mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-18 00:46:02 +00:00
Compare commits
6 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
93be8a89a8 | ||
82838fa3e0
|
|||
f0b2ce3c7b
|
|||
00ed57c015
|
|||
|
08222f109e | ||
cc931d8547
|
2
.github/workflows/main.yml
vendored
2
.github/workflows/main.yml
vendored
@@ -12,7 +12,7 @@ jobs:
|
|||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [macos-latest, ubuntu-latest]
|
os: [macos-latest, ubuntu-latest, windows-latest]
|
||||||
python: [3.8]
|
python: [3.8]
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
|
@@ -11,7 +11,7 @@ authors:
|
|||||||
given-names: "José M."
|
given-names: "José M."
|
||||||
orcid: "https://orcid.org/0000-0002-9164-5191"
|
orcid: "https://orcid.org/0000-0002-9164-5191"
|
||||||
title: "STree"
|
title: "STree"
|
||||||
version: 1.0.2
|
version: 1.2.3
|
||||||
doi: 10.5281/zenodo.5504083
|
doi: 10.5281/zenodo.5504083
|
||||||
date-released: 2021-11-02
|
date-released: 2021-11-02
|
||||||
url: "https://github.com/Doctorado-ML/STree"
|
url: "https://github.com/Doctorado-ML/STree"
|
||||||
|
6
Makefile
6
Makefile
@@ -10,6 +10,9 @@ coverage: ## Run tests with coverage
|
|||||||
deps: ## Install dependencies
|
deps: ## Install dependencies
|
||||||
pip install -r requirements.txt
|
pip install -r requirements.txt
|
||||||
|
|
||||||
|
devdeps: ## Install development dependencies
|
||||||
|
pip install black pip-audit flake8 mypy coverage
|
||||||
|
|
||||||
lint: ## Lint and static-check
|
lint: ## Lint and static-check
|
||||||
black stree
|
black stree
|
||||||
flake8 stree
|
flake8 stree
|
||||||
@@ -32,6 +35,9 @@ build: ## Build package
|
|||||||
doc-clean: ## Update documentation
|
doc-clean: ## Update documentation
|
||||||
make -C docs --makefile=Makefile clean
|
make -C docs --makefile=Makefile clean
|
||||||
|
|
||||||
|
audit: ## Audit pip
|
||||||
|
pip-audit
|
||||||
|
|
||||||
help: ## Show help message
|
help: ## Show help message
|
||||||
@IFS=$$'\n' ; \
|
@IFS=$$'\n' ; \
|
||||||
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
||||||
|
4
setup.py
4
setup.py
@@ -1,4 +1,5 @@
|
|||||||
import setuptools
|
import setuptools
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
def readme():
|
def readme():
|
||||||
@@ -8,7 +9,8 @@ def readme():
|
|||||||
|
|
||||||
def get_data(field):
|
def get_data(field):
|
||||||
item = ""
|
item = ""
|
||||||
with open("stree/__init__.py") as f:
|
file_name = "_version.py" if field == "version" else "__init__.py"
|
||||||
|
with open(os.path.join("stree", file_name)) as f:
|
||||||
for line in f.readlines():
|
for line in f.readlines():
|
||||||
if line.startswith(f"__{field}__"):
|
if line.startswith(f"__{field}__"):
|
||||||
delim = '"' if '"' in line else "'"
|
delim = '"' if '"' in line else "'"
|
||||||
|
@@ -145,6 +145,28 @@ class Snode:
|
|||||||
except IndexError:
|
except IndexError:
|
||||||
self._class = None
|
self._class = None
|
||||||
|
|
||||||
|
def graph(self):
|
||||||
|
"""
|
||||||
|
Return a string representing the node in graphviz format
|
||||||
|
"""
|
||||||
|
output = ""
|
||||||
|
count_values = np.unique(self._y, return_counts=True)
|
||||||
|
if self.is_leaf():
|
||||||
|
output += (
|
||||||
|
f'N{id(self)} [shape=box style=filled label="'
|
||||||
|
f"class={self._class} impurity={self._impurity:.3f} "
|
||||||
|
f'classes={count_values[0]} samples={count_values[1]}"];\n'
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
output += (
|
||||||
|
f'N{id(self)} [label="#features={len(self._features)} '
|
||||||
|
f"classes={count_values[0]} samples={count_values[1]} "
|
