity,
node._title,
node._sample_weight,
node._scaler,
)
def set_partition_column(self, col: int):
self._partition_column = col
def get_partition_column(self) -> int:
return self._partition_column
def set_down(self, son):
self._down = son
def set_title(self, title):
self._title = title
def set_classifier(self, clf):
self._clf = clf
def set_features(self, features):
self._features = features
def set_impurity(self, impurity):
self._impurity = impurity
def get_title(self) -> str:
return self._title
def get_classifier(self) -> SVC:
return self._clf
def get_impurity(self) -> float:
return self._impurity
def get_features(self) -> np.array:
return self._features
def set_up(self, son):
self._up = son
def is_leaf(self) -> bool:
return self._up is None and self._down is None
def get_down(self) -> "Snode":
return self._down
def get_up(self) -> "Snode":
return self._up
def make_predictor(self):
"""Compute the class of the predictor and its belief based on the
subdataset of the node only if it is a leaf
"""
if not self.is_leaf():
return
classes, card = np.unique(self._y, return_counts=True)
if len(classes) > 1:
max_card = max(card)
self._class = classes[card == max_card][0]
self._belief = max_card / np.sum(card)
else:
self._belief = 1
try:
self._class = classes[0]
except IndexError:
self._class = None
def graph(self):
"""
Return a string representing the node in graphviz format
"""
output = ""
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf():
output += (
f'N{id(self)} [shape=box style=filled label="'
f"class={self._class} impurity={self._impurity:.3f} "
f'classes={count_values[0]} samples={count_values[1]}"];\n'
)
else:
output += (
f'N{id(self)} [label="#features={len(self._features)} '
f"classes={count_values[0]} samples={count_values[1]} "
f'({sum(count_values[1])})" fontcolor=black];\n'
)
output += f"N{id(self)} -> N{id(self.get_up())} [color=black];\n"
output += f"N{id(self)} -> N{id(self.get_down())} [color=black];\n"
return output
def __str__(self) -> str:
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf():
return (
f"{self._title} - Leaf class={self._class} belief="
f"{self._belief: .6f} impurity={self._impurity:.4f} "
f"counts={count_values}"
)
return (
f"{self._title} feaures={self._features} impurity="
f"{self._impurity:.4f} "
f"counts={count_values}"
)
class Siterator:
"""Stree preorder iterator"""
def __init__(self, tree: Snode):
self._stack = []
self._push(tree)
def __iter__(self):
# To complete the iterator interface
return self
def _push(self, node: Snode):
if node is not None:
self._stack.append(node)
def __next__(self) -> Snode:
if len(self._stack) == 0:
raise StopIteration()
node = self._stack.pop()
self._push(node.get_up())
self._push(node.get_down())
return node
class Splitter:
"""
Splits a dataset in two based on different criteria
Parameters
----------
clf : SVC, optional
classifier, by default None
criterion : str, optional
The function to measure the quality of a split (only used if
max_features != num_features). Supported criteria are “gini” for the
Gini impurity and “entropy” for the information gain., by default
"entropy", by default None
feature_select : str, optional
The strategy used to choose the feature set at each node (only used if
max_features < num_features). Supported strategies are: “best”: sklearn
SelectKBest algorithm is used in every node to choose the max_features
best features. “random”: The algorithm generates 5 candidates and
choose the best (max. info. gain) of them. “trandom”: The algorithm
generates only one random combination. "mutual": Chooses the best
features w.r.t. their mutual info with the label. "cfs": Apply
Correlation-based Feature Selection. "fcbf": Apply Fast Correlation-
Based, by default None
criteria : str, optional
ecides (just in case of a multi class classification) which column
(class) use to split the dataset in a node. max_samples is
incompatible with 'ovo' multiclass_strategy, by default None
min_samples_split : int, optional
The minimum number of samples required to split an internal node. 0
(default) for any, by default None
random_state : optional
Controls the pseudo random number generation for shuffling the data for
probability estimates. Ignored when probability is False.Pass an int
for reproducible output across multiple function calls, by
default None
normalize : bool, optional
If standardization of features should be applied on each node with the
samples that reach it , by default False
Raises
------
ValueError
clf has to be a sklearn estimator
ValueError
criterion must be gini or entropy
ValueError
criteria has to be max_samples or impurity
ValueError
splitter must be in {random, best, mutual, cfs, fcbf}
"""
def __init__(
self,
clf: SVC = None,
criterion: str = None,
feature_select: str = None,
criteria: str = None,
min_samples_split: int = None,
random_state=None,
normalize=False,
):
self._clf = clf
self._random_state = random_state
if random_state is not None:
random.seed(random_state)
self._criterion = criterion
self._min_samples_split = min_samples_split
self._criteria = criteria
self._feature_select = feature_select
self._normalize = normalize
if clf is None:
raise ValueError(f"clf has to be a sklearn estimator, got({clf})")
if criterion not in ["gini", "entropy"]:
raise ValueError(
f"criterion must be gini or entropy got({criterion})"
)
if criteria not in [
"max_samples",
"impurity",
]:
raise ValueError(
f"criteria has to be max_samples or impurity; got ({criteria})"
)
if feature_select not in [
"random",
"trandom",
"best",
"mutual",
"cfs",
"fcbf",
"iwss",
]:
raise ValueError(
"splitter must be in {random, trandom, best, mutual, cfs, "
"fcbf, iwss} "
f"got ({feature_select})"
)
self.criterion_function = getattr(self, f"_{self._criterion}")
self.decision_criteria = getattr(self, f"_{self._criteria}")
self.fs_function = getattr(self, f"_fs_{self._feature_select}")
def _fs_random(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the best of five random feature set combinations
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# Random feature reduction
n_features = dataset.shape[1]
features_sets = self._generate_spaces(n_features, max_features)
return self._select_best_set(dataset, labels, features_sets)
@staticmethod
def _fs_trandom(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the a random feature set combination
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# Random feature reduction
n_features = dataset.shape[1]
return tuple(sorted(random.sample(range(n_features), max_features)))
@staticmethod
def _fs_best(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the variabes with higher f-score
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
return (
SelectKBest(k=max_features)
.fit(dataset, labels)
.get_support(indices=True)
)
def _fs_mutual(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the best features with mutual information with labels
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# return best features with mutual info with the label
feature_list = mutual_info_classif(
dataset, labels, random_state=self._random_state
)
return tuple(
sorted(
range(len(feature_list)), key=lambda sub: feature_list[sub]
)[-max_features:]
)
@staticmethod
def _fs_cfs(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Correlattion-based feature selection with max_features limit
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
mufs = MUFS(max_features=max_features, discrete=False)
return mufs.cfs(dataset, labels).get_results()
@staticmethod
def _fs_fcbf(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Fast Correlation-based Filter algorithm with max_features limit
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
mufs = MUFS(max_features=max_features, discrete=False)
return mufs.fcbf(dataset, labels, 5e-4).get_results()
@staticmethod
def _fs_iwss(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Correlattion-based feature selection based on iwss with max_features
limit
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
mufs = MUFS(max_features=max_features, discrete=False)
return mufs.iwss(dataset, labels, 0.25).get_results()
def partition_impurity(self, y: np.array) -> np.array:
return self.criterion_function(y)
@staticmethod
def _gini(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
return 1 - np.sum(np.square(count / np.sum(count)))
@staticmethod
def _entropy(y: np.array) -> float:
"""Compute entropy of a labels set
Parameters
----------
y : np.array
set of labels
Returns
-------
float
entropy
"""
n_labels = len(y)
if n_labels <= 1:
return 0
counts = np.bincount(y)
proportions = counts / n_labels
n_classes = np.count_nonzero(proportions)
if n_classes <= 1:
