Compare commits

...

6 Commits

Author SHA1 Message Date
Ricardo Montañana Gómez
147dad684c Weight0samples error (#23)
* Add Hyperparameters description to README
Comment get_subspace method
Add environment info for binder (runtime.txt)

* Complete source comments
Change docstring type to numpy
update hyperameters table and explanation

* Fix problem with zero weighted samples
Solve WARNING: class label x specified in weight is not found
with a different approach

* Allow update of scikitlearn to latest version
2021-01-19 11:40:46 +01:00
Ricardo Montañana Gómez
3bdac9bd60 Complete source comments (#22)
* Add Hyperparameters description to README
Comment get_subspace method
Add environment info for binder (runtime.txt)

* Complete source comments
Change docstring type to numpy
update hyperameters table and explanation

* Update Jupyter notebooks
2021-01-19 10:44:59 +01:00
Ricardo Montañana Gómez
e4ac5075e5 Add main workflow action (#20)
* Add main workflow action

* lock scikit-learn version to 0.23.2

* exchange codeship badge with githubs
2021-01-11 13:46:30 +01:00
Ricardo Montañana Gómez
36816074ff Combinatorial explosion (#19)
* Remove itertools combinations from subspaces

* Generates 5 random subspaces at most
2021-01-10 13:32:22 +01:00
475ad7e752 Fix mistakes in function comments 2020-11-11 19:14:36 +01:00
Ricardo Montañana Gómez
1c869e154e Enhance partition (#16)
#15 Create impurity function in Stree (consistent name, same criteria as other splitter parameter)
Create test for the new function
Update init test
Update test splitter parameters
Rename old impurity function to partition_impurity
close #15
* Complete implementation of splitter_type = impurity with tests
Remove max_distance & min_distance splitter types

* Fix mistake in computing multiclass node belief
Set default criterion for split to entropy instead of gini
Set default max_iter to 1e5 instead of 1e3
change up-down criterion to match SVC multiclass
Fix impurity method of splitting nodes
Update jupyter Notebooks
2020-11-03 11:36:05 +01:00
15 changed files with 1453 additions and 725 deletions

47
.github/workflows/main.yml vendored Normal file
View File

@@ -0,0 +1,47 @@
name: CI
on:
push:
branches: [master]
pull_request:
branches: [master]
workflow_dispatch:
jobs:
build:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [macos-latest, ubuntu-latest]
python: [3.8]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python }}
- name: Install dependencies
run: |
pip install -q --upgrade pip
pip install -q -r requirements.txt
pip install -q --upgrade codecov coverage black flake8 codacy-coverage
- name: Lint
run: |
black --check --diff stree
flake8 --count stree
- name: Tests
run: |
coverage run -m unittest -v stree.tests
coverage xml
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
files: ./coverage.xml
- name: Run codacy-coverage-reporter
if: runner.os == 'Linux'
uses: codacy/codacy-coverage-reporter-action@master
with:
project-token: ${{ secrets.CODACY_PROJECT_TOKEN }}
coverage-reports: coverage.xml

3
.gitignore vendored
View File

@@ -132,4 +132,5 @@ dmypy.json
.vscode .vscode
.pre-commit-config.yaml .pre-commit-config.yaml
**.csv **.csv
.virtual_documents

View File

@@ -1,6 +1,6 @@
[![Codeship Status for Doctorado-ML/STree](https://app.codeship.com/projects/8b2bd350-8a1b-0138-5f2c-3ad36f3eb318/status?branch=master)](https://app.codeship.com/projects/399170) ![CI](https://github.com/Doctorado-ML/STree/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree) [![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade) [![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
# Stree # Stree
@@ -18,23 +18,45 @@ pip install git+https://github.com/doctorado-ml/stree
### Jupyter notebooks ### Jupyter notebooks
* [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/notebooks/benchmark.ipynb) Benchmark - [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/notebooks/benchmark.ipynb) Benchmark
* [![Test](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/benchmark.ipynb) Benchmark - [![Test](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/benchmark.ipynb) Benchmark
* [![Test2](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/features.ipynb) Test features - [![Test2](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/features.ipynb) Test features
* [![Adaboost](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/adaboost.ipynb) Adaboost - [![Adaboost](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/adaboost.ipynb) Adaboost
* [![Gridsearch](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/gridsearch.ipynb) Gridsearch - [![Gridsearch](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/gridsearch.ipynb) Gridsearch
* [![Test Graphics](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test_graphs.ipynb) Test Graphics - [![Test Graphics](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test_graphs.ipynb) Test Graphics
### Command line ## Hyperparameters
```bash | | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
python main.py | --- | ------------------ | ------------------------------------------------------ | ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
``` | \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"linear", "poly", "rbf"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of linear, poly or rbf. |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf and poly.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\* |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random"} | random | The strategy used to choose the feature set at each node (only used if max_features != num_features). <br>Supported strategies are “best” to choose the best feature set and “random” to choose a random combination. <br>The algorithm generates 5 candidates at most to choose from in both strategies. |
\* Hyperparameter used by the support vector classifier of every node
\*\* **Splitting in a STree node**
The decision function is applied to the dataset and distances from samples to hyperplanes are computed in a matrix. This matrix has as many columns as classes the samples belongs to (if more than two, i.e. multiclass classification) or 1 column if it's a binary class dataset. In binary classification only one hyperplane is computed and therefore only one column is needed to store the distances of the samples to it. If three or more classes are present in the dataset we need as many hyperplanes as classes are there, and therefore one column per hyperplane is needed.
In case of multiclass classification we have to decide which column take into account to make the split, that depends on hyperparameter _split_criteria_, if "impurity" is chosen then STree computes information gain of every split candidate using each column and chooses the one that maximize the information gain, otherwise STree choses the column with more samples with a predicted class (the column with more positive numbers in it).
Once we have the column to take into account for the split, the algorithm splits samples with positive distances to hyperplane from the rest.
## Tests ## Tests

View File

@@ -8,7 +8,7 @@ random_state = 1
X, y = load_iris(return_X_y=True) X, y = load_iris(return_X_y=True)
Xtrain, Xtest, ytrain, ytest = train_test_split( Xtrain, Xtest, ytrain, ytest = train_test_split(
X, y, test_size=0.2, random_state=random_state X, y, test_size=0.3, random_state=random_state
) )
now = time.time() now = time.time()