||||||
|
f'({sum(count_values[1])})" fontcolor=black];\n'
|
||||||
|
)
|
||||||
|
output += f"N{id(self)} -> N{id(self.get_up())} [color=black];\n"
|
||||||
|
output += f"N{id(self)} -> N{id(self.get_down())} [color=black];\n"
|
||||||
|
return output
|
||||||
|
|
||||||
def __str__(self) -> str:
|
def __str__(self) -> str:
|
||||||
count_values = np.unique(self._y, return_counts=True)
|
count_values = np.unique(self._y, return_counts=True)
|
||||||
if self.is_leaf():
|
if self.is_leaf():
|
||||||
@@ -367,9 +389,8 @@ class Splitter:
|
|||||||
.get_support(indices=True)
|
.get_support(indices=True)
|
||||||
)
|
)
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _fs_mutual(
|
def _fs_mutual(
|
||||||
dataset: np.array, labels: np.array, max_features: int
|
self, dataset: np.array, labels: np.array, max_features: int
|
||||||
) -> tuple:
|
) -> tuple:
|
||||||
"""Return the best features with mutual information with labels
|
"""Return the best features with mutual information with labels
|
||||||
|
|
||||||
@@ -389,7 +410,9 @@ class Splitter:
|
|||||||
indices of the features selected
|
indices of the features selected
|
||||||
"""
|
"""
|
||||||
# return best features with mutual info with the label
|
# return best features with mutual info with the label
|
||||||
feature_list = mutual_info_classif(dataset, labels)
|
feature_list = mutual_info_classif(
|
||||||
|
dataset, labels, random_state=self._random_state
|
||||||
|
)
|
||||||
return tuple(
|
return tuple(
|
||||||
sorted(
|
sorted(
|
||||||
range(len(feature_list)), key=lambda sub: feature_list[sub]
|
range(len(feature_list)), key=lambda sub: feature_list[sub]
|
||||||
|
@@ -17,6 +17,7 @@ from sklearn.utils.validation import (
|
|||||||
_check_sample_weight,
|
_check_sample_weight,
|
||||||
)
|
)
|
||||||
from .Splitter import Splitter, Snode, Siterator
|
from .Splitter import Splitter, Snode, Siterator
|
||||||
|
from ._version import __version__
|
||||||
|
|
||||||
|
|
||||||
class Stree(BaseEstimator, ClassifierMixin):
|
class Stree(BaseEstimator, ClassifierMixin):
|
||||||
@@ -169,6 +170,11 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
self.normalize = normalize
|
self.normalize = normalize
|
||||||
self.multiclass_strategy = multiclass_strategy
|
self.multiclass_strategy = multiclass_strategy
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def version() -> str:
|
||||||
|
"""Return the version of the package."""
|
||||||
|
return __version__
|
||||||
|
|
||||||
def _more_tags(self) -> dict:
|
def _more_tags(self) -> dict:
|
||||||
"""Required by sklearn to supply features of the classifier
|
"""Required by sklearn to supply features of the classifier
|
||||||
make mandatory the labels array
|
make mandatory the labels array
|
||||||
@@ -470,6 +476,23 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
tree = None
|
tree = None
|
||||||
return Siterator(tree)
|
return Siterator(tree)
|
||||||
|
|
||||||
|
def graph(self, title="") -> str:
|
||||||
|
"""Graphviz code representing the tree
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
str
|
||||||
|
graphviz code
|
||||||
|
"""
|
||||||
|
output = (
|
||||||
|
"digraph STree {\nlabel=<STree "
|
||||||
|
f"{title}>\nfontsize=30\nfontcolor=blue\nlabelloc=t\n"
|
||||||
|
)
|
||||||
|
for node in self:
|
||||||
|
output += node.graph()
|
||||||
|
output += "}\n"
|
||||||
|
return output
|
||||||
|
|
||||||
def __str__(self) -> str:
|
def __str__(self) -> str:
|
||||||
"""String representation of the tree
|
"""String representation of the tree
|
||||||
|
|
||||||
|
@@ -1,7 +1,5 @@
|
|||||||
from .Strees import Stree, Siterator
