Compare commits

..

7 Commits
ovo-#36 ... 1.2

Author SHA1 Message Date
Ricardo Montañana Gómez
fc9b7b5c92 Update version info (#42)
* Update version info and update docs (#41)
2021-07-31 01:45:16 +02:00
Ricardo Montañana Gómez
3f79d2877f Add cfs fcbf #39 (#40)
* Implement CFS/FCBF in splitter

* Split Splitter class to its own file
Update hyperparams table in docs
Implement CFS/FCBS with max_features and variable type

* Set mfs to continuous variables

* Fix some tests and style issues in Splitter

* Update requirements in github CI
2021-07-30 20:01:08 +02:00
ecc2800705 Fix mistakes in README and in docs 2021-07-21 11:24:37 +02:00
0524d47d64 Complete splitter description in hyperparameters 2021-07-14 18:10:46 +02:00
d46f544466 Add docs config
Update setup remove ipympl dependency
Update Project Name
add build to Makefile
2021-05-11 19:11:03 +02:00
79190ef2e1 Add doc-clean and lgtm badge 2021-05-11 09:03:26 +02:00
Ricardo Montañana Gómez
4f04e72670 Implement ovo strategy (#37)
* Implement ovo strategy
* Set ovo strategy as default
* Add kernel liblinear with LinearSVC classifier
* Fix weak test
2021-05-10 12:16:53 +02:00
21 changed files with 812 additions and 597 deletions

View File

@@ -26,6 +26,7 @@ jobs:
pip install -q --upgrade pip pip install -q --upgrade pip
pip install -q -r requirements.txt pip install -q -r requirements.txt
pip install -q --upgrade codecov coverage black flake8 codacy-coverage pip install -q --upgrade codecov coverage black flake8 codacy-coverage
pip install -q git+https://github.com/doctorado-ml/mfs
- name: Lint - name: Lint
run: | run: |
black --check --diff stree black --check --diff stree

View File

@@ -1,6 +1,6 @@
SHELL := /bin/bash SHELL := /bin/bash
.DEFAULT_GOAL := help .DEFAULT_GOAL := help
.PHONY: coverage deps help lint push test .PHONY: coverage deps help lint push test doc build
coverage: ## Run tests with coverage coverage: ## Run tests with coverage
coverage erase coverage erase
@@ -24,6 +24,13 @@ test: ## Run tests
doc: ## Update documentation doc: ## Update documentation
make -C docs --makefile=Makefile html make -C docs --makefile=Makefile html
build: ## Build package
rm -fr dist/*
python setup.py sdist bdist_wheel
doc-clean: ## Update documentation
make -C docs --makefile=Makefile clean
help: ## Show help message help: ## Show help message
@IFS=$$'\n' ; \ @IFS=$$'\n' ; \
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \ help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
@@ -39,4 +46,4 @@ help: ## Show help message
printf "%-20s %s" $$help_command ; \ printf "%-20s %s" $$help_command ; \
printf '\033[0m'; \ printf '\033[0m'; \
printf "%s\n" $$help_info; \ printf "%s\n" $$help_info; \
done done

View File

@@ -1,8 +1,9 @@
![CI](https://github.com/Doctorado-ML/STree/workflows/CI/badge.svg) ![CI](https://github.com/Doctorado-ML/STree/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree) [![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade) [![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/Doctorado-ML/STree.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/Doctorado-ML/STree/context:python)
# Stree # STree
Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc. Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.
@@ -16,7 +17,7 @@ pip install git+https://github.com/doctorado-ml/stree
## Documentation ## Documentation
Can be found in Can be found in [stree.readthedocs.io](https://stree.readthedocs.io/en/stable/)
## Examples ## Examples
@@ -34,23 +35,24 @@ Can be found in
## Hyperparameters ## Hyperparameters
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** | | | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
| --- | ------------------- | ------------------------------------------------------ | ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --- | ------------------- | ------------------------------------------------------ | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. | | \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library | | \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. | | \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls | | \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree | | | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. | | \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. | | \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf and poly.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. | | \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf, poly and sigmoid.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy | | | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. | | | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any | | | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. | | | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random", "mutual"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose one randomly. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label | | | splitter | {"best", "random", "mutual", "cfs", "fcbf"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter |
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it | | | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest | | \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
\* Hyperparameter used by the support vector classifier of every node \* Hyperparameter used by the support vector classifier of every node

View File

@@ -1,3 +1,4 @@
sphinx sphinx
sphinx-rtd-theme sphinx-rtd-theme
myst-parser myst-parser
git+https://github.com/doctorado-ml/stree

View File

@@ -1,7 +1,7 @@
Siterator Siterator
========= =========
.. automodule:: stree .. automodule:: Splitter
.. autoclass:: Siterator .. autoclass:: Siterator
:members: :members:
:undoc-members: :undoc-members:

