|
|
|
@@ -358,6 +358,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
# Tests of score
|
|
|
|
|
def test_score_binary(self):
|
|
|
|
|
"""Check score for binary classification."""
|
|
|
|
|
X, y = load_dataset(self._random_state)
|
|
|
|
|
accuracies = [
|
|
|
|
|
0.9506666666666667,
|
|
|
|
@@ -380,6 +381,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertAlmostEqual(accuracy_expected, accuracy_score)
|
|
|
|
|
|
|
|
|
|
def test_score_max_features(self):
|
|
|
|
|
"""Check score using max_features."""
|
|
|
|
|
X, y = load_dataset(self._random_state)
|
|
|
|
|
clf = Stree(
|
|
|
|
|
kernel="liblinear",
|
|
|
|
@@ -391,6 +393,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertAlmostEqual(0.9453333333333334, clf.score(X, y))
|
|
|
|
|
|
|
|
|
|
def test_bogus_splitter_parameter(self):
|
|
|
|
|
"""Check that bogus splitter parameter raises exception."""
|
|
|
|
|
clf = Stree(splitter="duck")
|
|
|
|
|
with self.assertRaises(ValueError):
|
|
|
|
|
clf.fit(*load_dataset())
|
|
|
|
@@ -446,6 +449,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertListEqual([47], resdn[1].tolist())
|
|
|
|
|
|
|
|
|
|
def test_score_multiclass_rbf(self):
|
|
|
|
|
"""Test score for multiclass classification with rbf kernel."""
|
|
|
|
|
X, y = load_dataset(
|
|
|
|
|
random_state=self._random_state,
|
|
|
|
|
n_classes=3,
|
|
|
|
@@ -463,6 +467,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
|
|
|
|
|
|
|
|
|
def test_score_multiclass_poly(self):
|
|
|
|
|
"""Test score for multiclass classification with poly kernel."""
|
|
|
|
|
X, y = load_dataset(
|
|
|
|
|
random_state=self._random_state,
|
|
|
|
|
n_classes=3,
|
|
|
|
@@ -484,6 +489,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
|
|
|
|
|
|
|
|
|
def test_score_multiclass_liblinear(self):
|
|
|
|
|
"""Test score for multiclass classification with liblinear kernel."""
|
|
|
|
|
X, y = load_dataset(
|
|
|
|
|
random_state=self._random_state,
|
|
|
|
|
n_classes=3,
|
|
|
|
@@ -509,6 +515,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
|
|
|
|
|
|
|
|
|
def test_score_multiclass_sigmoid(self):
|
|
|
|
|
"""Test score for multiclass classification with sigmoid kernel."""
|
|
|
|
|
X, y = load_dataset(
|
|
|
|
|
random_state=self._random_state,
|
|
|
|
|
n_classes=3,
|
|
|
|
@@ -529,6 +536,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertEqual(0.9662921348314607, clf2.fit(X, y).score(X, y))
|
|
|
|
|
|
|
|
|
|
def test_score_multiclass_linear(self):
|
|
|
|
|
"""Test score for multiclass classification with linear kernel."""
|
|
|
|
|
warnings.filterwarnings("ignore", category=ConvergenceWarning)
|
|
|
|
|
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
|
|
|
|
X, y = load_dataset(
|
|
|
|
@@ -556,11 +564,13 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
|
|
|
|
|
|
|
|
|
|
def test_zero_all_sample_weights(self):
|
|
|
|
|
"""Test exception raises when all sample weights are zero."""
|
|
|
|
|
X, y = load_dataset(self._random_state)
|
|
|
|
|
with self.assertRaises(ValueError):
|
|
|
|
|
Stree().fit(X, y, np.zeros(len(y)))
|
|
|
|
|
|
|
|
|
|
def test_mask_samples_weighted_zero(self):
|
|
|
|
|
"""Check that the weighted zero samples are masked."""
|
|
|
|
|
X = np.array(
|
|
|
|
|
[
|
|
|
|
|
[1, 1],
|
|
|
|
@@ -588,6 +598,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertEqual(model2.score(X, y, w), 1)
|
|
|
|
|
|
|
|
|
|
def test_depth(self):
|
|
|
|
|
"""Check depth of the tree."""
|
|
|
|
|
X, y = load_dataset(
|
|
|
|
|
random_state=self._random_state,
|
|
|
|
|
n_classes=3,
|
|
|
|
@@ -603,6 +614,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertEqual(4, clf.depth_)
|
|
|
|
|
|
|
|
|
|
def test_nodes_leaves(self):
|
|
|
|
|
"""Check number of nodes and leaves."""