File diff suppressed because one or more lines are too long

View File

@@ -34,9 +34,12 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"import time\n", "import time\n",
"import warnings\n",
"from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier\n", "from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier\n",
"from sklearn.model_selection import train_test_split\n", "from sklearn.model_selection import train_test_split\n",
"from stree import Stree" "from sklearn.exceptions import ConvergenceWarning\n",
"from stree import Stree\n",
"warnings.filterwarnings(\"ignore\", category=ConvergenceWarning)"
] ]
}, },
{ {
@@ -59,9 +62,15 @@
}, },
"outputs": [ "outputs": [
{ {
"output_type": "stream",
"name": "stdout", "name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (100492, 28) y.shape (100492,)\nFraud: 0.644% 647\nValid: 99.356% 99845\n" "output_type": "stream",
"text": [
"Fraud: 0.173% 492\n",
"Valid: 99.827% 284315\n",
"X.shape (100492, 28) y.shape (100492,)\n",
"Fraud: 0.651% 654\n",
"Valid: 99.349% 99838\n"
]
} }
], ],
"source": [ "source": [
@@ -127,14 +136,18 @@
}, },
"outputs": [ "outputs": [
{ {
"output_type": "stream",
"name": "stdout", "name": "stdout",
"text": "Score Train: 0.9985784146480154\nScore Test: 0.9981093273185617\nTook 73.27 seconds\n" "output_type": "stream",
"text": [
"Score Train: 0.9984504719663368\n",
"Score Test: 0.9983415151917209\n",
"Took 26.09 seconds\n"
]
} }
], ],
"source": [ "source": [
"now = time.time()\n", "now = time.time()\n",
"clf = Stree(max_depth=3, random_state=random_state)\n", "clf = Stree(max_depth=3, random_state=random_state, max_iter=1e3)\n",
"clf.fit(Xtrain, ytrain)\n", "clf.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf.score(Xtrain, ytrain))\n", "print(\"Score Train: \", clf.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf.score(Xtest, ytest))\n", "print(\"Score Test: \", clf.score(Xtest, ytest))\n",
@@ -167,15 +180,19 @@
}, },
"outputs": [ "outputs": [
{ {
"output_type": "stream",
"name": "stdout", "name": "stdout",
"text": "Kernel: linear\tTime: 93.78 seconds\tScore Train: 0.9983083\tScore Test: 0.9983083\nKernel: rbf\tTime: 18.32 seconds\tScore Train: 0.9935602\tScore Test: 0.9935651\nKernel: poly\tTime: 69.68 seconds\tScore Train: 0.9973132\tScore Test: 0.9972801\n" "output_type": "stream",
"text": [
"Kernel: linear\tTime: 43.49 seconds\tScore Train: 0.9980098\tScore Test: 0.9980762\n",
"Kernel: rbf\tTime: 8.86 seconds\tScore Train: 0.9934891\tScore Test: 0.9934987\n",
"Kernel: poly\tTime: 41.14 seconds\tScore Train: 0.9972279\tScore Test: 0.9973133\n"
]
} }
], ],
"source": [ "source": [
"for kernel in ['linear', 'rbf', 'poly']:\n", "for kernel in ['linear', 'rbf', 'poly']:\n",
" now = time.time()\n", " now = time.time()\n",
" clf = AdaBoostClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state), algorithm=\"SAMME\", n_estimators=n_estimators, random_state=random_state)\n", " clf = AdaBoostClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state, max_iter=1e3), algorithm=\"SAMME\", n_estimators=n_estimators, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n", " clf.fit(Xtrain, ytrain)\n",
" score_train = clf.score(Xtrain, ytrain)\n", " score_train = clf.score(Xtrain, ytrain)\n",
" score_test = clf.score(Xtest, ytest)\n", " score_test = clf.score(Xtest, ytest)\n",
@@ -208,15 +225,19 @@
}, },
"outputs": [ "outputs": [
{ {
"output_type": "stream",
"name": "stdout", "name": "stdout",
"text": "Kernel: linear\tTime: 387.06 seconds\tScore Train: 0.9985784\tScore Test: 0.9981093\nKernel: rbf\tTime: 144.00 seconds\tScore Train: 0.9992750\tScore Test: 0.9983415\nKernel: poly\tTime: 101.78 seconds\tScore Train: 0.9992466\tScore Test: 0.9981757\n" "output_type": "stream",
"text": [
"Kernel: linear\tTime: 187.51 seconds\tScore Train: 0.9984505\tScore Test: 0.9983083\n",
"Kernel: rbf\tTime: 73.65 seconds\tScore Train: 0.9993461\tScore Test: 0.9985074\n",
"Kernel: poly\tTime: 52.19 seconds\tScore Train: 0.9993461\tScore Test: 0.9987727\n"
]
} }
], ],
"source": [ "source": [
"for kernel in ['linear', 'rbf', 'poly']:\n", "for kernel in ['linear', 'rbf', 'poly']:\n",
" now = time.time()\n", " now = time.time()\n",
" clf = BaggingClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state), n_estimators=n_estimators, random_state=random_state)\n", " clf = BaggingClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state, max_iter=1e3), n_estimators=n_estimators, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n", " clf.fit(Xtrain, ytrain)\n",
" score_train = clf.score(Xtrain, ytrain)\n", " score_train = clf.score(Xtrain, ytrain)\n",
" score_test = clf.score(Xtest, ytest)\n", " score_test = clf.score(Xtest, ytest)\n",
@@ -225,6 +246,11 @@
} }
], ],
"metadata": { "metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
"name": "ipython", "name": "ipython",
@@ -235,14 +261,9 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.6-final" "version": "3.8.2"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python37664bitgeneralvenve3128601eb614c5da59c5055670b6040",
"display_name": "Python 3.7.6 64-bit ('general': venv)"
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 4
} }