View File

@@ -1,7 +1,7 @@
Snode Snode
===== =====
.. automodule:: stree .. automodule:: Splitter
.. autoclass:: Snode .. autoclass:: Snode
:members: :members:
:undoc-members: :undoc-members:

View File

@@ -1,7 +1,7 @@
Splitter Splitter
======== ========
.. automodule:: stree .. automodule:: Splitter
.. autoclass:: Splitter .. autoclass:: Splitter
:members: :members:
:undoc-members: :undoc-members:

View File

@@ -6,6 +6,6 @@ API index
:caption: Contents: :caption: Contents:
Stree Stree
Splitter
Snode
Siterator Siterator
Snode
Splitter

View File

@@ -12,6 +12,7 @@
# #
import os import os
import sys import sys
import stree
sys.path.insert(0, os.path.abspath("../../stree/")) sys.path.insert(0, os.path.abspath("../../stree/"))
@@ -23,7 +24,8 @@ copyright = "2020 - 2021, Ricardo Montañana Gómez"
author = "Ricardo Montañana Gómez" author = "Ricardo Montañana Gómez"
# The full version, including alpha/beta/rc tags # The full version, including alpha/beta/rc tags
release = "1.0" version = stree.__version__
release = version
# -- General configuration --------------------------------------------------- # -- General configuration ---------------------------------------------------

View File

@@ -1,22 +1,22 @@
## Hyperparameters # Hyperparameters
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** | | | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
| --- | ------------------- | ------------------------------------------------------ | ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --- | ------------------- | ------------------------------------------------------ | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. | | \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library | | \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. | | \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls | | \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree | | | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. | | \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. | | \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf and poly.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. | | \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf, poly and sigmoid.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy | | | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. | | | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any | | | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. | | | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random", "mutual"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose one randomly. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label | | | splitter | {"best", "random", "mutual", "cfs", "fcbf"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter |
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it | | | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest | | \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
\* Hyperparameter used by the support vector classifier of every node \* Hyperparameter used by the support vector classifier of every node

View File

@@ -1,8 +1,9 @@
# Stree # STree
[![Codeship Status for Doctorado-ML/STree](https://app.codeship.com/projects/8b2bd350-8a1b-0138-5f2c-3ad36f3eb318/status?branch=master)](https://app.codeship.com/projects/399170) [![Codeship Status for Doctorado-ML/STree](https://app.codeship.com/projects/8b2bd350-8a1b-0138-5f2c-3ad36f3eb318/status?branch=master)](https://app.codeship.com/projects/399170)
[![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree) [![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade) [![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/Doctorado-ML/STree.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/Doctorado-ML/STree/context:python)
Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc. Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.

View File

@@ -1 +1,2 @@
scikit-learn>0.24 scikit-learn>0.24
mfs

View File

@@ -1,5 +1,4 @@
import setuptools import setuptools
import stree
def readme(): def readme():
@@ -7,11 +6,23 @@ def readme():
return f.read() return f.read()
VERSION = stree.__version__ def get_data(field):
item = ""
with open("stree/__init__.py") as f:
for line in f.readlines():
if line.startswith(f"__{field}__"):
delim = '"' if '"' in line else "'"
item = line.split(delim)[1]
break
else:
raise RuntimeError(f"Unable to find {field} string.")
return item
setuptools.setup( setuptools.setup(
name="STree", name="STree",
version=stree.__version__, version=get_data("version"),
license=stree.__license__, license=get_data("license"),
description="Oblique decision tree with svm nodes", description="Oblique decision tree with svm nodes",
long_description=readme(), long_description=readme(),
long_description_content_type="text/markdown", long_description_content_type="text/markdown",
@@ -21,19 +32,19 @@ setuptools.setup(
"Code": "https://github.com/Doctorado-ML/STree", "Code": "https://github.com/Doctorado-ML/STree",
"Documentation": "https://stree.readthedocs.io/en/latest/index.html", "Documentation": "https://stree.readthedocs.io/en/latest/index.html",
}, },
author=stree.__author__, author=get_data("author"),
author_email=stree.__author_email__, author_email=get_data("author_email"),
keywords="scikit-learn oblique-classifier oblique-decision-tree decision-\ keywords="scikit-learn oblique-classifier oblique-decision-tree decision-\
tree svm svc", tree svm svc",
classifiers=[ classifiers=[
"Development Status :: 5 - Production/Stable", "Development Status :: 5 - Production/Stable",
"License :: OSI Approved :: " + stree.__license__, "License :: OSI Approved :: " + get_data("license"),
"Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.8",
"Natural Language :: English", "Natural Language :: English",
"Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Scientific/Engineering :: Artificial Intelligence",
"Intended Audience :: Science/Research", "Intended Audience :: Science/Research",
], ],
install_requires=["scikit-learn", "numpy", "ipympl"], install_requires=["scikit-learn", "numpy", "mfs"],
test_suite="stree.tests", test_suite="stree.tests",
zip_safe=False, zip_safe=False,
) )