|
from .Strees import Stree, Siterator
|
||||||
|
|
||||||
__version__ = "1.2.2"
|
|
||||||
|
|
||||||
__author__ = "Ricardo Montañana Gómez"
|
__author__ = "Ricardo Montañana Gómez"
|
||||||
__copyright__ = "Copyright 2020-2021, Ricardo Montañana Gómez"
|
__copyright__ = "Copyright 2020-2021, Ricardo Montañana Gómez"
|
||||||
__license__ = "MIT License"
|
__license__ = "MIT License"
|
||||||
|
1
stree/_version.py
Normal file
1
stree/_version.py
Normal file
@@ -0,0 +1 @@
|
|||||||
|
__version__ = "1.2.4"
|
@@ -10,6 +10,7 @@ from sklearn.svm import LinearSVC
|
|||||||
from stree import Stree
|
from stree import Stree
|
||||||
from stree.Splitter import Snode
|
from stree.Splitter import Snode
|
||||||
from .utils import load_dataset
|
from .utils import load_dataset
|
||||||
|
from .._version import __version__
|
||||||
|
|
||||||
|
|
||||||
class Stree_test(unittest.TestCase):
|
class Stree_test(unittest.TestCase):
|
||||||
@@ -357,6 +358,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
|
|
||||||
# Tests of score
|
# Tests of score
|
||||||
def test_score_binary(self):
|
def test_score_binary(self):
|
||||||
|
"""Check score for binary classification."""
|
||||||
X, y = load_dataset(self._random_state)
|
X, y = load_dataset(self._random_state)
|
||||||
accuracies = [
|
accuracies = [
|
||||||
0.9506666666666667,
|
0.9506666666666667,
|
||||||
@@ -379,6 +381,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertAlmostEqual(accuracy_expected, accuracy_score)
|
self.assertAlmostEqual(accuracy_expected, accuracy_score)
|
||||||
|
|
||||||
def test_score_max_features(self):
|
def test_score_max_features(self):
|
||||||
|
"""Check score using max_features."""
|
||||||
X, y = load_dataset(self._random_state)
|
X, y = load_dataset(self._random_state)
|
||||||
clf = Stree(
|
clf = Stree(
|
||||||
kernel="liblinear",
|
kernel="liblinear",
|
||||||
@@ -390,6 +393,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertAlmostEqual(0.9453333333333334, clf.score(X, y))
|
self.assertAlmostEqual(0.9453333333333334, clf.score(X, y))
|
||||||
|
|
||||||
def test_bogus_splitter_parameter(self):
|
def test_bogus_splitter_parameter(self):
|
||||||
|
"""Check that bogus splitter parameter raises exception."""
|
||||||
clf = Stree(splitter="duck")
|
clf = Stree(splitter="duck")
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
clf.fit(*load_dataset())
|
clf.fit(*load_dataset())
|
||||||
@@ -445,6 +449,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertListEqual([47], resdn[1].tolist())
|
self.assertListEqual([47], resdn[1].tolist())
|
||||||
|
|
||||||
def test_score_multiclass_rbf(self):
|
def test_score_multiclass_rbf(self):
|
||||||
|
"""Test score for multiclass classification with rbf kernel."""
|
||||||
X, y = load_dataset(
|
X, y = load_dataset(
|
||||||
random_state=self._random_state,
|
random_state=self._random_state,
|
||||||
n_classes=3,
|
n_classes=3,
|
||||||
@@ -462,6 +467,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
||||||
|
|
||||||
def test_score_multiclass_poly(self):
|
def test_score_multiclass_poly(self):
|
||||||
|
"""Test score for multiclass classification with poly kernel."""
|
||||||
X, y = load_dataset(
|
X, y = load_dataset(
|
||||||
random_state=self._random_state,
|
random_state=self._random_state,
|
||||||
n_classes=3,
|
n_classes=3,
|
||||||
@@ -483,6 +489,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
||||||
|
|
||||||
def test_score_multiclass_liblinear(self):
|
def test_score_multiclass_liblinear(self):
|
||||||
|
"""Test score for multiclass classification with liblinear kernel."""