File diff suppressed because one or more lines are too long

View File

@@ -1,247 +1,362 @@
{ {
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Test Gridsearch\n", "# Test Gridsearch\n",
"with different kernels and different configurations" "with different kernels and different configurations"
] ]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup\n",
"Uncomment the next cell if STree is not already installed"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
]
},
{
"cell_type": "code",
"metadata": {
"id": "zIHKVxthDZEa",
"colab_type": "code",
"colab": {}
},
"source": [
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
"from stree import Stree"
],
"execution_count": 2,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "IEmq50QgDZEi",
"colab_type": "code",
"colab": {}
},
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
],
"execution_count": 3,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "z9Q-YUfBDZEq",
"colab_type": "code",
"colab": {},
"outputId": "afc822fb-f16a-4302-8a67-2b9e2880159b",
"tags": []
},
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"data = load_creditcard(-1000) # Take all true samples + 1000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"# data = load_creditcard(0) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 32.976% 492\nValid: 67.024% 1000\n"
}
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tests"
]
},
{
"cell_type": "code",
"metadata": {
"id": "HmX3kR4PDZEw",
"colab_type": "code",
"colab": {}
},
"source": [
"parameters = {\n",
" 'base_estimator': [Stree()],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5],\n",
" 'base_estimator__C': [7, 55],\n",
" 'base_estimator__kernel': ['linear', 'poly', 'rbf']\n",
"}"
],
"execution_count": 5,
"outputs": []
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": "{'C': 1.0,\n 'criterion': 'gini',\n 'degree': 3,\n 'gamma': 'scale',\n 'kernel': 'linear',\n 'max_depth': None,\n 'max_features': None,\n 'max_iter': 1000,\n 'min_samples_split': 0,\n 'random_state': None,\n 'split_criteria': 'max_samples',\n 'splitter': 'random',\n 'tol': 0.0001}"
},
"metadata": {},
"execution_count": 6
}
],
"source": [
"Stree().get_params()"
]
},
{
"cell_type": "code",
"metadata": {
"id": "CrcB8o6EDZE5",
"colab_type": "code",
"colab": {},
"outputId": "7703413a-d563-4289-a13b-532f38f82762",
"tags": []
},
"source": [
"random_state=2020\n",
"clf = AdaBoostClassifier(random_state=random_state, algorithm=\"SAMME\")\n",
"grid = GridSearchCV(clf, parameters, verbose=10, n_jobs=-1, return_train_score=True)\n",
"grid.fit(Xtrain, ytrain)"
],
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fitting 5 folds for each of 96 candidates, totalling 480 fits\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 2 tasks | elapsed: 2.0s\n[Parallel(n_jobs=-1)]: Done 9 tasks | elapsed: 2.4s\n[Parallel(n_jobs=-1)]: Done 16 tasks | elapsed: 2.7s\n[Parallel(n_jobs=-1)]: Done 25 tasks | elapsed: 3.3s\n[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 4.3s\n[Parallel(n_jobs=-1)]: Done 45 tasks | elapsed: 5.3s\n[Parallel(n_jobs=-1)]: Done 56 tasks | elapsed: 6.6s\n[Parallel(n_jobs=-1)]: Done 69 tasks | elapsed: 8.1s\n[Parallel(n_jobs=-1)]: Done 82 tasks | elapsed: 9.4s\n[Parallel(n_jobs=-1)]: Done 97 tasks | elapsed: 10.1s\n[Parallel(n_jobs=-1)]: Done 112 tasks | elapsed: 11.1s\n[Parallel(n_jobs=-1)]: Done 129 tasks | elapsed: 12.3s\n[Parallel(n_jobs=-1)]: Done 146 tasks | elapsed: 13.6s\n[Parallel(n_jobs=-1)]: Done 165 tasks | elapsed: 14.9s\n[Parallel(n_jobs=-1)]: Done 184 tasks | elapsed: 16.2s\n[Parallel(n_jobs=-1)]: Done 205 tasks | elapsed: 17.6s\n[Parallel(n_jobs=-1)]: Done 226 tasks | elapsed: 19.1s\n[Parallel(n_jobs=-1)]: Done 249 tasks | elapsed: 21.6s\n[Parallel(n_jobs=-1)]: Done 272 tasks | elapsed: 25.9s\n[Parallel(n_jobs=-1)]: Done 297 tasks | elapsed: 30.4s\n[Parallel(n_jobs=-1)]: Done 322 tasks | elapsed: 36.7s\n[Parallel(n_jobs=-1)]: Done 349 tasks | elapsed: 38.1s\n[Parallel(n_jobs=-1)]: Done 376 tasks | elapsed: 39.6s\n[Parallel(n_jobs=-1)]: Done 405 tasks | elapsed: 41.9s\n[Parallel(n_jobs=-1)]: Done 434 tasks | elapsed: 44.9s\n[Parallel(n_jobs=-1)]: Done 465 tasks | elapsed: 48.2s\n[Parallel(n_jobs=-1)]: Done 480 out of 480 | elapsed: 49.2s finished\n"
},
{
"output_type": "execute_result",
"data": {
"text/plain": "GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=2020),\n n_jobs=-1,\n param_grid={'base_estimator': [Stree(C=55, max_depth=3, tol=0.01)],\n 'base_estimator__C': [7, 55],\n 'base_estimator__kernel': ['linear', 'poly', 'rbf'],\n 'base_estimator__max_depth': [3, 5],\n 'base_estimator__tol': [0.1, 0.01],\n 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n return_train_score=True, verbose=10)"
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "ZjX88NoYDZE8",
"colab_type": "code",
"colab": {},
"outputId": "285163c8-fa33-4915-8ae7-61c4f7844344",
"tags": []
},
"source": [
"print(\"Best estimator: \", grid.best_estimator_)\n",
"print(\"Best hyperparameters: \", grid.best_params_)\n",
"print(\"Best accuracy: \", grid.best_score_)"
],
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Best estimator: AdaBoostClassifier(algorithm='SAMME',\n base_estimator=Stree(C=55, max_depth=3, tol=0.01),\n learning_rate=0.5, n_estimators=25, random_state=2020)\nBest hyperparameters: {'base_estimator': Stree(C=55, max_depth=3, tol=0.01), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 3, 'base_estimator__tol': 0.01, 'learning_rate': 0.5, 'n_estimators': 25}\nBest accuracy: 0.9559440559440558\n"
}
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39",
"display_name": "Python 3.7.6 64-bit ('general': venv)"
},
"colab": {
"name": "gridsearch.ipynb",
"provenance": []
}
}, },
"nbformat": 4, {
"nbformat_minor": 0 "cell_type": "markdown",
} "metadata": {},
"source": [
"# Setup\n",
"Uncomment the next cell if STree is not already installed"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "zIHKVxthDZEa"
},
"outputs": [],
"source": [
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
"from stree import Stree"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "IEmq50QgDZEi"
},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "z9Q-YUfBDZEq",
"outputId": "afc822fb-f16a-4302-8a67-2b9e2880159b",
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Fraud: 0.173% 492\n",
"Valid: 99.827% 284315\n",
"X.shape (1492, 28) y.shape (1492,)\n",
"Fraud: 33.177% 495\n",
"Valid: 66.823% 997\n"
]
}
],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"data = load_creditcard(-1000) # Take all true samples + 1000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"# data = load_creditcard(0) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tests"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "HmX3kR4PDZEw"
},
"outputs": [],
"source": [
"parameters = [{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__kernel': ['linear']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__degree': [3, 5, 7],\n",
" 'base_estimator__kernel': ['poly']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__gamma': [.1, 1, 10],\n",
" 'base_estimator__kernel': ['rbf']\n",
"}]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'C': 1.0,\n",
" 'criterion': 'entropy',\n",
" 'degree': 3,\n",
" 'gamma': 'scale',\n",
" 'kernel': 'linear',\n",
" 'max_depth': None,\n",
" 'max_features': None,\n",
" 'max_iter': 100000.0,\n",
" 'min_samples_split': 0,\n",
" 'random_state': None,\n",
" 'split_criteria': 'impurity',\n",
" 'splitter': 'random',\n",
" 'tol': 0.0001}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Stree().get_params()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "CrcB8o6EDZE5",
"outputId": "7703413a-d563-4289-a13b-532f38f82762",
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Fitting 5 folds for each of 1008 candidates, totalling 5040 fits\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[Parallel(n_jobs=-1)]: Using backend LokyBackend with 16 concurrent workers.\n",
"[Parallel(n_jobs=-1)]: Done 40 tasks | elapsed: 1.6s\n",
"[Parallel(n_jobs=-1)]: Done 130 tasks | elapsed: 3.1s\n",
"[Parallel(n_jobs=-1)]: Done 256 tasks | elapsed: 5.5s\n",
"[Parallel(n_jobs=-1)]: Done 418 tasks | elapsed: 9.3s\n",
"[Parallel(n_jobs=-1)]: Done 616 tasks | elapsed: 18.6s\n",
"[Parallel(n_jobs=-1)]: Done 850 tasks | elapsed: 28.2s\n",
"[Parallel(n_jobs=-1)]: Done 1120 tasks | elapsed: 35.4s\n",
"[Parallel(n_jobs=-1)]: Done 1426 tasks | elapsed: 43.5s\n",
"[Parallel(n_jobs=-1)]: Done 1768 tasks | elapsed: 51.3s\n",
"[Parallel(n_jobs=-1)]: Done 2146 tasks | elapsed: 1.0min\n",
"[Parallel(n_jobs=-1)]: Done 2560 tasks | elapsed: 1.2min\n",
"[Parallel(n_jobs=-1)]: Done 3010 tasks | elapsed: 1.4min\n",
"[Parallel(n_jobs=-1)]: Done 3496 tasks | elapsed: 1.7min\n",
"[Parallel(n_jobs=-1)]: Done 4018 tasks | elapsed: 2.1min\n",
"[Parallel(n_jobs=-1)]: Done 4576 tasks | elapsed: 2.6min\n",
"[Parallel(n_jobs=-1)]: Done 5040 out of 5040 | elapsed: 2.9min finished\n"
]
},
{
"data": {
"text/plain": [
"GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=1),\n",
" n_jobs=-1,\n",
" param_grid=[{'base_estimator': [Stree(C=55, max_depth=7,\n",
" random_state=1,\n",
" split_criteria='max_samples',\n",
" tol=0.1)],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__kernel': ['linear'],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__split_criteria': ['max_samples',\n",
" 'impuri...\n",
" {'base_estimator': [Stree(random_state=1)],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__gamma': [0.1, 1, 10],\n",
" 'base_estimator__kernel': ['rbf'],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__split_criteria': ['max_samples',\n",
" 'impurity'],\n",
" 'base_estimator__tol': [0.1, 0.01],\n",
" 'learning_rate': [0.5, 1],\n",
" 'n_estimators': [10, 25]}],\n",
" return_train_score=True, verbose=5)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clf = AdaBoostClassifier(random_state=random_state, algorithm=\"SAMME\")\n",
"grid = GridSearchCV(clf, parameters, verbose=5, n_jobs=-1, return_train_score=True)\n",
"grid.fit(Xtrain, ytrain)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "ZjX88NoYDZE8",
"outputId": "285163c8-fa33-4915-8ae7-61c4f7844344",
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Best estimator: AdaBoostClassifier(algorithm='SAMME',\n",
" base_estimator=Stree(C=55, max_depth=7, random_state=1,\n",
" split_criteria='max_samples', tol=0.1),\n",
" learning_rate=0.5, n_estimators=25, random_state=1)\n",
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=7, random_state=1, split_criteria='max_samples', tol=0.1), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 7, 'base_estimator__split_criteria': 'max_samples', 'base_estimator__tol': 0.1, 'learning_rate': 0.5, 'n_estimators': 25}\n",
"Best accuracy: 0.9511777695988222\n"
]
}
],
"source": [
"print(\"Best estimator: \", grid.best_estimator_)\n",
"print(\"Best hyperparameters: \", grid.best_params_)\n",
"print(\"Best accuracy: \", grid.best_score_)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Best estimator: AdaBoostClassifier(algorithm='SAMME',\n",
" base_estimator=Stree(C=55, max_depth=7, random_state=1,\n",
" split_criteria='max_samples', tol=0.1),\n",
" learning_rate=0.5, n_estimators=25, random_state=1)\n",
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=7, random_state=1, split_criteria='max_samples', tol=0.1), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 7, 'base_estimator__split_criteria': 'max_samples', 'base_estimator__tol': 0.1, 'learning_rate': 0.5, 'n_estimators': 25}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Best accuracy: 0.9511777695988222"
]
}
],
"metadata": {
"colab": {
"name": "gridsearch.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