10
stree/.readthedocs.yaml Normal file
View File

@@ -0,0 +1,10 @@
version: 2
sphinx:
configuration: docs/source/conf.py
python:
version: 3.8
install:
- requirements: requirements.txt
- requirements: docs/requirements.txt

656
stree/Splitter.py Normal file
View File

@@ -0,0 +1,656 @@
"""
Oblique decision tree classifier based on SVM nodes
Splitter class
"""
import os
import warnings
import random
from math import log, factorial
import numpy as np
from sklearn.feature_selection import SelectKBest, mutual_info_classif
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.exceptions import ConvergenceWarning
from mfs import MFS
class Snode:
"""Nodes of the tree that keeps the svm classifier and if testing the
dataset assigned to it
"""
def __init__(
self,
clf: SVC,
X: np.ndarray,
y: np.ndarray,
features: np.array,
impurity: float,
title: str,
weight: np.ndarray = None,
scaler: StandardScaler = None,
):
self._clf = clf
self._title = title
self._belief = 0.0
# Only store dataset in Testing
self._X = X if os.environ.get("TESTING", "NS") != "NS" else None
self._y = y
self._down = None
self._up = None
self._class = None
self._feature = None
self._sample_weight = (
weight if os.environ.get("TESTING", "NS") != "NS" else None
)
self._features = features
self._impurity = impurity
self._partition_column: int = -1
self._scaler = scaler
@classmethod
def copy(cls, node: "Snode") -> "Snode":
return cls(
node._clf,
node._X,
node._y,
node._features,
node._impurity,
node._title,
node._sample_weight,
node._scaler,
)
def set_partition_column(self, col: int):
self._partition_column = col
def get_partition_column(self) -> int:
return self._partition_column
def set_down(self, son):
self._down = son
def set_title(self, title):
self._title = title
def set_classifier(self, clf):
self._clf = clf
def set_features(self, features):
self._features = features
def set_impurity(self, impurity):
self._impurity = impurity
def get_title(self) -> str:
return self._title
def get_classifier(self) -> SVC:
return self._clf
def get_impurity(self) -> float:
return self._impurity
def get_features(self) -> np.array:
return self._features
def set_up(self, son):
self._up = son
def is_leaf(self) -> bool:
return self._up is None and self._down is None
def get_down(self) -> "Snode":
return self._down
def get_up(self) -> "Snode":
return self._up
def make_predictor(self):
"""Compute the class of the predictor and its belief based on the
subdataset of the node only if it is a leaf
"""
if not self.is_leaf():
return
classes, card = np.unique(self._y, return_counts=True)
if len(classes) > 1:
max_card = max(card)
self._class = classes[card == max_card][0]
self._belief = max_card / np.sum(card)
else:
self._belief = 1
try:
self._class = classes[0]
except IndexError:
self._class = None
def __str__(self) -> str:
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf():
return (
f"{self._title} - Leaf class={self._class} belief="
f"{self._belief: .6f} impurity={self._impurity:.4f} "
f"counts={count_values}"
)
return (
f"{self._title} feaures={self._features} impurity="
f"{self._impurity:.4f} "
f"counts={count_values}"
)
class Siterator:
"""Stree preorder iterator"""
def __init__(self, tree: Snode):
self._stack = []
self._push(tree)
def __iter__(self):
# To complete the iterator interface
return self
def _push(self, node: Snode):
if node is not None:
self._stack.append(node)
def __next__(self) -> Snode:
if len(self._stack) == 0:
raise StopIteration()
node = self._stack.pop()
self._push(node.get_up())
self._push(node.get_down())
return node
class Splitter:
def __init__(
self,
clf: SVC = None,
criterion: str = None,
feature_select: str = None,
criteria: str = None,
min_samples_split: int = None,
random_state=None,
normalize=False,
):
self._clf = clf
self._random_state = random_state
if random_state is not None:
random.seed(random_state)
self._criterion = criterion
self._min_samples_split = min_samples_split
self._criteria = criteria
self._feature_select = feature_select
self._normalize = normalize
if clf is None:
raise ValueError(f"clf has to be a sklearn estimator, got({clf})")
if criterion not in ["gini", "entropy"]:
raise ValueError(
f"criterion must be gini or entropy got({criterion})"
)
if criteria not in [
"max_samples",
"impurity",
]:
raise ValueError(
f"criteria has to be max_samples or impurity; got ({criteria})"
)
if feature_select not in ["random", "best", "mutual", "cfs", "fcbf"]:
raise ValueError(
"splitter must be in {random, best, mutual, cfs, fcbf} got "