|
||||||
X, y = load_dataset(
|
X, y = load_dataset(
|
||||||
random_state=self._random_state,
|
random_state=self._random_state,
|
||||||
n_classes=3,
|
n_classes=3,
|
||||||
@@ -508,6 +515,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
||||||
|
|
||||||
def test_score_multiclass_sigmoid(self):
|
def test_score_multiclass_sigmoid(self):
|
||||||
|
"""Test score for multiclass classification with sigmoid kernel."""
|
||||||
X, y = load_dataset(
|
X, y = load_dataset(
|
||||||
random_state=self._random_state,
|
random_state=self._random_state,
|
||||||
n_classes=3,
|
n_classes=3,
|
||||||
@@ -528,6 +536,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertEqual(0.9662921348314607, clf2.fit(X, y).score(X, y))
|
self.assertEqual(0.9662921348314607, clf2.fit(X, y).score(X, y))
|
||||||
|
|
||||||
def test_score_multiclass_linear(self):
|
def test_score_multiclass_linear(self):
|
||||||
|
"""Test score for multiclass classification with linear kernel."""
|
||||||
warnings.filterwarnings("ignore", category=ConvergenceWarning)
|
warnings.filterwarnings("ignore", category=ConvergenceWarning)
|
||||||
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
||||||
X, y = load_dataset(
|
X, y = load_dataset(
|
||||||
@@ -555,11 +564,13 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
||||||
|
|
||||||
def test_zero_all_sample_weights(self):
|
def test_zero_all_sample_weights(self):
|
||||||
|
"""Test exception raises when all sample weights are zero."""
|
||||||
X, y = load_dataset(self._random_state)
|
X, y = load_dataset(self._random_state)
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
Stree().fit(X, y, np.zeros(len(y)))
|
Stree().fit(X, y, np.zeros(len(y)))
|
||||||
|
|
||||||
def test_mask_samples_weighted_zero(self):
|
def test_mask_samples_weighted_zero(self):
|
||||||
|
"""Check that the weighted zero samples are masked."""
|
||||||
X = np.array(
|
X = np.array(
|
||||||
[
|
[
|
||||||
[1, 1],
|
[1, 1],
|
||||||
@@ -587,6 +598,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertEqual(model2.score(X, y, w), 1)
|
self.assertEqual(model2.score(X, y, w), 1)
|
||||||
|
|
||||||
def test_depth(self):
|
def test_depth(self):
|
||||||
|
"""Check depth of the tree."""
|
||||||
X, y = load_dataset(
|
X, y = load_dataset(
|
||||||
random_state=self._random_state,
|
random_state=self._random_state,
|
||||||
n_classes=3,
|
n_classes=3,
|
||||||
@@ -602,6 +614,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertEqual(4, clf.depth_)
|
self.assertEqual(4, clf.depth_)
|
||||||
|
|
||||||
def test_nodes_leaves(self):
|
def test_nodes_leaves(self):
|
||||||
|
"""Check number of nodes and leaves."""
|
||||||
X, y = load_dataset(
|
X, y = load_dataset(
|
||||||
random_state=self._random_state,
|
random_state=self._random_state,
|
||||||
n_classes=3,
|
n_classes=3,
|
||||||
@@ -621,6 +634,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertEqual(6, leaves)
|
self.assertEqual(6, leaves)
|
||||||
|
|
||||||
def test_nodes_leaves_artificial(self):
|
def test_nodes_leaves_artificial(self):
|
||||||
|
"""Check leaves of artificial dataset."""
|
||||||
n1 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test1")
|
n1 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test1")
|
||||||
n2 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test2")
|
n2 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test2")
|
||||||
n3 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test3")
|
n3 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test3")
|
||||||
@@ -639,12 +653,14 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertEqual(2, leaves)
|
self.assertEqual(2, leaves)
|
||||||
|
|
||||||
def test_bogus_multiclass_strategy(self):
|
def test_bogus_multiclass_strategy(self):
|
||||||
|
"""Check invalid multiclass strategy."""