1
runtime.txt Normal file
View File

@@ -0,0 +1 @@
python-3.8

View File

@@ -1,6 +1,6 @@
import setuptools import setuptools
__version__ = "0.9rc5" __version__ = "1.0rc1"
__author__ = "Ricardo Montañana Gómez" __author__ = "Ricardo Montañana Gómez"
@@ -25,12 +25,12 @@ setuptools.setup(
classifiers=[ classifiers=[
"Development Status :: 4 - Beta", "Development Status :: 4 - Beta",
"License :: OSI Approved :: MIT License", "License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8",
"Natural Language :: English", "Natural Language :: English",
"Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Scientific/Engineering :: Artificial Intelligence",
"Intended Audience :: Science/Research", "Intended Audience :: Science/Research",
], ],
install_requires=["scikit-learn>=0.23.0", "numpy", "ipympl"], install_requires=["scikit-learn", "numpy", "ipympl"],
test_suite="stree.tests", test_suite="stree.tests",
zip_safe=False, zip_safe=False,
) )

View File

@@ -3,15 +3,15 @@ __author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez" __copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
__license__ = "MIT" __license__ = "MIT"
__version__ = "0.9" __version__ = "0.9"
Build an oblique tree classifier based on SVM Trees Build an oblique tree classifier based on SVM nodes
""" """
import os import os
import numbers import numbers
import random import random
import warnings import warnings
from math import log from math import log, factorial
from itertools import combinations from typing import Optional
import numpy as np import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.svm import SVC, LinearSVC from sklearn.svm import SVC, LinearSVC
@@ -57,6 +57,7 @@ class Snode:
) )
self._features = features self._features = features
self._impurity = impurity self._impurity = impurity
self._partition_column: int = -1
@classmethod @classmethod
def copy(cls, node: "Snode") -> "Snode": def copy(cls, node: "Snode") -> "Snode":
@@ -69,6 +70,12 @@ class Snode:
node._title, node._title,
) )
def set_partition_column(self, col: int):
self._partition_column = col
def get_partition_column(self) -> int:
return self._partition_column
def set_down(self, son): def set_down(self, son):
self._down = son self._down = son
@@ -93,9 +100,8 @@ class Snode:
classes, card = np.unique(self._y, return_counts=True) classes, card = np.unique(self._y, return_counts=True)
if len(classes) > 1: if len(classes) > 1:
max_card = max(card) max_card = max(card)
min_card = min(card)
self._class = classes[card == max_card][0] self._class = classes[card == max_card][0]
self._belief = max_card / (max_card + min_card) self._belief = max_card / np.sum(card)
else: else:
self._belief = 1 self._belief = 1
try: try:
@@ -104,24 +110,23 @@ class Snode:
self._class = None self._class = None
def __str__(self) -> str: def __str__(self) -> str:
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf(): if self.is_leaf():
count_values = np.unique(self._y, return_counts=True) return (
result = (
f"{self._title} - Leaf class={self._class} belief=" f"{self._title} - Leaf class={self._class} belief="
f"{self._belief: .6f} impurity={self._impurity:.4f} " f"{self._belief: .6f} impurity={self._impurity:.4f} "
f"counts={count_values}" f"counts={count_values}"
) )
return result
else: else:
return ( return (
f"{self._title} feaures={self._features} impurity=" f"{self._title} feaures={self._features} impurity="
f"{self._impurity:.4f}" f"{self._impurity:.4f} "
f"counts={count_values}"
) )
class Siterator: class Siterator:
"""Stree preorder iterator """Stree preorder iterator"""
"""
def __init__(self, tree: Snode): def __init__(self, tree: Snode):
self._stack = [] self._stack = []
@@ -167,20 +172,22 @@ class Splitter:
f"criterion must be gini or entropy got({criterion})" f"criterion must be gini or entropy got({criterion})"
) )
if criteria not in ["min_distance", "max_samples", "max_distance"]: if criteria not in [
"max_samples",
"impurity",
]:
raise ValueError( raise ValueError(
"split_criteria has to be min_distance " f"criteria has to be max_samples or impurity; got ({criteria})"
f"max_distance or max_samples got ({criteria})"
) )
if splitter_type not in ["random", "best"]: if splitter_type not in ["random", "best"]:
raise ValueError( raise ValueError(
f"splitter must be either random or best got({splitter_type})" f"splitter must be either random or best, got({splitter_type})"
) )
self.criterion_function = getattr(self, f"_{self._criterion}") self.criterion_function = getattr(self, f"_{self._criterion}")
self.decision_criteria = getattr(self, f"_{self._criteria}") self.decision_criteria = getattr(self, f"_{self._criteria}")
def impurity(self, y: np.array) -> np.array: def partition_impurity(self, y: np.array) -> np.array:
return self.criterion_function(y) return self.criterion_function(y)
@staticmethod @staticmethod
@@ -190,6 +197,18 @@ class Splitter:
@staticmethod @staticmethod
def _entropy(y: np.array) -> float: def _entropy(y: np.array) -> float:
"""Compute entropy of a labels set
Parameters
----------
y : np.array
set of labels
Returns
-------
float
entropy
"""
n_labels = len(y) n_labels = len(y)
if n_labels <= 1: if n_labels <= 1:
return 0 return 0
@@ -208,6 +227,22 @@ class Splitter:
def information_gain( def information_gain(
self, labels: np.array, labels_up: np.array, labels_dn: np.array self, labels: np.array, labels_up: np.array, labels_dn: np.array
) -> float: ) -> float:
"""Compute information gain of a split candidate
Parameters
----------
labels : np.array
labels of the dataset
labels_up : np.array
labels of one side
labels_dn : np.array
labels on the other side
Returns
-------
float
information gain
"""
imp_prev = self.criterion_function(labels) imp_prev = self.criterion_function(labels)
card_up = card_dn = imp_up = imp_dn = 0 card_up = card_dn = imp_up = imp_dn = 0
if labels_up is not None: if labels_up is not None:
@@ -238,7 +273,7 @@ class Splitter:
node = Snode( node = Snode(
self._clf, dataset, labels, feature_set, 0.0, "subset" self._clf, dataset, labels, feature_set, 0.0, "subset"
) )
self.partition(dataset, node) self.partition(dataset, node, train=True)
y1, y2 = self.part(labels) y1, y2 = self.part(labels)
gain = self.information_gain(labels, y1, y2) gain = self.information_gain(labels, y1, y2)
if gain > max_gain: if gain > max_gain:
@@ -246,124 +281,206 @@ class Splitter:
selected = feature_set selected = feature_set
return selected if selected is not None else feature_set return selected if selected is not None else feature_set
@staticmethod
def _generate_spaces(features: int, max_features: int) -> list:
"""Generate at most 5 feature random combinations
Parameters
----------
features : int
number of features in each combination
max_features : int
number of features in dataset
Returns
-------
list
list with up to 5 combination of features randomly selected
"""
comb = set()
# Generate at most 5 combinations
if max_features == features:
set_length = 1
else:
number = factorial(features) / (
factorial(max_features) * factorial(features - max_features)
)
set_length = min(5, number)
while len(comb) < set_length:
comb.add(
tuple(sorted(random.sample(range(features), max_features)))
)
return list(comb)
def _get_subspaces_set( def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int self, dataset: np.array, labels: np.array, max_features: int
) -> np.array: ) -> np.array:
features = range(dataset.shape[1]) """Compute the indices of the features selected by splitter depending
features_sets = list(combinations(features, max_features)) on the self._splitter_type hyper parameter
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(<= number of features in dataset)
Returns
-------
np.array
indices of the features selected
"""
features_sets = self._generate_spaces(dataset.shape[1], max_features)
if len(features_sets) > 1: if len(features_sets) > 1:
if self._splitter_type == "random": if self._splitter_type == "random":
index = random.randint(0, len(features_sets) - 1) index = random.randint(0, len(features_sets) - 1)
return features_sets[index] return features_sets[index]
else: else:
# get only 3 sets at most
if len(features_sets) > 3:
features_sets = random.sample(features_sets, 3)
return self._select_best_set(dataset, labels, features_sets) return self._select_best_set(dataset, labels, features_sets)
else: else:
return features_sets[0] return features_sets[0]
def get_subspace( def get_subspace(