return 0
entropy = 0.0
# Compute standard entropy.
for prop in proportions:
if prop != 0.0:
entropy -= prop * log(prop, n_classes)
return entropy
def information_gain(
self, labels: np.array, labels_up: np.array, labels_dn: np.array
) -> float:
"""Compute information gain of a split candidate
Parameters
----------
labels : np.array
labels of the dataset
labels_up : np.array
labels of one side
labels_dn : np.array
labels on the other side
Returns
-------
float
information gain
"""
imp_prev = self.criterion_function(labels)
card_up = card_dn = imp_up = imp_dn = 0
if labels_up is not None:
card_up = labels_up.shape[0]
imp_up = self.criterion_function(labels_up)
if labels_dn is not None:
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_dn = self.criterion_function(labels_dn)
samples = card_up + card_dn
if samples == 0:
return 0.0
else:
result = (
imp_prev
- (card_up / samples) * imp_up
- (card_dn / samples) * imp_dn
)
return result
def _select_best_set(
self, dataset: np.array, labels: np.array, features_sets: list
) -> list:
"""Return the best set of features among feature_sets, the criterion is
the information gain
Parameters
----------
dataset : np.array
array of samples (# samples, # features)
labels : np.array
array of labels
features_sets : list
list of features sets to check
Returns
-------
list
best feature set
"""
max_gain = 0
selected = None
warnings.filterwarnings("ignore", category=ConvergenceWarning)
for feature_set in features_sets:
self._clf.fit(dataset[:, feature_set], labels)
node = Snode(
self._clf, dataset, labels, feature_set, 0.0, "subset"
)
self.partition(dataset, node, train=True)
y1, y2 = self.part(labels)
gain = self.information_gain(labels, y1, y2)
if gain > max_gain:
max_gain = gain
selected = feature_set
return selected if selected is not None else feature_set
@staticmethod
def _generate_spaces(features: int, max_features: int) -> list:
"""Generate at most 5 feature random combinations
Parameters
----------
features : int
number of features in each combination
max_features : int
number of features in dataset
Returns
-------
list
list with up to 5 combination of features randomly selected
"""
comb = set()
# Generate at most 5 combinations
number = factorial(features) / (
factorial(max_features) * factorial(features - max_features)
)
set_length = min(5, number)
while len(comb) < set_length:
comb.add(
tuple(sorted(random.sample(range(features), max_features)))
)
return list(comb)
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Compute the indices of the features selected by splitter depending
on the self._feature_select hyper parameter
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(<= number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# No feature reduction
n_features = dataset.shape[1]
if n_features == max_features:
return tuple(range(n_features))
# select features as selected in constructor
return self.fs_function(dataset, labels, max_features)
def get_subspace(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Re3turn a subspace of the selected dataset of max_features length.
Depending on hyperparameter
Parameters
----------
dataset : np.array
array of samples (# samples, # features)
labels : np.array
labels of the dataset
max_features : int
number of features to form the subspace
Returns
-------
tuple
tuple with the dataset with only the features selected and the
indices of the features selected
"""
indices = self._get_subspaces_set(dataset, labels, max_features)
return dataset[:, indices], indices
def _impurity(self, data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
Parameters
----------
data : np.array
distances to hyper plane of every class
y : np.array
vector of labels (classes)
Returns
-------
np.array
column of dataset to be taken into account to split dataset
"""
max_gain = 0
selected = -1
for col in range(data.shape[1]):
tup = y[data[:, col] > 0]
tdn = y[data[:, col] <= 0]
info_gain = self.information_gain(y, tup, tdn)
if info_gain > max_gain:
selected = col
max_gain = info_gain
return selected
@staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
Parameters
----------
data : np.array
distances to hyper plane of every class
y : np.array
column of dataset to be taken into account to split dataset
Returns
-------
np.array
column of dataset to be taken into account to split dataset
"""
# select the class with max number of samples
_, samples = np.unique(y, return_counts=True)
return np.argmax(samples)
def partition(self, samples: np.array, node: Snode, train: bool):
"""Set the criteria to split arrays. Compute the indices of the samples
that should go to one side of the tree (up)
Parameters
----------
samples : np.array
array of samples (# samples, # features)
node : Snode
Node of the tree where partition is going to be made
train : bool
Train time - True / Test time - False
"""
# data contains the distances of every sample to every class hyperplane
# array of (m, nc) nc = # classes
data = self._distances(node, samples)
if data.shape[0] < self._min_samples_split:
# there aren't enough samples to split
self._up = np.ones((data.shape[0]), dtype=bool)
return
if data.ndim > 1:
# split criteria for multiclass
# Convert data to a (m, 1) array selecting values for samples
if train:
# in train time we have to compute the column to take into
# account to split the dataset
col = self.decision_criteria(data, node._y)
node.set_partition_column(col)
else:
# in predcit time just use the column computed in train time
# is taking the classifier of class <col>
col = node.get_partition_column()
if col == -1:
# No partition is producing information gain
data = np.ones(data.shape)
data = data[:, col]
self._up = data > 0
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (self._up) and its complement
partition has to be called first to establish up indices
Parameters
----------
origin : np.array
dataset to split
Returns
-------
list
list with two splits of the array
"""
down = ~self._up
return [
origin[self._up] if any(self._up) else None,
origin[down] if any(down) else None,
]
def _distances(self, node: Snode, data: np.ndarray) -> np.array:
"""Compute distances of the samples to the hyperplane of the node
Parameters
----------
node : Snode
node containing the svm classifier
data : np.ndarray
samples to compute distance to hyperplane
Returns
-------
np.array
array of shape (m, nc) with the distances of every sample to
the hyperplane of every class. nc = # of classes
"""
X_transformed = data[:, node._features]
if self._normalize:
X_transformed = node._scaler.transform(X_transformed)
return node._clf.decision_function(X_transformed)

View File

@@ -1,138 +1,526 @@
"""
Oblique decision tree classifier based on SVM nodes
__author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
__license__ = "MIT"
__version__ = "0.9"
Build an oblique tree classifier based on SVM nodes
"""
import os
import numbers
import random
import warnings
from math import log, factorial
from typing import Optional
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.svm import SVC, LinearSVC
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_consistent_length
from sklearn.utils.multiclass import check_classification_targets
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils.validation import (
check_X_y,
check_array,
check_is_fitted,
_check_sample_weight,
)
from .Splitter import Splitter, Snode, Siterator
from ._version import __version__
from sklearn.metrics._classification import _weighted_sum, _check_targets