f"({feature_select})"
)
self.criterion_function = getattr(self, f"_{self._criterion}")
self.decision_criteria = getattr(self, f"_{self._criteria}")
self.fs_function = getattr(self, f"_fs_{self._feature_select}")
def _fs_random(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the best of five random feature set combinations
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# Random feature reduction
n_features = dataset.shape[1]
features_sets = self._generate_spaces(n_features, max_features)
return self._select_best_set(dataset, labels, features_sets)
@staticmethod
def _fs_best(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the variabes with higher f-score
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
return (
SelectKBest(k=max_features)
.fit(dataset, labels)
.get_support(indices=True)
)
@staticmethod
def _fs_mutual(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the best features with mutual information with labels
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# return best features with mutual info with the label
feature_list = mutual_info_classif(dataset, labels)
return tuple(
sorted(
range(len(feature_list)), key=lambda sub: feature_list[sub]
)[-max_features:]
)
@staticmethod
def _fs_cfs(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Correlattion-based feature selection with max_features limit
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
mfs = MFS(max_features=max_features, discrete=False)
return mfs.cfs(dataset, labels).get_results()
@staticmethod
def _fs_fcbf(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Fast Correlation-based Filter algorithm with max_features limit
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
mfs = MFS(max_features=max_features, discrete=False)
return mfs.fcbf(dataset, labels, 5e-4).get_results()
def partition_impurity(self, y: np.array) -> np.array:
return self.criterion_function(y)
@staticmethod
def _gini(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
return 1 - np.sum(np.square(count / np.sum(count)))
@staticmethod
def _entropy(y: np.array) -> float:
"""Compute entropy of a labels set
Parameters
----------
y : np.array
set of labels
Returns
-------
float
entropy
"""
n_labels = len(y)
if n_labels <= 1:
return 0
counts = np.bincount(y)
proportions = counts / n_labels
n_classes = np.count_nonzero(proportions)
if n_classes <= 1:
return 0
entropy = 0.0
# Compute standard entropy.
for prop in proportions:
if prop != 0.0:
entropy -= prop * log(prop, n_classes)
return entropy
def information_gain(
self, labels: np.array, labels_up: np.array, labels_dn: np.array
) -> float:
"""Compute information gain of a split candidate
Parameters
----------
labels : np.array
labels of the dataset
labels_up : np.array
labels of one side
labels_dn : np.array
labels on the other side
Returns
-------
float
information gain
"""
imp_prev = self.criterion_function(labels)
card_up = card_dn = imp_up = imp_dn = 0
if labels_up is not None:
card_up = labels_up.shape[0]
imp_up = self.criterion_function(labels_up)
if labels_dn is not None:
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_dn = self.criterion_function(labels_dn)
samples = card_up + card_dn
if samples == 0:
return 0.0
else:
result = (
imp_prev
- (card_up / samples) * imp_up
- (card_dn / samples) * imp_dn
)
return result
def _select_best_set(
self, dataset: np.array, labels: np.array, features_sets: list
) -> list:
"""Return the best set of features among feature_sets, the criterion is
the information gain
Parameters
----------
dataset : np.array
array of samples (# samples, # features)
labels : np.array
array of labels
features_sets : list
list of features sets to check
Returns
-------
list
best feature set
"""
max_gain = 0
selected = None
warnings.filterwarnings("ignore", category=ConvergenceWarning)
for feature_set in features_sets:
self._clf.fit(dataset[:, feature_set], labels)
node = Snode(
self._clf, dataset, labels, feature_set, 0.0, "subset"
)
self.partition(dataset, node, train=True)
y1, y2 = self.part(labels)
gain = self.information_gain(labels, y1, y2)
if gain > max_gain:
max_gain = gain
selected = feature_set
return selected if selected is not None else feature_set
@staticmethod
def _generate_spaces(features: int, max_features: int) -> list:
"""Generate at most 5 feature random combinations
Parameters
----------
features : int
number of features in each combination
max_features : int
number of features in dataset
Returns
-------
list