self, dataset: np.array, labels: np.array, max_features: int self, dataset: np.array, labels: np.array, max_features: int
) -> list: ) -> tuple:
"""Return the best subspace to make a split """Return a subspace of the selected dataset of max_features length.
Depending on hyperparmeter
Parameters
----------
dataset : np.array
array of samples (# samples, # features)
labels : np.array
labels of the dataset
max_features : int
number of features to form the subspace
Returns
-------
tuple
tuple with the dataset with only the features selected and the
indices of the features selected
""" """
indices = self._get_subspaces_set(dataset, labels, max_features) indices = self._get_subspaces_set(dataset, labels, max_features)
return dataset[:, indices], indices return dataset[:, indices], indices
@staticmethod def _impurity(self, data: np.array, y: np.array) -> np.array:
def _min_distance(data: np.array, _) -> np.array: """return column of dataset to be taken into account to split dataset
"""Assign class to min distances
return a vector of classes so partition can separate class 0 from Parameters
the rest of classes, ie. class 0 goes to one splitted node and the ----------
rest of classes go to the other data : np.array
:param data: distances to hyper plane of every class distances to hyper plane of every class
:type data: np.array (m, n_classes) y : np.array
:param _: enable call compat with other measures vector of labels (classes)
:type _: None
:return: vector with the class assigned to each sample Returns
:rtype: np.array shape (m,) -------
np.array
column of dataset to be taken into account to split dataset
""" """
return np.argmin(data, axis=1) max_gain = 0
selected = -1
@staticmethod for col in range(data.shape[1]):
def _max_distance(data: np.array, _) -> np.array: tup = y[data[:, col] > 0]
"""Assign class to max distances tdn = y[data[:, col] <= 0]
info_gain = self.information_gain(y, tup, tdn)
return a vector of classes so partition can separate class 0 from if info_gain > max_gain:
the rest of classes, ie. class 0 goes to one splitted node and the selected = col
rest of classes go to the other max_gain = info_gain
:param data: distances to hyper plane of every class return selected
:type data: np.array (m, n_classes)
:param _: enable call compat with other measures
:type _: None
:return: vector with the class assigned to each sample values
(can be 0, 1, ...)
:rtype: np.array shape (m,)
"""
return np.argmax(data, axis=1)
@staticmethod @staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array: def _max_samples(data: np.array, y: np.array) -> np.array:
"""return distances of the class with more samples """return column of dataset to be taken into account to split dataset
:param data: distances to hyper plane of every class Parameters
:type data: np.array (m, n_classes) ----------
:param y: vector of labels (classes) data : np.array
:type y: np.array (m,) distances to hyper plane of every class
:return: vector with distances to hyperplane (can be positive or neg.) y : np.array
:rtype: np.array shape (m,) column of dataset to be taken into account to split dataset
Returns
-------
np.array
column of dataset to be taken into account to split dataset
""" """
# select the class with max number of samples # select the class with max number of samples
_, samples = np.unique(y, return_counts=True) _, samples = np.unique(y, return_counts=True)
selected = np.argmax(samples) return np.argmax(samples)
return data[:, selected]
def partition(self, samples: np.array, node: Snode): def partition(self, samples: np.array, node: Snode, train: bool):
"""Set the criteria to split arrays. Compute the indices of the samples """Set the criteria to split arrays. Compute the indices of the samples
that should go to one side of the tree (down) that should go to one side of the tree (up)
""" """
# data contains the distances of every sample to every class hyperplane
# array of (m, nc) nc = # classes
data = self._distances(node, samples) data = self._distances(node, samples)
if data.shape[0] < self._min_samples_split: if data.shape[0] < self._min_samples_split:
self._down = np.ones((data.shape[0]), dtype=bool) # there aren't enough samples to split
self._up = np.ones((data.shape[0]), dtype=bool)
return return
if data.ndim > 1: if data.ndim > 1:
# split criteria for multiclass # split criteria for multiclass
data = self.decision_criteria(data, node._y) # Convert data to a (m, 1) array selecting values for samples
self._down = data > 0 if train:
# in train time we have to compute the column to take into
# account to split the dataset
col = self.decision_criteria(data, node._y)
node.set_partition_column(col)
else:
# in predcit time just use the column computed in train time
# is taking the classifier of class <col>
col = node.get_partition_column()
if col == -1:
# No partition is producing information gain
data = np.ones(data.shape)
data = data[:, col]
self._up = data > 0
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (self._up) and its complement
partition has to be called first to establish up indices
Parameters
----------
origin : np.array
dataset to split
Returns
-------
list
list with two splits of the array
"""
down = ~self._up
return [
origin[self._up] if any(self._up) else None,
origin[down] if any(down) else None,
]
@staticmethod @staticmethod
def _distances(node: Snode, data: np.ndarray) -> np.array: def _distances(node: Snode, data: np.ndarray) -> np.array:
"""Compute distances of the samples to the hyperplane of the node """Compute distances of the samples to the hyperplane of the node
:param node: node containing the svm classifier Parameters
:type node: Snode ----------
:param data: samples to find out distance to hyperplane node : Snode
:type data: np.ndarray node containing the svm classifier
:return: array of shape (m, 1) with the distances of every sample to data : np.ndarray
the hyperplane of the node samples to compute distance to hyperplane
:rtype: np.array
Returns
-------
np.array
array of shape (m, nc) with the distances of every sample to
the hyperplane of every class. nc = # of classes
""" """
return node._clf.decision_function(data[:, node._features]) return node._clf.decision_function(data[:, node._features])
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (down) and its complement
:param origin: dataset to split
:type origin: np.array
:param down: indices to use to split array
:type down: np.array
:return: list with two splits of the array
:rtype: list
"""
up = ~self._down
return [
origin[up] if any(up) else None,
origin[self._down] if any(self._down) else None,
]
class Stree(BaseEstimator, ClassifierMixin): class Stree(BaseEstimator, ClassifierMixin):
"""Estimator that is based on binary trees of svm nodes """Estimator that is based on binary trees of svm nodes
@@ -377,14 +494,14 @@ class Stree(BaseEstimator, ClassifierMixin):
self, self,
C: float = 1.0, C: float = 1.0,
kernel: str = "linear", kernel: str = "linear",
max_iter: int = 1000, max_iter: int = 1e5,
random_state: int = None, random_state: int = None,
max_depth: int = None, max_depth: int = None,
tol: float = 1e-4, tol: float = 1e-4,
degree: int = 3, degree: int = 3,
gamma="scale", gamma="scale",
split_criteria: str = "max_samples", split_criteria: str = "impurity",
criterion: str = "gini", criterion: str = "entropy",
min_samples_split: int = 0, min_samples_split: int = 0,
max_features=None, max_features=None,
splitter: str = "random", splitter: str = "random",
@@ -405,6 +522,7 @@ class Stree(BaseEstimator, ClassifierMixin):
def _more_tags(self) -> dict: def _more_tags(self) -> dict:
"""Required by sklearn to supply features of the classifier """Required by sklearn to supply features of the classifier
make mandatory the labels array
:return: the tag required :return: the tag required
:rtype: dict :rtype: dict
@@ -416,16 +534,19 @@ class Stree(BaseEstimator, ClassifierMixin):
) -> "Stree": ) -> "Stree":
"""Build the tree based on the dataset of samples and its labels """Build the tree based on the dataset of samples and its labels
:param X: dataset of samples to make predictions Returns
:type X: np.array -------
:param y: samples labels Stree
:type y: np.array itself to be able to chain actions: fit().predict() ...
:param sample_weight: weights of the samples. Rescale C per sample.
Hi' weights force the classifier to put more emphasis on these points Raises