class Snode:
"""Nodes of the tree that keeps the svm classifier and if testing the
dataset assigned to it
"""
def __init__(
self,
clf: SVC,
X: np.ndarray,
y: np.ndarray,
features: np.array,
impurity: float,
title: str,
weight: np.ndarray = None,
scaler: StandardScaler = None,
):
self._clf = clf
self._title = title
self._belief = 0.0
# Only store dataset in Testing
self._X = X if os.environ.get("TESTING", "NS") != "NS" else None
self._y = y
self._down = None
self._up = None
self._class = None
self._feature = None
self._sample_weight = (
weight if os.environ.get("TESTING", "NS") != "NS" else None
)
self._features = features
self._impurity = impurity
self._partition_column: int = -1
self._scaler = scaler
@classmethod
def copy(cls, node: "Snode") -> "Snode":
return cls(
node._clf,
node._X,
node._y,
node._features,
node._impurity,
node._title,
node._sample_weight,
node._scaler,
)
def set_partition_column(self, col: int):
self._partition_column = col
def get_partition_column(self) -> int:
return self._partition_column
def set_down(self, son):
self._down = son
def set_title(self, title):
self._title = title
def set_classifier(self, clf):
self._clf = clf
def set_features(self, features):
self._features = features
def set_impurity(self, impurity):
self._impurity = impurity
def get_title(self) -> str:
return self._title
def get_classifier(self) -> SVC:
return self._clf
def get_impurity(self) -> float:
return self._impurity
def get_features(self) -> np.array:
return self._features
def set_up(self, son):
self._up = son
def is_leaf(self) -> bool:
return self._up is None and self._down is None
def get_down(self) -> "Snode":
return self._down
def get_up(self) -> "Snode":
return self._up
def make_predictor(self):
"""Compute the class of the predictor and its belief based on the
subdataset of the node only if it is a leaf
"""
if not self.is_leaf():
return
classes, card = np.unique(self._y, return_counts=True)
if len(classes) > 1:
max_card = max(card)
self._class = classes[card == max_card][0]
self._belief = max_card / np.sum(card)
else:
self._belief = 1
try:
self._class = classes[0]
except IndexError:
self._class = None
def __str__(self) -> str:
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf():
return (
f"{self._title} - Leaf class={self._class} belief="
f"{self._belief: .6f} impurity={self._impurity:.4f} "
f"counts={count_values}"
)
else:
return (
f"{self._title} feaures={self._features} impurity="
f"{self._impurity:.4f} "
f"counts={count_values}"
)
class Siterator:
"""Stree preorder iterator"""
def __init__(self, tree: Snode):
self._stack = []
self._push(tree)
def _push(self, node: Snode):
if node is not None:
self._stack.append(node)
def __next__(self) -> Snode:
if len(self._stack) == 0:
raise StopIteration()
node = self._stack.pop()
self._push(node.get_up())
self._push(node.get_down())
return node
class Splitter:
def __init__(
self,
clf: SVC = None,
criterion: str = None,
splitter_type: str = None,
criteria: str = None,
min_samples_split: int = None,
random_state=None,
normalize=False,
):
self._clf = clf
self._random_state = random_state
if random_state is not None:
random.seed(random_state)
self._criterion = criterion
self._min_samples_split = min_samples_split
self._criteria = criteria
self._splitter_type = splitter_type
self._normalize = normalize
if clf is None:
raise ValueError(f"clf has to be a sklearn estimator, got({clf})")
if criterion not in ["gini", "entropy"]:
raise ValueError(
f"criterion must be gini or entropy got({criterion})"
)
if criteria not in [
"max_samples",
"impurity",
]:
raise ValueError(
f"criteria has to be max_samples or impurity; got ({criteria})"
)
if splitter_type not in ["random", "best"]:
raise ValueError(
f"splitter must be either random or best, got({splitter_type})"
)
self.criterion_function = getattr(self, f"_{self._criterion}")
self.decision_criteria = getattr(self, f"_{self._criteria}")
def partition_impurity(self, y: np.array) -> np.array:
return self.criterion_function(y)
@staticmethod
def _gini(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
return 1 - np.sum(np.square(count / np.sum(count)))
@staticmethod
def _entropy(y: np.array) -> float:
"""Compute entropy of a labels set
Parameters
----------
y : np.array
set of labels
Returns
-------
float
entropy
"""
n_labels = len(y)
if n_labels <= 1:
return 0
counts = np.bincount(y)
proportions = counts / n_labels
n_classes = np.count_nonzero(proportions)
if n_classes <= 1:
return 0
entropy = 0.0
# Compute standard entropy.
for prop in proportions:
if prop != 0.0:
entropy -= prop * log(prop, n_classes)
return entropy
def information_gain(
self, labels: np.array, labels_up: np.array, labels_dn: np.array
) -> float:
"""Compute information gain of a split candidate
Parameters
----------
labels : np.array
labels of the dataset
labels_up : np.array
labels of one side
labels_dn : np.array
labels on the other side
Returns
-------
float
information gain
"""
imp_prev = self.criterion_function(labels)
card_up = card_dn = imp_up = imp_dn = 0
if labels_up is not None:
card_up = labels_up.shape[0]
imp_up = self.criterion_function(labels_up)
if labels_dn is not None:
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_dn = self.criterion_function(labels_dn)
samples = card_up + card_dn
if samples == 0:
return 0.0
else:
result = (
imp_prev
- (card_up / samples) * imp_up
- (card_dn / samples) * imp_dn
)
return result
def _select_best_set(
self, dataset: np.array, labels: np.array, features_sets: list
) -> list:
max_gain = 0
selected = None
warnings.filterwarnings("ignore", category=ConvergenceWarning)
for feature_set in features_sets:
self._clf.fit(dataset[:, feature_set], labels)
node = Snode(
self._clf, dataset, labels, feature_set, 0.0, "subset"
)
self.partition(dataset, node, train=True)
y1, y2 = self.part(labels)
gain = self.information_gain(labels, y1, y2)
if gain > max_gain:
max_gain = gain
selected = feature_set
return selected if selected is not None else feature_set
@staticmethod
def _generate_spaces(features: int, max_features: int) -> list:
"""Generate at most 5 feature random combinations
Parameters
----------
features : int
number of features in each combination
max_features : int
number of features in dataset
Returns
-------
list
list with up to 5 combination of features randomly selected
"""
comb = set()
# Generate at most 5 combinations
if max_features == features:
set_length = 1
else:
number = factorial(features) / (
factorial(max_features) * factorial(features - max_features)
)
set_length = min(5, number)
while len(comb) < set_length:
comb.add(
tuple(sorted(random.sample(range(features), max_features)))
)
return list(comb)
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
) -> np.array:
"""Compute the indices of the features selected by splitter depending
on the self._splitter_type hyper parameter
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(<= number of features in dataset)
Returns
-------
np.array
indices of the features selected
"""
features_sets = self._generate_spaces(dataset.shape[1], max_features)
if len(features_sets) > 1:
if self._splitter_type == "random":
index = random.randint(0, len(features_sets) - 1)
return features_sets[index]
else:
return self._select_best_set(dataset, labels, features_sets)
else:
return features_sets[0]
def get_subspace(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return a subspace of the selected dataset of max_features length.