list with up to 5 combination of features randomly selected
"""
comb = set()
# Generate at most 5 combinations
number = factorial(features) / (
factorial(max_features) * factorial(features - max_features)
)
set_length = min(5, number)
while len(comb) < set_length:
comb.add(
tuple(sorted(random.sample(range(features), max_features)))
)
return list(comb)
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Compute the indices of the features selected by splitter depending
on the self._feature_select hyper parameter
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(<= number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# No feature reduction
n_features = dataset.shape[1]
if n_features == max_features:
return tuple(range(n_features))
# select features as selected in constructor
return self.fs_function(dataset, labels, max_features)
def get_subspace(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Re3turn a subspace of the selected dataset of max_features length.
Depending on hyperparameter
Parameters
----------
dataset : np.array
array of samples (# samples, # features)
labels : np.array
labels of the dataset
max_features : int
number of features to form the subspace
Returns
-------
tuple
tuple with the dataset with only the features selected and the
indices of the features selected
"""
indices = self._get_subspaces_set(dataset, labels, max_features)
return dataset[:, indices], indices
def _impurity(self, data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
Parameters
----------
data : np.array
distances to hyper plane of every class
y : np.array
vector of labels (classes)
Returns
-------
np.array
column of dataset to be taken into account to split dataset
"""
max_gain = 0
selected = -1
for col in range(data.shape[1]):
tup = y[data[:, col] > 0]
tdn = y[data[:, col] <= 0]
info_gain = self.information_gain(y, tup, tdn)
if info_gain > max_gain:
selected = col
max_gain = info_gain
return selected
@staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
Parameters
----------
data : np.array
distances to hyper plane of every class
y : np.array
column of dataset to be taken into account to split dataset
Returns
-------
np.array
column of dataset to be taken into account to split dataset
"""
# select the class with max number of samples
_, samples = np.unique(y, return_counts=True)
return np.argmax(samples)
def partition(self, samples: np.array, node: Snode, train: bool):
"""Set the criteria to split arrays. Compute the indices of the samples
that should go to one side of the tree (up)
Parameters
----------
samples : np.array
array of samples (# samples, # features)
node : Snode
Node of the tree where partition is going to be made
train : bool
Train time - True / Test time - False
"""
# data contains the distances of every sample to every class hyperplane
# array of (m, nc) nc = # classes
data = self._distances(node, samples)
if data.shape[0] < self._min_samples_split:
# there aren't enough samples to split
self._up = np.ones((data.shape[0]), dtype=bool)
return
if data.ndim > 1:
# split criteria for multiclass
# Convert data to a (m, 1) array selecting values for samples
if train:
# in train time we have to compute the column to take into
# account to split the dataset
col = self.decision_criteria(data, node._y)
node.set_partition_column(col)
else:
# in predcit time just use the column computed in train time
# is taking the classifier of class <col>
col = node.get_partition_column()
if col == -1:
# No partition is producing information gain
data = np.ones(data.shape)
data = data[:, col]
self._up = data > 0
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (self._up) and its complement
partition has to be called first to establish up indices
Parameters
----------
origin : np.array
dataset to split
Returns
-------
list
list with two splits of the array
"""
down = ~self._up
return [
origin[self._up] if any(self._up) else None,
origin[down] if any(down) else None,
]
def _distances(self, node: Snode, data: np.ndarray) -> np.array:
"""Compute distances of the samples to the hyperplane of the node
Parameters
----------
node : Snode
node containing the svm classifier
data : np.ndarray
samples to compute distance to hyperplane
Returns
-------
np.array
array of shape (m, nc) with the distances of every sample to
the hyperplane of every class. nc = # of classes
"""
X_transformed = data[:, node._features]
if self._normalize:
X_transformed = node._scaler.transform(X_transformed)
return node._clf.decision_function(X_transformed)