:type sample_weight: np.array optional ------
:raises ValueError: if parameters C or max_depth are out of bounds ValueError
:return: itself to be able to chain actions: fit().predict() ... if C < 0
:rtype: Stree ValueError
if max_depth < 1
ValueError
if all samples have 0 or negative weights
""" """
# Check parameters are Ok. # Check parameters are Ok.
if self.C < 0: if self.C < 0:
@@ -448,6 +569,10 @@ class Stree(BaseEstimator, ClassifierMixin):
sample_weight = _check_sample_weight( sample_weight = _check_sample_weight(
sample_weight, X, dtype=np.float64 sample_weight, X, dtype=np.float64
) )
if not any(sample_weight):
raise ValueError(
"Invalid input - all samples have zero or negative weights."
)
check_classification_targets(y) check_classification_targets(y)
# Initialize computed parameters # Initialize computed parameters
self.splitter_ = Splitter( self.splitter_ = Splitter(
@@ -469,6 +594,8 @@ class Stree(BaseEstimator, ClassifierMixin):
self.max_features_ = self._initialize_max_features() self.max_features_ = self._initialize_max_features()
self.tree_ = self.train(X, y, sample_weight, 1, "root") self.tree_ = self.train(X, y, sample_weight, 1, "root")
self._build_predictor() self._build_predictor()
self.X_ = X
self.y_ = y
return self return self
def train( def train(
@@ -478,26 +605,36 @@ class Stree(BaseEstimator, ClassifierMixin):
sample_weight: np.ndarray, sample_weight: np.ndarray,
depth: int, depth: int,
title: str, title: str,
) -> Snode: ) -> Optional[Snode]:
"""Recursive function to split the original dataset into predictor """Recursive function to split the original dataset into predictor
nodes (leaves) nodes (leaves)
:param X: samples dataset Parameters
:type X: np.ndarray ----------
:param y: samples labels X : np.ndarray
:type y: np.ndarray samples dataset
:param sample_weight: weight of samples. Rescale C per sample. y : np.ndarray
Hi weights force the classifier to put more emphasis on these points. samples labels
:type sample_weight: np.ndarray sample_weight : np.ndarray
:param depth: actual depth in the tree weight of samples. Rescale C per sample.
:type depth: int depth : int
:param title: description of the node actual depth in the tree
:type title: str title : str
:return: binary tree description of the node
:rtype: Snode
Returns
-------
Optional[Snode]
binary tree
""" """
if depth > self.__max_depth: if depth > self.__max_depth:
return None return None
# Mask samples with 0 weight
if any(sample_weight == 0):
indices_zero = sample_weight == 0
X = X[~indices_zero, :]
y = y[~indices_zero]
sample_weight = sample_weight[~indices_zero]
if np.unique(y).shape[0] == 1: if np.unique(y).shape[0] == 1:
# only 1 class => pure dataset # only 1 class => pure dataset
return Snode( return Snode(
@@ -512,19 +649,11 @@ class Stree(BaseEstimator, ClassifierMixin):
# Train the model # Train the model
clf = self._build_clf() clf = self._build_clf()
Xs, features = self.splitter_.get_subspace(X, y, self.max_features_) Xs, features = self.splitter_.get_subspace(X, y, self.max_features_)
# solve WARNING: class label 0 specified in weight is not found
# in bagging
if any(sample_weight == 0):
indices = sample_weight == 0
y_next = y[~indices]
# touch weights if removing any class
if np.unique(y_next).shape[0] != self.n_classes_:
sample_weight += 1e-5
clf.fit(Xs, y, sample_weight=sample_weight) clf.fit(Xs, y, sample_weight=sample_weight)
impurity = self.splitter_.impurity(y) impurity = self.splitter_.partition_impurity(y)
node = Snode(clf, X, y, features, impurity, title, sample_weight) node = Snode(clf, X, y, features, impurity, title, sample_weight)
self.depth_ = max(depth, self.depth_) self.depth_ = max(depth, self.depth_)
self.splitter_.partition(X, node) self.splitter_.partition(X, node, True)
X_U, X_D = self.splitter_.part(X) X_U, X_D = self.splitter_.part(X)
y_u, y_d = self.splitter_.part(y) y_u, y_d = self.splitter_.part(y)
sw_u, sw_d = self.splitter_.part(sample_weight) sw_u, sw_d = self.splitter_.part(sample_weight)
@@ -544,8 +673,7 @@ class Stree(BaseEstimator, ClassifierMixin):
return node return node
def _build_predictor(self): def _build_predictor(self):
"""Process the leaves to make them predictors """Process the leaves to make them predictors"""
"""
def run_tree(node: Snode): def run_tree(node: Snode):
if node.is_leaf(): if node.is_leaf():
@@ -557,8 +685,7 @@ class Stree(BaseEstimator, ClassifierMixin):
run_tree(self.tree_) run_tree(self.tree_)
def _build_clf(self): def _build_clf(self):
""" Build the correct classifier for the node """Build the correct classifier for the node"""
"""
return ( return (
LinearSVC( LinearSVC(
max_iter=self.max_iter, max_iter=self.max_iter,
@@ -581,12 +708,17 @@ class Stree(BaseEstimator, ClassifierMixin):
def _reorder_results(y: np.array, indices: np.array) -> np.array: def _reorder_results(y: np.array, indices: np.array) -> np.array:
"""Reorder an array based on the array of indices passed """Reorder an array based on the array of indices passed
:param y: data untidy Parameters
:type y: np.array ----------
:param indices: indices used to set order y : np.array
:type indices: np.array data untidy
:return: array y ordered indices : np.array
:rtype: np.array indices used to set order
Returns
-------
np.array
array y ordered
""" """
# return array of same type given in y # return array of same type given in y
y_ordered = y.copy() y_ordered = y.copy()
@@ -598,10 +730,22 @@ class Stree(BaseEstimator, ClassifierMixin):
def predict(self, X: np.array) -> np.array: def predict(self, X: np.array) -> np.array:
"""Predict labels for each sample in dataset passed """Predict labels for each sample in dataset passed
:param X: dataset of samples Parameters
:type X: np.array ----------
:return: array of labels X : np.array
:rtype: np.array dataset of samples
Returns
-------
np.array
array of labels
Raises
------
ValueError
if dataset with inconsistent number of features
NotFittedError
if model is not fitted
""" """
def predict_class( def predict_class(
@@ -613,7 +757,7 @@ class Stree(BaseEstimator, ClassifierMixin):
# set a class for every sample in dataset # set a class for every sample in dataset
prediction = np.full((xp.shape[0], 1), node._class) prediction = np.full((xp.shape[0], 1), node._class)
return prediction, indices return prediction, indices
self.splitter_.partition(xp, node) self.splitter_.partition(xp, node, train=False)
x_u, x_d = self.splitter_.part(xp) x_u, x_d = self.splitter_.part(xp)
i_u, i_d = self.splitter_.part(indices) i_u, i_d = self.splitter_.part(indices)
prx_u, prin_u = predict_class(x_u, i_u, node.get_up()) prx_u, prin_u = predict_class(x_u, i_u, node.get_up())
@@ -643,15 +787,19 @@ class Stree(BaseEstimator, ClassifierMixin):
) -> float: ) -> float:
"""Compute accuracy of the prediction """Compute accuracy of the prediction
:param X: dataset of samples to make predictions Parameters
:type X: np.array ----------
:param y_true: samples labels X : np.array
:type y_true: np.array dataset of samples to make predictions
:param sample_weight: weights of the samples. Rescale C per sample. y : np.array
Hi' weights force the classifier to put more emphasis on these points samples labels
:type sample_weight: np.array optional sample_weight : np.array, optional
:return: accuracy of the prediction weights of the samples. Rescale C per sample, by default None
:rtype: float
Returns
-------
float
accuracy of the prediction
""" """
# sklearn check # sklearn check
check_is_fitted(self) check_is_fitted(self)
@@ -668,8 +816,10 @@ class Stree(BaseEstimator, ClassifierMixin):
"""Create an iterator to be able to visit the nodes of the tree in """Create an iterator to be able to visit the nodes of the tree in
preorder, can make a list with all the nodes in preorder preorder, can make a list with all the nodes in preorder
:return: an iterator, can for i in... and list(...) Returns
:rtype: Siterator -------
Siterator
an iterator, can for i in... and list(...)
""" """
try: try:
tree = self.tree_ tree = self.tree_
@@ -680,8 +830,10 @@ class Stree(BaseEstimator, ClassifierMixin):
def __str__(self) -> str: def __str__(self) -> str:
"""String representation of the tree """String representation of the tree
:return: description of nodes in the tree in preorder Returns
:rtype: str -------
str
description of nodes in the tree in preorder
""" """
output = "" output = ""
for i in self: for i in self:

View File

@@ -40,12 +40,13 @@ class Snode_test(unittest.TestCase):
# Check Class # Check Class
class_computed = classes[card == max_card] class_computed = classes[card == max_card]
self.assertEqual(class_computed, node._class) self.assertEqual(class_computed, node._class)
# Check Partition column
self.assertEqual(node._partition_column, -1)
check_leave(self._clf.tree_) check_leave(self._clf.tree_)
def test_nodes_coefs(self): def test_nodes_coefs(self):
"""Check if the nodes of the tree have the right attributes filled """Check if the nodes of the tree have the right attributes filled"""
"""
def run_tree(node: Snode): def run_tree(node: Snode):
if node._belief < 1: if node._belief < 1:
@@ -54,16 +55,19 @@ class Snode_test(unittest.TestCase):
self.assertIsNotNone(node._clf.coef_) self.assertIsNotNone(node._clf.coef_)
if node.is_leaf(): if node.is_leaf():
return return
run_tree(node.get_down())
run_tree(node.get_up()) run_tree(node.get_up())
run_tree(node.get_down())
run_tree(self._clf.tree_) model = Stree(self._random_state)
model.fit(*load_dataset(self._random_state, 3, 4))
run_tree(model.tree_)
def test_make_predictor_on_leaf(self): def test_make_predictor_on_leaf(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test") test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
test.make_predictor() test.make_predictor()
self.assertEqual(1, test._class) self.assertEqual(1, test._class)
self.assertEqual(0.75, test._belief) self.assertEqual(0.75, test._belief)
self.assertEqual(-1, test._partition_column)
def test_make_predictor_on_not_leaf(self): def test_make_predictor_on_not_leaf(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test") test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
@@ -71,11 +75,14 @@ class Snode_test(unittest.TestCase):
test.make_predictor() test.make_predictor()
self.assertIsNone(test._class) self.assertIsNone(test._class)
self.assertEqual(0, test._belief) self.assertEqual(0, test._belief)
self.assertEqual(-1, test._partition_column)
self.assertEqual(-1, test.get_up()._partition_column)
def test_make_predictor_on_leaf_bogus_data(self): def test_make_predictor_on_leaf_bogus_data(self):
test = Snode(None, [1, 2, 3, 4], [], [], 0.0, "test") test = Snode(None, [1, 2, 3, 4], [], [], 0.0, "test")
test.make_predictor() test.make_predictor()
self.assertIsNone(test._class) self.assertIsNone(test._class)
self.assertEqual(-1, test._partition_column)
def test_copy_node(self): def test_copy_node(self):
px = [1, 2, 3, 4] px = [1, 2, 3, 4]
@@ -86,3 +93,4 @@ class Snode_test(unittest.TestCase):
self.assertListEqual(computed._y, py) self.assertListEqual(computed._y, py)
self.assertEqual("test", computed._title) self.assertEqual("test", computed._title)
self.assertIsInstance(computed._clf, Stree) self.assertIsInstance(computed._clf, Stree)
self.assertEqual(test._partition_column, computed._partition_column)

View File

@@ -19,7 +19,7 @@ class Splitter_test(unittest.TestCase):
min_samples_split=0, min_samples_split=0,
splitter_type="random", splitter_type="random",
criterion="gini", criterion="gini",
criteria="min_distance", criteria="max_samples",
random_state=None, random_state=None,
): ):
return Splitter( return Splitter(
@@ -46,11 +46,7 @@ class Splitter_test(unittest.TestCase):
_ = Splitter(clf=None) _ = Splitter(clf=None)
for splitter_type in ["best", "random"]: for splitter_type in ["best", "random"]:
for criterion in ["gini", "entropy"]: for criterion in ["gini", "entropy"]:
for criteria in [ for criteria in ["max_samples", "impurity"]:
"min_distance",
"max_samples",
"max_distance",
]:
tcl = self.build( tcl = self.build(
splitter_type=splitter_type, splitter_type=splitter_type,
criterion=criterion, criterion=criterion,
@@ -138,43 +134,45 @@ class Splitter_test(unittest.TestCase):
[0.7, 0.01, -0.1], [0.7, 0.01, -0.1],
[0.7, -0.9, 0.5], [0.7, -0.9, 0.5],
[0.1, 0.2, 0.3], [0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
] ]
) )
expected = np.array([0.2, 0.01, -0.9, 0.2]) expected = data[:, 0]
y = [1, 2, 1, 0] y = [1, 2, 1, 0, 0, 0]
computed = tcl._max_samples(data, y) computed = tcl._max_samples(data, y)
self.assertEqual((4,), computed.shape) self.assertEqual(0, computed)
self.assertListEqual(expected.tolist(), computed.tolist()) computed_data = data[:, computed]
self.assertEqual((6,), computed_data.shape)
self.assertListEqual(expected.tolist(), computed_data.tolist())
def test_min_distance(self): def test_impurity(self):
tcl = self.build() tcl = self.build(criteria="impurity")
data = np.array( data = np.array(
[ [
[-0.1, 0.2, -0.3], [-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1], [0.7, 0.01, -0.1],
[0.7, -0.9, 0.5], [0.7, -0.9, 0.5],
[0.1, 0.2, 0.3], [0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
] ]
) )
expected = np.array([2, 2, 1, 0]) expected = data[:, 2]
computed = tcl._min_distance(data, None) y = np.array([1, 2, 1, 0, 0, 0])
self.assertEqual((4,), computed.shape) computed = tcl._impurity(data, y)
self.assertListEqual(expected.tolist(), computed.tolist()) self.assertEqual(2, computed)
computed_data = data[:, computed]
self.assertEqual((6,), computed_data.shape)
self.assertListEqual(expected.tolist(), computed_data.tolist())
def test_max_distance(self): def test_generate_subspaces(self):
tcl = self.build(criteria="max_distance") features = 250
data = np.array( for max_features in range(2, features):
[ num = len(Splitter._generate_spaces(features, max_features))
[-0.1, 0.2, -0.3], self.assertEqual(5, num)
[0.7, 0.01, -0.1], self.assertEqual(3, len(Splitter._generate_spaces(3, 2)))
[0.7, -0.9, 0.5], self.assertEqual(4, len(Splitter._generate_spaces(4, 3)))
[0.1, 0.2, 0.3],
]
)
expected = np.array([1, 0, 0, 2])
computed = tcl._max_distance(data, None)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
def test_best_splitter_few_sets(self): def test_best_splitter_few_sets(self):
X, y = load_iris(return_X_y=True) X, y = load_iris(return_X_y=True)
@@ -186,27 +184,22 @@ class Splitter_test(unittest.TestCase):
def test_splitter_parameter(self): def test_splitter_parameter(self):
expected_values = [ expected_values = [
[2, 3, 5, 7], # best entropy min_distance [1, 4, 9, 12], # best entropy max_samples
[0, 2, 4, 5], # best entropy max_samples [1, 3, 6, 10], # best entropy impurity
[0, 2, 8, 12], # best entropy max_distance [6, 8, 10, 12], # best gini max_samples
[1, 2, 5, 12], # best gini min_distance [7, 8, 10, 11], # best gini impurity
[0, 3, 4, 10], # best gini max_samples [0, 3, 8, 12], # random entropy max_samples
[1, 2, 9, 12], # best gini max_distance [0, 3, 9, 11], # random entropy impurity
[3, 9, 11, 12], # random entropy min_distance [0, 4, 7, 12], # random gini max_samples
[1, 5, 6, 9], # random entropy max_samples [0, 2, 5, 6], # random gini impurity
[1, 2, 4, 8], # random entropy max_distance
[2, 6, 7, 12], # random gini min_distance
[3, 9, 10, 11], # random gini max_samples
[2, 5, 8, 12], # random gini max_distance
] ]
X, y = load_wine(return_X_y=True) X, y = load_wine(return_X_y=True)
rn = 0 rn = 0
for splitter_type in ["best", "random"]: for splitter_type in ["best", "random"]:
for criterion in ["entropy", "gini"]: for criterion in ["entropy", "gini"]:
for criteria in [ for criteria in [
"min_distance",
"max_samples", "max_samples",
"max_distance", "impurity",
]: ]:
tcl = self.build( tcl = self.build(
splitter_type=splitter_type, splitter_type=splitter_type,
@@ -219,8 +212,10 @@ class Splitter_test(unittest.TestCase):
dataset, computed = tcl.get_subspace(X, y, max_features=4) dataset, computed = tcl.get_subspace(X, y, max_features=4)
# print( # print(
# "{}, # {:7s}{:8s}{:15s}".format( # "{}, # {:7s}{:8s}{:15s}".format(
# list(computed), splitter_type, criterion, # list(computed),
# criteria, # splitter_type,
# criterion,
# criteria,
# ) # )
# ) # )
self.assertListEqual(expected, list(computed)) self.assertListEqual(expected, list(computed))