Depending on hyperparmeter
Parameters
----------
dataset : np.array
array of samples (# samples, # features)
labels : np.array
labels of the dataset
max_features : int
number of features to form the subspace
Returns
-------
tuple
tuple with the dataset with only the features selected and the
indices of the features selected
"""
indices = self._get_subspaces_set(dataset, labels, max_features)
return dataset[:, indices], indices
def _impurity(self, data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
Parameters
----------
data : np.array
distances to hyper plane of every class
y : np.array
vector of labels (classes)
Returns
-------
np.array
column of dataset to be taken into account to split dataset
"""
max_gain = 0
selected = -1
for col in range(data.shape[1]):
tup = y[data[:, col] > 0]
tdn = y[data[:, col] <= 0]
info_gain = self.information_gain(y, tup, tdn)
if info_gain > max_gain:
selected = col
max_gain = info_gain
return selected
@staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
Parameters
----------
data : np.array
distances to hyper plane of every class
y : np.array
column of dataset to be taken into account to split dataset
Returns
-------
np.array
column of dataset to be taken into account to split dataset
"""
# select the class with max number of samples
_, samples = np.unique(y, return_counts=True)
return np.argmax(samples)
def partition(self, samples: np.array, node: Snode, train: bool):
"""Set the criteria to split arrays. Compute the indices of the samples
that should go to one side of the tree (up)
"""
# data contains the distances of every sample to every class hyperplane
# array of (m, nc) nc = # classes
data = self._distances(node, samples)
if data.shape[0] < self._min_samples_split:
# there aren't enough samples to split
self._up = np.ones((data.shape[0]), dtype=bool)
return
if data.ndim > 1:
# split criteria for multiclass
# Convert data to a (m, 1) array selecting values for samples
if train:
# in train time we have to compute the column to take into
# account to split the dataset
col = self.decision_criteria(data, node._y)
node.set_partition_column(col)
else:
# in predcit time just use the column computed in train time
# is taking the classifier of class <col>
col = node.get_partition_column()
if col == -1:
# No partition is producing information gain
data = np.ones(data.shape)
data = data[:, col]
self._up = data > 0
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (self._up) and its complement
partition has to be called first to establish up indices
Parameters
----------
origin : np.array
dataset to split
Returns
-------
list
list with two splits of the array
"""
down = ~self._up
return [
origin[self._up] if any(self._up) else None,
origin[down] if any(down) else None,
]
def _distances(self, node: Snode, data: np.ndarray) -> np.array:
"""Compute distances of the samples to the hyperplane of the node
Parameters
----------
node : Snode
node containing the svm classifier
data : np.ndarray
samples to compute distance to hyperplane
Returns
-------
np.array
array of shape (m, nc) with the distances of every sample to
the hyperplane of every class. nc = # of classes
"""
X_transformed = data[:, node._features]
if self._normalize:
X_transformed = node._scaler.transform(X_transformed)
return node._clf.decision_function(X_transformed)
class Stree(BaseEstimator, ClassifierMixin):
"""
Estimator that is based on binary trees of svm nodes
"""Estimator that is based on binary trees of svm nodes
can deal with sample_weights in predict, used in boosting sklearn methods
inheriting from BaseEstimator implements get_params and set_params methods
inheriting from ClassifierMixin implement the attribute _estimator_type
with "classifier" as value
Parameters
----------
C : float, optional
Regularization parameter. The strength of the regularization is
inversely proportional to C. Must be strictly positive., by default 1.0
kernel : str, optional
Specifies the kernel type to be used in the algorithm. It must be one
of liblinear, linear, poly or rbf. liblinear uses
[liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and
the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/)
library through scikit-learn library, by default "linear"
max_iter : int, optional
Hard limit on iterations within solver, or -1 for no limit., by default
1e5
random_state : int, optional
Controls the pseudo random number generation for shuffling the data for
probability estimates. Ignored when probability is False.Pass an int
for reproducible output across multiple function calls, by
default None
max_depth : int, optional
Specifies the maximum depth of the tree, by default None
tol : float, optional
Tolerance for stopping, by default 1e-4
degree : int, optional
Degree of the polynomial kernel function (poly). Ignored by all other
kernels., by default 3
gamma : str, optional
Kernel coefficient for rbf, poly and sigmoid.if gamma='scale'
(default) is passed then it uses 1 / (n_features * X.var()) as value
of gamma,if auto, uses 1 / n_features., by default "scale"
split_criteria : str, optional
Decides (just in case of a multi class classification) which column
(class) use to split the dataset in a node. max_samples is
incompatible with 'ovo' multiclass_strategy, by default "impurity"
criterion : str, optional
The function to measure the quality of a split (only used if
max_features != num_features). Supported criteria are “gini” for the
Gini impurity and “entropy” for the information gain., by default
"entropy"
min_samples_split : int, optional
The minimum number of samples required to split an internal node. 0
(default) for any, by default 0
max_features : optional
The number of features to consider when looking for the split: If int,
then consider max_features features at each split. If float, then
max_features is a fraction and int(max_features * n_features) features
are considered at each split. If “auto”, then max_features=
sqrt(n_features). If “sqrt”, then max_features=sqrt(n_features). If
“log2”, then max_features=log2(n_features). If None, then max_features=
n_features., by default None
splitter : str, optional
The strategy used to choose the feature set at each node (only used if
max_features < num_features). Supported strategies are: “best”: sklearn
SelectKBest algorithm is used in every node to choose the max_features
best features. “random”: The algorithm generates 5 candidates and
choose the best (max. info. gain) of them. “trandom”: The algorithm
generates only one random combination. "mutual": Chooses the best
features w.r.t. their mutual info with the label. "cfs": Apply
Correlation-based Feature Selection. "fcbf": Apply Fast Correlation-
Based , by default "random"
multiclass_strategy : str, optional
Strategy to use with multiclass datasets, "ovo": one versus one. "ovr":
one versus rest, by default "ovo"
normalize : bool, optional
If standardization of features should be applied on each node with the
samples that reach it , by default False
Attributes
----------
classes_ : ndarray of shape (n_classes,)
The classes labels.
n_classes_ : int
The number of classes
n_iter_ : int
Max number of iterations in classifier
depth_ : int
Max depht of the tree
n_features_ : int
The number of features when ``fit`` is performed.
n_features_in_ : int
Number of features seen during :term:`fit`.
max_features_ : int
Number of features to use in hyperplane computation
tree_ : Node
root of the tree
X_ : ndarray
points to the input dataset
y_ : ndarray
points to the input labels
References
----------
R. Montañana, J. A. Gámez, J. M. Puerta, "STree: a single multi-class
oblique decision tree based on support vector machines.", 2021 LNAI 12882
"""
def __init__(
@@ -150,10 +538,8 @@ class Stree(BaseEstimator, ClassifierMixin):
min_samples_split: int = 0,
max_features=None,
splitter: str = "random",
multiclass_strategy: str = "ovo",
normalize: bool = False,
):
self.max_iter = max_iter
self.C = C
self.kernel = kernel
@@ -168,12 +554,6 @@ class Stree(BaseEstimator, ClassifierMixin):
self.criterion = criterion
self.splitter = splitter
self.normalize = normalize
self.multiclass_strategy = multiclass_strategy
@staticmethod
def version() -> str:
"""Return the version of the package."""