|
||||||
clf = Stree(multiclass_strategy="other")
|
clf = Stree(multiclass_strategy="other")
|
||||||
X, y = load_wine(return_X_y=True)
|
X, y = load_wine(return_X_y=True)
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
|
|
||||||
def test_multiclass_strategy(self):
|
def test_multiclass_strategy(self):
|
||||||
|
"""Check multiclass strategy."""
|
||||||
X, y = load_wine(return_X_y=True)
|
X, y = load_wine(return_X_y=True)
|
||||||
clf_o = Stree(multiclass_strategy="ovo")
|
clf_o = Stree(multiclass_strategy="ovo")
|
||||||
clf_r = Stree(multiclass_strategy="ovr")
|
clf_r = Stree(multiclass_strategy="ovr")
|
||||||
@@ -654,6 +670,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
self.assertEqual(0.9269662921348315, score_r)
|
self.assertEqual(0.9269662921348315, score_r)
|
||||||
|
|
||||||
def test_incompatible_hyperparameters(self):
|
def test_incompatible_hyperparameters(self):
|
||||||
|
"""Check incompatible hyperparameters."""
|
||||||
X, y = load_wine(return_X_y=True)
|
X, y = load_wine(return_X_y=True)
|
||||||
clf = Stree(kernel="liblinear", multiclass_strategy="ovo")
|
clf = Stree(kernel="liblinear", multiclass_strategy="ovo")
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
@@ -661,3 +678,50 @@ class Stree_test(unittest.TestCase):
|
|||||||
clf = Stree(multiclass_strategy="ovo", split_criteria="max_samples")
|
clf = Stree(multiclass_strategy="ovo", split_criteria="max_samples")
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
|
|
||||||
|
def test_version(self):
|
||||||
|
"""Check STree version."""
|
||||||
|
clf = Stree()
|
||||||
|
self.assertEqual(__version__, clf.version())
|
||||||
|
|
||||||
|
def test_graph(self):
|
||||||
|
"""Check graphviz representation of the tree."""
|
||||||
|
X, y = load_wine(return_X_y=True)
|
||||||
|
clf = Stree(random_state=self._random_state)
|
||||||
|
|
||||||
|
expected_head = (
|
||||||
|
"digraph STree {\nlabel=<STree >\nfontsize=30\n"
|
||||||
|
"fontcolor=blue\nlabelloc=t\n"
|
||||||
|
)
|
||||||
|
expected_tail = (
|
||||||
|
' [shape=box style=filled label="class=1 impurity=0.000 '
|
||||||
|
'classes=[1] samples=[1]"];\n}\n'
|
||||||
|
)
|
||||||
|
self.assertEqual(clf.graph(), expected_head + "}\n")
|
||||||
|
clf.fit(X, y)
|
||||||
|
computed = clf.graph()
|
||||||
|
computed_head = computed[: len(expected_head)]
|
||||||
|
num = -len(expected_tail)
|
||||||
|
computed_tail = computed[num:]
|
||||||
|
self.assertEqual(computed_head, expected_head)
|
||||||
|
self.assertEqual(computed_tail, expected_tail)
|
||||||
|
|
||||||
|
def test_graph_title(self):
|
||||||
|
X, y = load_wine(return_X_y=True)
|
||||||
|
clf = Stree(random_state=self._random_state)
|
||||||
|
expected_head = (
|
||||||
|
"digraph STree {\nlabel=<STree Sample title>\nfontsize=30\n"
|
||||||
|
"fontcolor=blue\nlabelloc=t\n"
|
||||||
|
)
|
||||||
|
expected_tail = (
|
||||||
|
' [shape=box style=filled label="class=1 impurity=0.000 '
|
||||||
|
'classes=[1] samples=[1]"];\n}\n'
|
||||||
|
)
|
||||||
|
self.assertEqual(clf.graph("Sample title"), expected_head + "}\n")
|
||||||
|
clf.fit(X, y)
|
||||||
|
computed = clf.graph("Sample title")
|
||||||
|
computed_head = computed[: len(expected_head)]
|
||||||
|
num = -len(expected_tail)
|
||||||
|
computed_tail = computed[num:]
|
||||||
|
self.assertEqual(computed_head, expected_head)
|
||||||
|
self.assertEqual(computed_tail, expected_tail)
|
||||||
|
Reference in New Issue
Block a user