View File

@@ -2,553 +2,21 @@
Oblique decision tree classifier based on SVM nodes Oblique decision tree classifier based on SVM nodes
""" """
import os
import numbers import numbers
import random import random
import warnings
from math import log, factorial
from typing import Optional from typing import Optional
import numpy as np import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.svm import SVC, LinearSVC from sklearn.svm import SVC, LinearSVC
from sklearn.feature_selection import SelectKBest, mutual_info_classif
from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler
from sklearn.utils.multiclass import check_classification_targets from sklearn.utils.multiclass import check_classification_targets
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils.validation import ( from sklearn.utils.validation import (
check_X_y, check_X_y,
check_array, check_array,
check_is_fitted, check_is_fitted,
_check_sample_weight, _check_sample_weight,
) )
from .Splitter import Splitter, Snode, Siterator
class Snode:
"""Nodes of the tree that keeps the svm classifier and if testing the
dataset assigned to it
"""
def __init__(
self,
clf: SVC,
X: np.ndarray,
y: np.ndarray,
features: np.array,
impurity: float,
title: str,
weight: np.ndarray = None,
scaler: StandardScaler = None,
):
self._clf = clf
self._title = title
self._belief = 0.0
# Only store dataset in Testing
self._X = X if os.environ.get("TESTING", "NS") != "NS" else None
self._y = y
self._down = None
self._up = None
self._class = None
self._feature = None
self._sample_weight = (
weight if os.environ.get("TESTING", "NS") != "NS" else None
)
self._features = features
self._impurity = impurity
self._partition_column: int = -1
self._scaler = scaler
@classmethod
def copy(cls, node: "Snode") -> "Snode":
return cls(
node._clf,
node._X,
node._y,
node._features,
node._impurity,
node._title,
node._sample_weight,
node._scaler,
)
def set_partition_column(self, col: int):
self._partition_column = col
def get_partition_column(self) -> int:
return self._partition_column
def set_down(self, son):
self._down = son
def set_title(self, title):
self._title = title
def set_classifier(self, clf):
self._clf = clf
def set_features(self, features):
self._features = features
def set_impurity(self, impurity):
self._impurity = impurity
def get_title(self) -> str:
return self._title
def get_classifier(self) -> SVC:
return self._clf
def get_impurity(self) -> float:
return self._impurity
def get_features(self) -> np.array:
return self._features
def set_up(self, son):
self._up = son
def is_leaf(self) -> bool:
return self._up is None and self._down is None
def get_down(self) -> "Snode":
return self._down
def get_up(self) -> "Snode":
return self._up
def make_predictor(self):
"""Compute the class of the predictor and its belief based on the
subdataset of the node only if it is a leaf
"""
if not self.is_leaf():
return
classes, card = np.unique(self._y, return_counts=True)
if len(classes) > 1:
max_card = max(card)
self._class = classes[card == max_card][0]
self._belief = max_card / np.sum(card)
else:
self._belief = 1
try:
self._class = classes[0]
except IndexError:
self._class = None
def __str__(self) -> str:
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf():
return (
f"{self._title} - Leaf class={self._class} belief="
f"{self._belief: .6f} impurity={self._impurity:.4f} "
f"counts={count_values}"
)
return (
f"{self._title} feaures={self._features} impurity="
f"{self._impurity:.4f} "
f"counts={count_values}"
)
class Siterator:
"""Stree preorder iterator"""
def __init__(self, tree: Snode):
self._stack = []
self._push(tree)
def __iter__(self):
# To complete the iterator interface
return self
def _push(self, node: Snode):
if node is not None:
self._stack.append(node)
def __next__(self) -> Snode:
if len(self._stack) == 0:
raise StopIteration()
node = self._stack.pop()
self._push(node.get_up())
self._push(node.get_down())
return node
class Splitter:
def __init__(
self,
clf: SVC = None,
criterion: str = None,
feature_select: str = None,
criteria: str = None,
min_samples_split: int = None,
random_state=None,
normalize=False,
):
self._clf = clf
self._random_state = random_state
if random_state is not None:
random.seed(random_state)
self._criterion = criterion
self._min_samples_split = min_samples_split
self._criteria = criteria
self._feature_select = feature_select
self._normalize = normalize
if clf is None:
raise ValueError(f"clf has to be a sklearn estimator, got({clf})")
if criterion not in ["gini", "entropy"]:
raise ValueError(
f"criterion must be gini or entropy got({criterion})"
)
if criteria not in [
"max_samples",
"impurity",
]:
raise ValueError(
f"criteria has to be max_samples or impurity; got ({criteria})"
)
if feature_select not in ["random", "best", "mutual"]:
raise ValueError(
"splitter must be in {random, best, mutual} got "
f"({feature_select})"
)
self.criterion_function = getattr(self, f"_{self._criterion}")
self.decision_criteria = getattr(self, f"_{self._criteria}")
def partition_impurity(self, y: np.array) -> np.array:
return self.criterion_function(y)
@staticmethod
def _gini(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
return 1 - np.sum(np.square(count / np.sum(count)))
@staticmethod
def _entropy(y: np.array) -> float:
"""Compute entropy of a labels set
Parameters
----------
y : np.array
set of labels
Returns
-------
float
entropy
"""
n_labels = len(y)
if n_labels <= 1:
return 0
counts = np.bincount(y)
proportions = counts / n_labels
n_classes = np.count_nonzero(proportions)
if n_classes <= 1:
return 0
entropy = 0.0
# Compute standard entropy.
for prop in proportions:
if prop != 0.0:
entropy -= prop * log(prop, n_classes)
return entropy
def information_gain(
self, labels: np.array, labels_up: np.array, labels_dn: np.array
) -> float:
"""Compute information gain of a split candidate
Parameters
----------
labels : np.array
labels of the dataset
labels_up : np.array
labels of one side
labels_dn : np.array
labels on the other side
Returns
-------
float
information gain
"""
imp_prev = self.criterion_function(labels)
card_up = card_dn = imp_up = imp_dn = 0
if labels_up is not None:
card_up = labels_up.shape[0]
imp_up = self.criterion_function(labels_up)
if labels_dn is not None:
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_dn = self.criterion_function(labels_dn)