return __version__
def _more_tags(self) -> dict:
"""Required by sklearn to supply features of the classifier
@@ -218,25 +598,7 @@ class Stree(BaseEstimator, ClassifierMixin):
f"Maximum depth has to be greater than 1... got (max_depth=\
{self.max_depth})"
)
if self.multiclass_strategy not in ["ovr", "ovo"]:
raise ValueError(
"mutliclass_strategy has to be either ovr or ovo"
f" but got {self.multiclass_strategy}"
)
if self.multiclass_strategy == "ovo":
if self.kernel == "liblinear":
raise ValueError(
"The kernel liblinear is incompatible with ovo "
"multiclass_strategy"
)
if self.split_criteria == "max_samples":
raise ValueError(
"The multiclass_strategy 'ovo' is incompatible with "
"split_criteria 'max_samples'"
)
kernels = ["liblinear", "linear", "rbf", "poly", "sigmoid"]
if self.kernel not in kernels:
raise ValueError(f"Kernel {self.kernel} not in {kernels}")
check_classification_targets(y)
X, y = check_X_y(X, y)
sample_weight = _check_sample_weight(
@@ -251,7 +613,7 @@ class Stree(BaseEstimator, ClassifierMixin):
self.splitter_ = Splitter(
clf=self._build_clf(),
criterion=self.criterion,
feature_select=self.splitter,
splitter_type=self.splitter,
criteria=self.split_criteria,
random_state=self.random_state,
min_samples_split=self.min_samples_split,
@@ -266,12 +628,13 @@ class Stree(BaseEstimator, ClassifierMixin):
self.n_features_ = X.shape[1]
self.n_features_in_ = X.shape[1]
self.max_features_ = self._initialize_max_features()
self.tree_ = self._train(X, y, sample_weight, 1, "root")
self.tree_ = self.train(X, y, sample_weight, 1, "root")
self._build_predictor()
self.X_ = X
self.y_ = y
return self
def _train(
def train(
self,
X: np.ndarray,
y: np.ndarray,
@@ -314,7 +677,6 @@ class Stree(BaseEstimator, ClassifierMixin):
if np.unique(y).shape[0] == 1:
# only 1 class => pure dataset
node.set_title(title + ", <pure>")
node.make_predictor()
return node
# Train the model
clf = self._build_clf()
@@ -333,20 +695,31 @@ class Stree(BaseEstimator, ClassifierMixin):
if X_U is None or X_D is None:
# didn't part anything
node.set_title(title + ", <cgaf>")
node.make_predictor()
return node
node.set_up(
self._train(X_U, y_u, sw_u, depth + 1, title + f" - Up({depth+1})")
self.train(X_U, y_u, sw_u, depth + 1, title + f" - Up({depth+1})")
)
node.set_down(
self._train(
self.train(
X_D, y_d, sw_d, depth + 1, title + f" - Down({depth+1})"
)
)
return node
def _build_predictor(self):
"""Process the leaves to make them predictors"""
def run_tree(node: Snode):
if node.is_leaf():
node.make_predictor()
return
run_tree(node.get_down())
run_tree(node.get_up())
run_tree(self.tree_)
def _build_clf(self):
"""Build the right classifier for the node"""
"""Build the correct classifier for the node"""
return (
LinearSVC(
max_iter=self.max_iter,
@@ -354,7 +727,7 @@ class Stree(BaseEstimator, ClassifierMixin):
C=self.C,
tol=self.tol,
)
if self.kernel == "liblinear"
if self.kernel == "linear"
else SVC(
kernel=self.kernel,
max_iter=self.max_iter,
@@ -362,8 +735,6 @@ class Stree(BaseEstimator, ClassifierMixin):
C=self.C,
gamma=self.gamma,
degree=self.degree,
random_state=self.random_state,
decision_function_shape=self.multiclass_strategy,
)
)
@@ -445,6 +816,36 @@ class Stree(BaseEstimator, ClassifierMixin):
)
return self.classes_[result]
def score(
self, X: np.array, y: np.array, sample_weight: np.array = None
) -> float:
"""Compute accuracy of the prediction
Parameters
----------
X : np.array
dataset of samples to make predictions
y : np.array
samples labels
sample_weight : np.array, optional
weights of the samples. Rescale C per sample, by default None
Returns
-------
float
accuracy of the prediction
"""
# sklearn check
check_is_fitted(self)
check_classification_targets(y)
X, y = check_X_y(X, y)
y_pred = self.predict(X).reshape(y.shape)
# Compute accuracy for each possible representation
_, y_true, y_pred = _check_targets(y, y_pred)
check_consistent_length(y_true, y_pred, sample_weight)
score = y_true == y_pred
return _weighted_sum(score, sample_weight, normalize=True)
def nodes_leaves(self) -> tuple:
"""Compute the number of nodes and leaves in the built tree
@@ -476,23 +877,6 @@ class Stree(BaseEstimator, ClassifierMixin):
tree = None
return Siterator(tree)
def graph(self, title="") -> str:
"""Graphviz code representing the tree
Returns
-------
str
graphviz code
"""
output = (
"digraph STree {\nlabel=<STree "
f"{title}>\nfontsize=30\nfontcolor=blue\nlabelloc=t\n"
)
for node in self:
output += node.graph()
output += "}\n"
return output
def __str__(self) -> str:
"""String representation of the tree
@@ -523,12 +907,6 @@ class Stree(BaseEstimator, ClassifierMixin):
elif self.max_features is None:
max_features = self.n_features_
elif isinstance(self.max_features, numbers.Integral):
if self.max_features > self.n_features_:
raise ValueError(
"Invalid value for max_features. "
"It can not be greater than number of features "
f"({self.n_features_})"
)
max_features = self.max_features
else: # float
if self.max_features > 0.0:

View File

@@ -1,8 +1,3 @@
from .Strees import Stree, Siterator
from .Strees import Stree, Snode, Siterator, Splitter
__author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020-2021, Ricardo Montañana Gómez"
__license__ = "MIT License"
__author_email__ = "ricardo.montanana@alu.uclm.es"
__all__ = ["Stree", "Siterator"]
__all__ = ["Stree", "Snode", "Siterator", "Splitter"]

View File

@@ -1 +0,0 @@
__version__ = "1.2.4"

View File

@@ -1,19 +1,14 @@
import os
import unittest
import numpy as np
from stree import Stree
from stree.Splitter import Snode
from stree import Stree, Snode
from .utils import load_dataset
class Snode_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
self._clf = Stree(
random_state=self._random_state,
kernel="liblinear",
multiclass_strategy="ovr",
)
self._clf = Stree(random_state=self._random_state)
self._clf.fit(*load_dataset(self._random_state))
super().__init__(*args, **kwargs)

View File

@@ -5,8 +5,7 @@ import random
import numpy as np
from sklearn.svm import SVC
from sklearn.datasets import load_wine, load_iris
from stree.Splitter import Splitter
from .utils import load_dataset, load_disc_dataset
from stree import Splitter
class Splitter_test(unittest.TestCase):
@@ -18,7 +17,7 @@ class Splitter_test(unittest.TestCase):
def build(
clf=SVC,
min_samples_split=0,
feature_select="random",
splitter_type="random",
criterion="gini",
criteria="max_samples",
random_state=None,
@@ -26,7 +25,7 @@ class Splitter_test(unittest.TestCase):
return Splitter(
clf=clf(random_state=random_state, kernel="rbf"),
min_samples_split=min_samples_split,
feature_select=feature_select,
splitter_type=splitter_type,
criterion=criterion,
criteria=criteria,
random_state=random_state,
@@ -40,20 +39,20 @@ class Splitter_test(unittest.TestCase):