|
|
|
|
|
X, y = load_dataset(
|
|
|
|
|
random_state=self._random_state,
|
|
|
|
|
n_classes=3,
|
|
|
|
@@ -622,6 +634,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertEqual(6, leaves)
|
|
|
|
|
|
|
|
|
|
def test_nodes_leaves_artificial(self):
|
|
|
|
|
"""Check leaves of artificial dataset."""
|
|
|
|
|
n1 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test1")
|
|
|
|
|
n2 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test2")
|
|
|
|
|
n3 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test3")
|
|
|
|
@@ -640,12 +653,14 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertEqual(2, leaves)
|
|
|
|
|
|
|
|
|
|
def test_bogus_multiclass_strategy(self):
|
|
|
|
|
"""Check invalid multiclass strategy."""
|
|
|
|
|
clf = Stree(multiclass_strategy="other")
|
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
|
|
|
with self.assertRaises(ValueError):
|
|
|
|
|
clf.fit(X, y)
|
|
|
|
|
|
|
|
|
|
def test_multiclass_strategy(self):
|
|
|
|
|
"""Check multiclass strategy."""
|
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
|
|
|
clf_o = Stree(multiclass_strategy="ovo")
|
|
|
|
|
clf_r = Stree(multiclass_strategy="ovr")
|
|
|
|
@@ -655,6 +670,7 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
self.assertEqual(0.9269662921348315, score_r)
|
|
|
|
|
|
|
|
|
|
def test_incompatible_hyperparameters(self):
|
|
|
|
|
"""Check incompatible hyperparameters."""
|
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
|
|
|
clf = Stree(kernel="liblinear", multiclass_strategy="ovo")
|
|
|
|
|
with self.assertRaises(ValueError):
|
|
|
|
@@ -664,5 +680,48 @@ class Stree_test(unittest.TestCase):
|
|
|
|
|
clf.fit(X, y)
|
|
|
|
|
|
|
|
|
|
def test_version(self):
|
|
|
|
|
"""Check STree version."""
|
|
|
|
|
clf = Stree()
|
|
|
|
|
self.assertEqual(__version__, clf.version())
|
|
|
|
|
|
|
|
|
|
def test_graph(self):
|
|
|
|
|
"""Check graphviz representation of the tree."""
|
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
|
|
|
clf = Stree(random_state=self._random_state)
|
|
|
|
|
|
|
|
|
|
expected_head = (
|
|
|
|
|
"digraph STree {\nlabel=<STree >\nfontsize=30\n"
|
|
|
|
|
"fontcolor=blue\nlabelloc=t\n"
|
|
|
|
|
)
|
|
|
|
|
expected_tail = (
|
|
|
|
|
' [shape=box style=filled label="class=1 impurity=0.000 '
|
|
|
|
|
'classes=[1] samples=[1]"];\n}\n'
|
|
|
|
|
)
|
|
|
|
|
self.assertEqual(clf.graph(), expected_head + "}\n")
|
|
|
|
|
clf.fit(X, y)
|
|
|
|
|
computed = clf.graph()
|
|
|
|
|
computed_head = computed[: len(expected_head)]
|
|
|
|
|
num = -len(expected_tail)
|
|
|
|
|
computed_tail = computed[num:]
|
|
|
|
|
self.assertEqual(computed_head, expected_head)
|
|
|
|
|
self.assertEqual(computed_tail, expected_tail)
|
|
|
|
|
|
|
|
|
|
def test_graph_title(self):
|
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
|
|
|
clf = Stree(random_state=self._random_state)
|
|
|
|
|
expected_head = (
|
|
|
|
|
"digraph STree {\nlabel=<STree Sample title>\nfontsize=30\n"
|
|
|
|
|
"fontcolor=blue\nlabelloc=t\n"
|
|
|
|
|
)
|
|
|
|
|
expected_tail = (
|
|
|
|
|
' [shape=box style=filled label="class=1 impurity=0.000 '
|
|
|
|
|
'classes=[1] samples=[1]"];\n}\n'
|
|
|
|
|
)
|
|
|
|
|
self.assertEqual(clf.graph("Sample title"), expected_head + "}\n")
|
|
|
|
|
clf.fit(X, y)
|
|
|
|
|
computed = clf.graph("Sample title")
|
|
|
|
|
computed_head = computed[: len(expected_head)]
|
|
|
|
|
num = -len(expected_tail)
|
|
|
|
|
computed_tail = computed[num:]
|
|
|
|
|
self.assertEqual(computed_head, expected_head)
|
|
|
|
|
self.assertEqual(computed_tail, expected_tail)
|
|
|
|
|