samples = card_up + card_dn
if samples == 0:
return 0.0
else:
result = (
imp_prev
- (card_up / samples) * imp_up
- (card_dn / samples) * imp_dn
)
return result
def _select_best_set(
self, dataset: np.array, labels: np.array, features_sets: list
) -> list:
"""Return the best set of features among feature_sets, the criterion is
the information gain
Parameters
----------
dataset : np.array
array of samples (# samples, # features)
labels : np.array
array of labels
features_sets : list
list of features sets to check
Returns
-------
list
best feature set
"""
max_gain = 0
selected = None
warnings.filterwarnings("ignore", category=ConvergenceWarning)
for feature_set in features_sets:
self._clf.fit(dataset[:, feature_set], labels)
node = Snode(
self._clf, dataset, labels, feature_set, 0.0, "subset"
)
self.partition(dataset, node, train=True)
y1, y2 = self.part(labels)
gain = self.information_gain(labels, y1, y2)
if gain > max_gain:
max_gain = gain
selected = feature_set
return selected if selected is not None else feature_set
@staticmethod
def _generate_spaces(features: int, max_features: int) -> list:
"""Generate at most 5 feature random combinations
Parameters
----------
features : int
number of features in each combination
max_features : int
number of features in dataset
Returns
-------
list
list with up to 5 combination of features randomly selected
"""
comb = set()
# Generate at most 5 combinations
number = factorial(features) / (
factorial(max_features) * factorial(features - max_features)
)
set_length = min(5, number)
while len(comb) < set_length:
comb.add(
tuple(sorted(random.sample(range(features), max_features)))
)
return list(comb)
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Compute the indices of the features selected by splitter depending
on the self._feature_select hyper parameter
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(<= number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# No feature reduction
if dataset.shape[1] == max_features:
return tuple(range(dataset.shape[1]))
# Random feature reduction
if self._feature_select == "random":
features_sets = self._generate_spaces(
dataset.shape[1], max_features
)
return self._select_best_set(dataset, labels, features_sets)
# return the KBest features
if self._feature_select == "best":
return (
SelectKBest(k=max_features)
.fit(dataset, labels)
.get_support(indices=True)
)
# return best features with mutual info with the label
feature_list = mutual_info_classif(dataset, labels)
return tuple(
sorted(
range(len(feature_list)), key=lambda sub: feature_list[sub]
)[-max_features:]
)
def get_subspace(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Re3turn a subspace of the selected dataset of max_features length.
Depending on hyperparmeter
Parameters
----------
dataset : np.array
array of samples (# samples, # features)
labels : np.array
labels of the dataset
max_features : int
number of features to form the subspace
Returns
-------
tuple
tuple with the dataset with only the features selected and the
indices of the features selected
"""
indices = self._get_subspaces_set(dataset, labels, max_features)
return dataset[:, indices], indices
def _impurity(self, data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
Parameters
----------
data : np.array
distances to hyper plane of every class
y : np.array
vector of labels (classes)
Returns
-------
np.array
column of dataset to be taken into account to split dataset
"""
max_gain = 0
selected = -1
for col in range(data.shape[1]):
tup = y[data[:, col] > 0]
tdn = y[data[:, col] <= 0]
info_gain = self.information_gain(y, tup, tdn)
if info_gain > max_gain:
selected = col
max_gain = info_gain
return selected
@staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
Parameters
----------
data : np.array
distances to hyper plane of every class
y : np.array
column of dataset to be taken into account to split dataset
Returns
-------
np.array
column of dataset to be taken into account to split dataset
"""
# select the class with max number of samples
_, samples = np.unique(y, return_counts=True)
return np.argmax(samples)
def partition(self, samples: np.array, node: Snode, train: bool):
"""Set the criteria to split arrays. Compute the indices of the samples
that should go to one side of the tree (up)
Parameters
----------
samples : np.array
array of samples (# samples, # features)
node : Snode
Node of the tree where partition is going to be made
train : bool
Train time - True / Test time - False
"""
# data contains the distances of every sample to every class hyperplane
# array of (m, nc) nc = # classes
data = self._distances(node, samples)
if data.shape[0] < self._min_samples_split:
# there aren't enough samples to split
self._up = np.ones((data.shape[0]), dtype=bool)
return
if data.ndim > 1:
# split criteria for multiclass
# Convert data to a (m, 1) array selecting values for samples
if train:
# in train time we have to compute the column to take into
# account to split the dataset
col = self.decision_criteria(data, node._y)
node.set_partition_column(col)
else:
# in predcit time just use the column computed in train time
# is taking the classifier of class <col>
col = node.get_partition_column()
if col == -1:
# No partition is producing information gain
data = np.ones(data.shape)
data = data[:, col]
self._up = data > 0
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (self._up) and its complement
partition has to be called first to establish up indices
Parameters
----------
origin : np.array
dataset to split
Returns
-------
list
list with two splits of the array
"""
down = ~self._up
return [
origin[self._up] if any(self._up) else None,
origin[down] if any(down) else None,
]
def _distances(self, node: Snode, data: np.ndarray) -> np.array:
"""Compute distances of the samples to the hyperplane of the node
Parameters
----------
node : Snode
node containing the svm classifier
data : np.ndarray
samples to compute distance to hyperplane
Returns
-------
np.array
array of shape (m, nc) with the distances of every sample to
the hyperplane of every class. nc = # of classes
"""
X_transformed = data[:, node._features]
if self._normalize:
X_transformed = node._scaler.transform(X_transformed)
return node._clf.decision_function(X_transformed)
class Stree(BaseEstimator, ClassifierMixin): class Stree(BaseEstimator, ClassifierMixin):