with self.assertRaises(ValueError):
self.build(criterion="duck")
with self.assertRaises(ValueError):
self.build(feature_select="duck")
self.build(splitter_type="duck")
with self.assertRaises(ValueError):
self.build(criteria="duck")
with self.assertRaises(ValueError):
_ = Splitter(clf=None)
for feature_select in ["best", "random"]:
for splitter_type in ["best", "random"]:
for criterion in ["gini", "entropy"]:
for criteria in ["max_samples", "impurity"]:
tcl = self.build(
feature_select=feature_select,
splitter_type=splitter_type,
criterion=criterion,
criteria=criteria,
)
self.assertEqual(feature_select, tcl._feature_select)
self.assertEqual(splitter_type, tcl._splitter_type)
self.assertEqual(criterion, tcl._criterion)
self.assertEqual(criteria, tcl._criteria)
@@ -178,38 +177,32 @@ class Splitter_test(unittest.TestCase):
def test_best_splitter_few_sets(self):
X, y = load_iris(return_X_y=True)
X = np.delete(X, 3, 1)
tcl = self.build(
feature_select="best", random_state=self._random_state
)
tcl = self.build(splitter_type="best", random_state=self._random_state)
dataset, computed = tcl.get_subspace(X, y, max_features=2)
self.assertListEqual([0, 2], list(computed))
self.assertListEqual(X[:, computed].tolist(), dataset.tolist())
def test_splitter_parameter(self):
expected_values = [
[0, 6, 11, 12], # best entropy max_samples
[0, 6, 11, 12], # best entropy impurity
[0, 6, 11, 12], # best gini max_samples
[0, 6, 11, 12], # best gini impurity
[1, 4, 9, 12], # best entropy max_samples
[1, 3, 6, 10], # best entropy impurity
[6, 8, 10, 12], # best gini max_samples
[7, 8, 10, 11], # best gini impurity
[0, 3, 8, 12], # random entropy max_samples
[0, 3, 7, 12], # random entropy impurity
[1, 7, 9, 12], # random gini max_samples
[1, 5, 8, 12], # random gini impurity
[6, 9, 11, 12], # mutual entropy max_samples
[6, 9, 11, 12], # mutual entropy impurity
[6, 9, 11, 12], # mutual gini max_samples
[6, 9, 11, 12], # mutual gini impurity
[0, 3, 9, 11], # random entropy impurity
[0, 4, 7, 12], # random gini max_samples
[0, 2, 5, 6], # random gini impurity
]
X, y = load_wine(return_X_y=True)
rn = 0
for feature_select in ["best", "random", "mutual"]:
for splitter_type in ["best", "random"]:
for criterion in ["entropy", "gini"]:
for criteria in [
"max_samples",
"impurity",
]:
tcl = self.build(
feature_select=feature_select,
splitter_type=splitter_type,
criterion=criterion,
criteria=criteria,
)
@@ -220,93 +213,12 @@ class Splitter_test(unittest.TestCase):
# print(
# "{}, # {:7s}{:8s}{:15s}".format(
# list(computed),
# feature_select,
# splitter_type,
# criterion,
# criteria,
# )
# )
self.assertListEqual(expected, sorted(list(computed)))
self.assertListEqual(expected, list(computed))
self.assertListEqual(
X[:, computed].tolist(), dataset.tolist()
)
def test_get_best_subspaces(self):
results = [
(4, [3, 4, 11, 13]),
(7, [1, 3, 4, 5, 11, 13, 16]),
(9, [1, 3, 4, 5, 7, 10, 11, 13, 16]),
]
X, y = load_dataset(n_features=20)
for k, expected in results:
tcl = self.build(
feature_select="best",
)
Xs, computed = tcl.get_subspace(X, y, k)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_best_subspaces_discrete(self):
results = [
(4, [0, 3, 16, 18]),
(7, [0, 3, 13, 14, 16, 18, 19]),
(9, [0, 3, 7, 13, 14, 15, 16, 18, 19]),
]
X, y = load_disc_dataset(n_features=20)
for k, expected in results:
tcl = self.build(
feature_select="best",
)
Xs, computed = tcl.get_subspace(X, y, k)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_cfs_subspaces(self):
results = [
(4, [1, 5, 9, 12]),
(6, [1, 5, 9, 12, 4, 2]),
(7, [1, 5, 9, 12, 4, 2, 3]),
]
X, y = load_dataset(n_features=20, n_informative=7)
for k, expected in results:
tcl = self.build(feature_select="cfs")
Xs, computed = tcl.get_subspace(X, y, k)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_fcbf_subspaces(self):
results = [
(4, [1, 5, 9, 12]),
(6, [1, 5, 9, 12, 4, 2]),
(7, [1, 5, 9, 12, 4, 2, 16]),
]
for rs, expected in results:
X, y = load_dataset(n_features=20, n_informative=7)
tcl = self.build(feature_select="fcbf", random_state=rs)
Xs, computed = tcl.get_subspace(X, y, rs)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_iwss_subspaces(self):
results = [
(4, [1, 5, 9, 12]),
(6, [1, 5, 9, 12, 4, 15]),
]
for rs, expected in results:
X, y = load_dataset(n_features=20, n_informative=7)
tcl = self.build(feature_select="iwss", random_state=rs)
Xs, computed = tcl.get_subspace(X, y, rs)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_trandom_subspaces(self):
results = [
(4, [3, 7, 9, 12]),
(6, [0, 1, 2, 8, 15, 18]),
(7, [1, 2, 4, 8, 10, 12, 13]),
]
for rs, expected in results:
X, y = load_dataset(n_features=20, n_informative=7)
tcl = self.build(feature_select="trandom", random_state=rs)
Xs, computed = tcl.get_subspace(X, y, rs)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())

View File

@@ -7,36 +7,20 @@ from sklearn.datasets import load_iris, load_wine
from sklearn.exceptions import ConvergenceWarning
from sklearn.svm import LinearSVC
from stree import Stree
from stree.Splitter import Snode
from stree import Stree, Snode
from .utils import load_dataset
from .._version import __version__
class Stree_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
self._kernels = ["liblinear", "linear", "rbf", "poly", "sigmoid"]
self._kernels = ["linear", "rbf", "poly"]
super().__init__(*args, **kwargs)
@classmethod
def setUp(cls):
os.environ["TESTING"] = "1"
def test_valid_kernels(self):
X, y = load_dataset()
for kernel in self._kernels:
clf = Stree(kernel=kernel, multiclass_strategy="ovr")
clf.fit(X, y)
self.assertIsNotNone(clf.tree_)
def test_bogus_kernel(self):
kernel = "other"
X, y = load_dataset()
clf = Stree(kernel=kernel)
with self.assertRaises(ValueError):
clf.fit(X, y)
def _check_tree(self, node: Snode):
"""Check recursively that the nodes that are not leaves have the
correct number of labels and its sons have the right number of elements
@@ -56,19 +40,14 @@ class Stree_test(unittest.TestCase):
# i.e. The partition algorithm didn't forget any sample
self.assertEqual(node._y.shape[0], y_down.shape[0] + y_up.shape[0])
unique_y, count_y = np.unique(node._y, return_counts=True)
labels_d, count_d = np.unique(y_down, return_counts=True)
labels_u, count_u = np.unique(y_up, return_counts=True)
dict_d = {label: count_d[i] for i, label in enumerate(labels_d)}
dict_u = {label: count_u[i] for i, label in enumerate(labels_u)}
_, count_d = np.unique(y_down, return_counts=True)
_, count_u = np.unique(y_up, return_counts=True)
#
for i in unique_y:
number_up = count_u[i]
try:
number_up = dict_u[i]
except KeyError:
number_up = 0
try:
number_down = dict_d[i]
except KeyError:
number_down = count_d[i]
except IndexError:
number_down = 0
self.assertEqual(count_y[i], number_down + number_up)
# Is the partition made the same as the prediction?
@@ -83,22 +62,14 @@ class Stree_test(unittest.TestCase):
"""Check if the tree is built the same way as predictions of models"""
warnings.filterwarnings("ignore")
for kernel in self._kernels:
clf = Stree(
kernel="sigmoid",
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
random_state=self._random_state,
)
clf = Stree(kernel=kernel, random_state=self._random_state)
clf.fit(*load_dataset(self._random_state))
self._check_tree(clf.tree_)
def test_single_prediction(self):
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(
kernel=kernel,
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
random_state=self._random_state,
)
clf = Stree(kernel=kernel, random_state=self._random_state)
yp = clf.fit(X, y).predict((X[0, :].reshape(-1, X.shape[1])))
self.assertEqual(yp[0], y[0])
@@ -106,12 +77,8 @@ class Stree_test(unittest.TestCase):
# First 27 elements the predictions are the same as the truth
num = 27
X, y = load_dataset(self._random_state)
for kernel in ["liblinear", "linear", "rbf", "poly"]:
clf = Stree(
kernel=kernel,
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
random_state=self._random_state,
)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
yp = clf.fit(X, y).predict(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp.tolist())
@@ -121,11 +88,7 @@ class Stree_test(unittest.TestCase):
"""
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(
kernel=kernel,
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
random_state=self._random_state,
)
clf = Stree(kernel=kernel, random_state=self._random_state)
clf.fit(X, y)
# Compute prediction line by line
yp_line = np.array([], dtype=int)
@@ -157,13 +120,9 @@ class Stree_test(unittest.TestCase):
]
computed = []
expected_string = ""
clf = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
)
clf = Stree(kernel="linear", random_state=self._random_state)
clf.fit(*load_dataset(self._random_state))
for node in iter(clf):
for node in clf:
computed.append(str(node))
expected_string += str(node) + "\n"
self.assertListEqual(expected, computed)
@@ -199,12 +158,7 @@ class Stree_test(unittest.TestCase):
def test_check_max_depth(self):
depths = (3, 4)
for depth in depths:
tcl = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
max_depth=depth,
)
tcl = Stree(random_state=self._random_state, max_depth=depth)
tcl.fit(*load_dataset(self._random_state))
self.assertEqual(depth, tcl.depth_)
@@ -225,7 +179,7 @@ class Stree_test(unittest.TestCase):
for kernel in self._kernels:
clf = Stree(
kernel=kernel,
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
split_criteria="max_samples",
random_state=self._random_state,
)
px = [[1, 2], [5, 6], [9, 10]]
@@ -236,36 +190,26 @@ class Stree_test(unittest.TestCase):
self.assertListEqual(py, clf.classes_.tolist())
def test_muticlass_dataset(self):
warnings.filterwarnings("ignore", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
datasets = {
"Synt": load_dataset(random_state=self._random_state, n_classes=3),
"Iris": load_wine(return_X_y=True),
}
outcomes = {
"Synt": {
"max_samples liblinear": 0.9493333333333334,
"max_samples linear": 0.9426666666666667,
"max_samples rbf": 0.9606666666666667,
"max_samples poly": 0.9373333333333334,
"max_samples sigmoid": 0.824,
"impurity liblinear": 0.9493333333333334,
"impurity linear": 0.9426666666666667,
"impurity rbf": 0.9606666666666667,
"impurity poly": 0.9373333333333334,
"impurity sigmoid": 0.824,
"max_samples linear": 0.9606666666666667,
"max_samples rbf": 0.7133333333333334,
"max_samples poly": 0.618,
"impurity linear": 0.9606666666666667,
"impurity rbf": 0.7133333333333334,
"impurity poly": 0.618,
},
"Iris": {
"max_samples liblinear": 0.9550561797752809,
"max_samples linear": 1.0,
"max_samples rbf": 0.6685393258426966,
"max_samples poly": 0.6853932584269663,
"max_samples sigmoid": 0.6404494382022472,
"impurity liblinear": 0.9550561797752809,
"impurity linear": 1.0,
"impurity rbf": 0.6685393258426966,
"impurity poly": 0.6853932584269663,
"impurity sigmoid": 0.6404494382022472,
"max_samples rbf": 0.6910112359550562,
"max_samples poly": 0.6966292134831461,
"impurity linear": 1,
"impurity rbf": 0.6910112359550562,
"impurity poly": 0.6966292134831461,
},
}
@@ -274,22 +218,18 @@ class Stree_test(unittest.TestCase):
for criteria in ["max_samples", "impurity"]:
for kernel in self._kernels:
clf = Stree(
max_iter=1e4,
multiclass_strategy="ovr"
if kernel == "liblinear"
else "ovo",
C=55,
max_iter=1e5,
kernel=kernel,
random_state=self._random_state,
)
clf.fit(px, py)
outcome = outcomes[name][f"{criteria} {kernel}"]
# print(f'"{criteria} {kernel}": {clf.score(px, py)},')
self.assertAlmostEqual(
outcome,
clf.score(px, py),
5,
f"{name} - {criteria} - {kernel}",
)
# print(
# f"{name} {criteria} {kernel} {outcome} {clf.score(px"
# ", py)}"
# )
self.assertAlmostEqual(outcome, clf.score(px, py))
def test_max_features(self):
n_features = 16
@@ -314,12 +254,6 @@ class Stree_test(unittest.TestCase):
with self.assertRaises(ValueError):
_ = clf._initialize_max_features()
def test_wrong_max_features(self):
X, y = load_dataset(n_features=15)
clf = Stree(max_features=16)
with self.assertRaises(ValueError):
clf.fit(X, y)
def test_get_subspaces(self):
dataset = np.random.random((10, 16))
y = np.random.randint(0, 2, 10)
@@ -357,20 +291,17 @@ class Stree_test(unittest.TestCase):
clf.predict(X[:, :3])
# Tests of score
def test_score_binary(self):
"""Check score for binary classification."""
X, y = load_dataset(self._random_state)
accuracies = [
0.9506666666666667,
0.9493333333333334,
0.9606666666666667,
0.9433333333333334,
0.9153333333333333,
]
for kernel, accuracy_expected in zip(self._kernels, accuracies):
clf = Stree(
random_state=self._random_state,
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
kernel=kernel,
)
clf.fit(X, y)
@@ -381,19 +312,12 @@ class Stree_test(unittest.TestCase):
self.assertAlmostEqual(accuracy_expected, accuracy_score)
def test_score_max_features(self):
"""Check score using max_features."""
X, y = load_dataset(self._random_state)
clf = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
max_features=2,
)
clf = Stree(random_state=self._random_state, max_features=2)
clf.fit(X, y)
self.assertAlmostEqual(0.9453333333333334, clf.score(X, y))
self.assertAlmostEqual(0.9246666666666666, clf.score(X, y))
def test_bogus_splitter_parameter(self):
"""Check that bogus splitter parameter raises exception."""
clf = Stree(splitter="duck")
with self.assertRaises(ValueError):
clf.fit(*load_dataset())
@@ -401,9 +325,7 @@ class Stree_test(unittest.TestCase):
def test_multiclass_classifier_integrity(self):
"""Checks if the multiclass operation is done right"""
X, y = load_iris(return_X_y=True)
clf = Stree(
kernel="liblinear", multiclass_strategy="ovr", random_state=0
)
clf = Stree(random_state=0)
clf.fit(X, y)
score = clf.score(X, y)
# Check accuracy of the whole model
@@ -449,7 +371,6 @@ class Stree_test(unittest.TestCase):
self.assertListEqual([47], resdn[1].tolist())
def test_score_multiclass_rbf(self):
"""Test score for multiclass classification with rbf kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -460,14 +381,13 @@ class Stree_test(unittest.TestCase):
clf2 = Stree(
kernel="rbf", random_state=self._random_state, normalize=True
)
self.assertEqual(0.966, clf.fit(X, y).score(X, y))
self.assertEqual(0.964, clf2.fit(X, y).score(X, y))
self.assertEqual(0.768, clf.fit(X, y).score(X, y))
self.assertEqual(0.814, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.6685393258426966, clf.fit(X, y).score(X, y))
self.assertEqual(0.6741573033707865, clf.fit(X, y).score(X, y))
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_poly(self):
"""Test score for multiclass classification with poly kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -482,81 +402,24 @@ class Stree_test(unittest.TestCase):
random_state=self._random_state,
normalize=True,
)
self.assertEqual(0.946, clf.fit(X, y).score(X, y))
self.assertEqual(0.972, clf2.fit(X, y).score(X, y))
self.assertEqual(0.786, clf.fit(X, y).score(X, y))
self.assertEqual(0.818, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.7808988764044944, clf.fit(X, y).score(X, y))
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_liblinear(self):
"""Test score for multiclass classification with liblinear kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
C=10,
)
clf2 = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
normalize=True,
)
self.assertEqual(0.968, clf.fit(X, y).score(X, y))
self.assertEqual(0.97, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(1.0, clf.fit(X, y).score(X, y))
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_sigmoid(self):
"""Test score for multiclass classification with sigmoid kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(kernel="sigmoid", random_state=self._random_state, C=10)
clf2 = Stree(
kernel="sigmoid",
random_state=self._random_state,
normalize=True,
C=10,
)
self.assertEqual(0.796, clf.fit(X, y).score(X, y))
self.assertEqual(0.952, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.6910112359550562, clf.fit(X, y).score(X, y))
self.assertEqual(0.9662921348314607, clf2.fit(X, y).score(X, y))
self.assertEqual(0.702247191011236, clf.fit(X, y).score(X, y))
self.assertEqual(0.6067415730337079, clf2.fit(X, y).score(X, y))
def test_score_multiclass_linear(self):
"""Test score for multiclass classification with linear kernel."""