View File

@@ -1,10 +1,10 @@
from .Strees import Stree, Snode, Siterator, Splitter from .Strees import Stree, Siterator
__version__ = "1.1" __version__ = "1.2"
__author__ = "Ricardo Montañana Gómez" __author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020-2021, Ricardo Montañana Gómez" __copyright__ = "Copyright 2020-2021, Ricardo Montañana Gómez"
__license__ = "MIT License" __license__ = "MIT License"
__author_email__ = "ricardo.montanana@alu.uclm.es" __author_email__ = "ricardo.montanana@alu.uclm.es"
__all__ = ["Stree", "Snode", "Siterator", "Splitter"] __all__ = ["Stree", "Siterator"]

View File

@@ -1,7 +1,8 @@
import os import os
import unittest import unittest
import numpy as np import numpy as np
from stree import Stree, Snode from stree import Stree
from stree.Splitter import Snode
from .utils import load_dataset from .utils import load_dataset

View File

@@ -5,8 +5,8 @@ import random
import numpy as np import numpy as np
from sklearn.svm import SVC from sklearn.svm import SVC
from sklearn.datasets import load_wine, load_iris from sklearn.datasets import load_wine, load_iris
from stree import Splitter from stree.Splitter import Splitter
from .utils import load_dataset from .utils import load_dataset, load_disc_dataset
class Splitter_test(unittest.TestCase): class Splitter_test(unittest.TestCase):
@@ -244,3 +244,44 @@ class Splitter_test(unittest.TestCase):
Xs, computed = tcl.get_subspace(X, y, k) Xs, computed = tcl.get_subspace(X, y, k)
self.assertListEqual(expected, list(computed)) self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist()) self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_best_subspaces_discrete(self):
results = [
(4, [0, 3, 16, 18]),
(7, [0, 3, 13, 14, 16, 18, 19]),
(9, [0, 3, 7, 13, 14, 15, 16, 18, 19]),
]
X, y = load_disc_dataset(n_features=20)
for k, expected in results:
tcl = self.build(
feature_select="best",
)
Xs, computed = tcl.get_subspace(X, y, k)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_cfs_subspaces(self):
results = [
(4, [1, 5, 9, 12]),
(6, [1, 5, 9, 12, 4, 2]),
(7, [1, 5, 9, 12, 4, 2, 3]),
]
X, y = load_dataset(n_features=20, n_informative=7)
for k, expected in results:
tcl = self.build(feature_select="cfs")
Xs, computed = tcl.get_subspace(X, y, k)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_fcbf_subspaces(self):
results = [
(4, [1, 5, 9, 12]),
(6, [1, 5, 9, 12, 4, 2]),
(7, [1, 5, 9, 12, 4, 2, 16]),
]
for rs, expected in results:
X, y = load_dataset(n_features=20, n_informative=7)
tcl = self.build(feature_select="fcbf", random_state=rs)
Xs, computed = tcl.get_subspace(X, y, rs)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())

View File

@@ -7,7 +7,8 @@ from sklearn.datasets import load_iris, load_wine
from sklearn.exceptions import ConvergenceWarning from sklearn.exceptions import ConvergenceWarning
from sklearn.svm import LinearSVC from sklearn.svm import LinearSVC
from stree import Stree, Snode from stree import Stree
from stree.Splitter import Snode
from .utils import load_dataset from .utils import load_dataset

View File

@@ -1,11 +1,14 @@
from sklearn.datasets import make_classification from sklearn.datasets import make_classification
import numpy as np
def load_dataset(random_state=0, n_classes=2, n_features=3, n_samples=1500): def load_dataset(
random_state=0, n_classes=2, n_features=3, n_samples=1500, n_informative=3
):
X, y = make_classification( X, y = make_classification(
n_samples=n_samples, n_samples=n_samples,
n_features=n_features, n_features=n_features,
n_informative=3, n_informative=n_informative,
n_redundant=0, n_redundant=0,
n_repeated=0, n_repeated=0,
n_classes=n_classes, n_classes=n_classes,
@@ -15,3 +18,12 @@ def load_dataset(random_state=0, n_classes=2, n_features=3, n_samples=1500):
random_state=random_state, random_state=random_state,
) )
return X, y return X, y
def load_disc_dataset(
random_state=0, n_classes=2, n_features=3, n_samples=1500
):
np.random.seed(random_state)
X = np.random.randint(1, 17, size=(n_samples, n_features)).astype(float)
y = np.random.randint(low=0, high=n_classes, size=(n_samples), dtype=int)
return X, y