warnings.filterwarnings("ignore", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=1500,
)
clf = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
)
clf = Stree(kernel="linear", random_state=self._random_state)
self.assertEqual(0.9533333333333334, clf.fit(X, y).score(X, y))
# Check with context based standardization
clf2 = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
normalize=True,
kernel="linear", random_state=self._random_state, normalize=True
)
self.assertEqual(0.9526666666666667, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
@@ -564,13 +427,11 @@ class Stree_test(unittest.TestCase):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_zero_all_sample_weights(self):
"""Test exception raises when all sample weights are zero."""
X, y = load_dataset(self._random_state)
with self.assertRaises(ValueError):
Stree().fit(X, y, np.zeros(len(y)))
def test_mask_samples_weighted_zero(self):
"""Check that the weighted zero samples are masked."""
X = np.array(
[
[1, 1],
@@ -585,7 +446,7 @@ class Stree_test(unittest.TestCase):
]
)
y = np.array([1, 1, 1, 2, 2, 2, 5, 5, 5])
yw = np.array([1, 1, 1, 1, 1, 1, 5, 5, 5])
yw = np.array([1, 1, 1, 5, 5, 5, 5, 5, 5])
w = [1, 1, 1, 0, 0, 0, 1, 1, 1]
model1 = Stree().fit(X, y)
model2 = Stree().fit(X, y, w)
@@ -598,7 +459,6 @@ class Stree_test(unittest.TestCase):
self.assertEqual(model2.score(X, y, w), 1)
def test_depth(self):
"""Check depth of the tree."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -614,7 +474,6 @@ class Stree_test(unittest.TestCase):
self.assertEqual(4, clf.depth_)
def test_nodes_leaves(self):
"""Check number of nodes and leaves."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -624,17 +483,16 @@ class Stree_test(unittest.TestCase):
clf = Stree(random_state=self._random_state)
clf.fit(X, y)
nodes, leaves = clf.nodes_leaves()
self.assertEqual(31, nodes)
self.assertEqual(16, leaves)
self.assertEqual(25, nodes)
self.assertEquals(13, leaves)
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)
clf.fit(X, y)
nodes, leaves = clf.nodes_leaves()
self.assertEqual(11, nodes)
self.assertEqual(6, leaves)
self.assertEqual(9, nodes)
self.assertEquals(5, leaves)
def test_nodes_leaves_artificial(self):
"""Check leaves of artificial dataset."""
n1 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test1")
n2 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test2")
n3 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test3")
@@ -651,77 +509,3 @@ class Stree_test(unittest.TestCase):
nodes, leaves = clf.nodes_leaves()
self.assertEqual(6, nodes)
self.assertEqual(2, leaves)
def test_bogus_multiclass_strategy(self):
"""Check invalid multiclass strategy."""
clf = Stree(multiclass_strategy="other")
X, y = load_wine(return_X_y=True)
with self.assertRaises(ValueError):
clf.fit(X, y)
def test_multiclass_strategy(self):
"""Check multiclass strategy."""
X, y = load_wine(return_X_y=True)
clf_o = Stree(multiclass_strategy="ovo")
clf_r = Stree(multiclass_strategy="ovr")
score_o = clf_o.fit(X, y).score(X, y)
score_r = clf_r.fit(X, y).score(X, y)
self.assertEqual(1.0, score_o)
self.assertEqual(0.9269662921348315, score_r)
def test_incompatible_hyperparameters(self):
"""Check incompatible hyperparameters."""
X, y = load_wine(return_X_y=True)
clf = Stree(kernel="liblinear", multiclass_strategy="ovo")
with self.assertRaises(ValueError):
clf.fit(X, y)
clf = Stree(multiclass_strategy="ovo", split_criteria="max_samples")
with self.assertRaises(ValueError):
clf.fit(X, y)
def test_version(self):
"""Check STree version."""
clf = Stree()
self.assertEqual(__version__, clf.version())
def test_graph(self):
"""Check graphviz representation of the tree."""
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)
expected_head = (
"digraph STree {\nlabel=<STree >\nfontsize=30\n"
"fontcolor=blue\nlabelloc=t\n"
)
expected_tail = (
' [shape=box style=filled label="class=1 impurity=0.000 '
'classes=[1] samples=[1]"];\n}\n'
)
self.assertEqual(clf.graph(), expected_head + "}\n")
clf.fit(X, y)
computed = clf.graph()
computed_head = computed[: len(expected_head)]
num = -len(expected_tail)
computed_tail = computed[num:]
self.assertEqual(computed_head, expected_head)
self.assertEqual(computed_tail, expected_tail)
def test_graph_title(self):
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)
expected_head = (
"digraph STree {\nlabel=<STree Sample title>\nfontsize=30\n"
"fontcolor=blue\nlabelloc=t\n"
)
expected_tail = (
' [shape=box style=filled label="class=1 impurity=0.000 '
'classes=[1] samples=[1]"];\n}\n'
)
self.assertEqual(clf.graph("Sample title"), expected_head + "}\n")
clf.fit(X, y)
computed = clf.graph("Sample title")
computed_head = computed[: len(expected_head)]
num = -len(expected_tail)
computed_tail = computed[num:]
self.assertEqual(computed_head, expected_head)
self.assertEqual(computed_tail, expected_tail)

View File

@@ -1,14 +1,11 @@
from sklearn.datasets import make_classification
import numpy as np
def load_dataset(
random_state=0, n_classes=2, n_features=3, n_samples=1500, n_informative=3
):
def load_dataset(random_state=0, n_classes=2, n_features=3, n_samples=1500):
X, y = make_classification(
n_samples=n_samples,
n_features=n_features,
n_informative=n_informative,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=n_classes,
@@ -18,12 +15,3 @@ def load_dataset(
random_state=random_state,
)
return X, y
def load_disc_dataset(
random_state=0, n_classes=2, n_features=3, n_samples=1500
):
np.random.seed(random_state)
X = np.random.randint(1, 17, size=(n_samples, n_features)).astype(float)
y = np.random.randint(low=0, high=n_classes, size=(n_samples), dtype=int)
return X, y