View File

@@ -5,6 +5,7 @@ import warnings
import numpy as np import numpy as np
from sklearn.datasets import load_iris, load_wine from sklearn.datasets import load_iris, load_wine
from sklearn.exceptions import ConvergenceWarning from sklearn.exceptions import ConvergenceWarning
from sklearn.svm import LinearSVC
from stree import Stree, Snode from stree import Stree, Snode
from .utils import load_dataset from .utils import load_dataset
@@ -25,8 +26,10 @@ class Stree_test(unittest.TestCase):
correct number of labels and its sons have the right number of elements correct number of labels and its sons have the right number of elements
in their dataset in their dataset
Arguments: Parameters
node {Snode} -- node to check ----------
node : Snode
node to check
""" """
if node.is_leaf(): if node.is_leaf():
return return
@@ -41,23 +44,22 @@ class Stree_test(unittest.TestCase):
_, count_u = np.unique(y_up, return_counts=True) _, count_u = np.unique(y_up, return_counts=True)
# #
for i in unique_y: for i in unique_y:
number_down = count_d[i] number_up = count_u[i]
try: try:
number_up = count_u[i] number_down = count_d[i]
except IndexError: except IndexError:
number_up = 0 number_down = 0
self.assertEqual(count_y[i], number_down + number_up) self.assertEqual(count_y[i], number_down + number_up)
# Is the partition made the same as the prediction? # Is the partition made the same as the prediction?
# as the node is not a leaf... # as the node is not a leaf...
_, count_yp = np.unique(y_prediction, return_counts=True) _, count_yp = np.unique(y_prediction, return_counts=True)
self.assertEqual(count_yp[0], y_up.shape[0]) self.assertEqual(count_yp[1], y_up.shape[0])
self.assertEqual(count_yp[1], y_down.shape[0]) self.assertEqual(count_yp[0], y_down.shape[0])
self._check_tree(node.get_down()) self._check_tree(node.get_down())
self._check_tree(node.get_up()) self._check_tree(node.get_up())
def test_build_tree(self): def test_build_tree(self):
"""Check if the tree is built the same way as predictions of models """Check if the tree is built the same way as predictions of models"""
"""
warnings.filterwarnings("ignore") warnings.filterwarnings("ignore")
for kernel in self._kernels: for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state) clf = Stree(kernel=kernel, random_state=self._random_state)
@@ -99,20 +101,22 @@ class Stree_test(unittest.TestCase):
self.assertListEqual(yp_line.tolist(), yp_once.tolist()) self.assertListEqual(yp_line.tolist(), yp_once.tolist())
def test_iterator_and_str(self): def test_iterator_and_str(self):
"""Check preorder iterator """Check preorder iterator"""
"""
expected = [ expected = [
"root feaures=(0, 1, 2) impurity=0.5000", "root feaures=(0, 1, 2) impurity=1.0000 counts=(array([0, 1]), arr"
"root - Down feaures=(0, 1, 2) impurity=0.0671", "ay([750, 750]))",
"root - Down - Down, <cgaf> - Leaf class=1 belief= 0.975989 " "root - Down, <cgaf> - Leaf class=0 belief= 0.928297 impurity=0.37"
"impurity=0.0469 counts=(array([0, 1]), array([ 17, 691]))", "22 counts=(array([0, 1]), array([725, 56]))",
"root - Down - Up feaures=(0, 1, 2) impurity=0.3967", "root - Up feaures=(0, 1, 2) impurity=0.2178 counts=(array([0, 1])"
"root - Down - Up - Down, <cgaf> - Leaf class=1 belief= 0.750000 " ", array([ 25, 694]))",
"impurity=0.3750 counts=(array([0, 1]), array([1, 3]))", "root - Up - Down feaures=(0, 1, 2) impurity=0.8454 counts=(array("
"root - Down - Up - Up, <pure> - Leaf class=0 belief= 1.000000 " "[0, 1]), array([8, 3]))",
"impurity=0.0000 counts=(array([0]), array([7]))", "root - Up - Down - Down, <pure> - Leaf class=0 belief= 1.000000 i"
"root - Up, <cgaf> - Leaf class=0 belief= 0.928297 impurity=0.1331" "mpurity=0.0000 counts=(array([0]), array([7]))",
" counts=(array([0, 1]), array([725, 56]))", "root - Up - Down - Up, <cgaf> - Leaf class=1 belief= 0.750000 imp"
"urity=0.8113 counts=(array([0, 1]), array([1, 3]))",
"root - Up - Up, <cgaf> - Leaf class=1 belief= 0.975989 impurity=0"
".1634 counts=(array([0, 1]), array([ 17, 691]))",
] ]
computed = [] computed = []
expected_string = "" expected_string = ""
@@ -188,44 +192,43 @@ class Stree_test(unittest.TestCase):
def test_muticlass_dataset(self): def test_muticlass_dataset(self):
datasets = { datasets = {
"Synt": load_dataset(random_state=self._random_state, n_classes=3), "Synt": load_dataset(random_state=self._random_state, n_classes=3),
"Iris": load_iris(return_X_y=True), "Iris": load_wine(return_X_y=True),
} }
outcomes = { outcomes = {
"Synt": { "Synt": {
"max_samples linear": 0.9533333333333334, "max_samples linear": 0.9606666666666667,
"max_samples rbf": 0.836, "max_samples rbf": 0.7133333333333334,
"max_samples poly": 0.9473333333333334, "max_samples poly": 0.49066666666666664,
"min_distance linear": 0.9533333333333334, "impurity linear": 0.9606666666666667,
"min_distance rbf": 0.836, "impurity rbf": 0.7133333333333334,
"min_distance poly": 0.9473333333333334, "impurity poly": 0.49066666666666664,
"max_distance linear": 0.9533333333333334,
"max_distance rbf": 0.836,
"max_distance poly": 0.9473333333333334,
}, },
"Iris": { "Iris": {
"max_samples linear": 0.98, "max_samples linear": 1.0,
"max_samples rbf": 1.0, "max_samples rbf": 0.6910112359550562,
"max_samples poly": 1.0, "max_samples poly": 0.6966292134831461,
"min_distance linear": 0.98, "impurity linear": 1,
"min_distance rbf": 1.0, "impurity rbf": 0.6910112359550562,
"min_distance poly": 1.0, "impurity poly": 0.6966292134831461,
"max_distance linear": 0.98,
"max_distance rbf": 1.0,
"max_distance poly": 1.0,
}, },
} }
for name, dataset in datasets.items(): for name, dataset in datasets.items():
px, py = dataset px, py = dataset
for criteria in ["max_samples", "min_distance", "max_distance"]: for criteria in ["max_samples", "impurity"]:
for kernel in self._kernels: for kernel in self._kernels:
clf = Stree( clf = Stree(
C=1e4, C=55,
max_iter=1e4, max_iter=1e5,
kernel=kernel, kernel=kernel,
random_state=self._random_state, random_state=self._random_state,
) )
clf.fit(px, py) clf.fit(px, py)
outcome = outcomes[name][f"{criteria} {kernel}"] outcome = outcomes[name][f"{criteria} {kernel}"]
# print(
# f"{name} {criteria} {kernel} {outcome} {clf.score(px"
# ", py)}"
# )
self.assertAlmostEqual(outcome, clf.score(px, py)) self.assertAlmostEqual(outcome, clf.score(px, py))
def test_max_features(self): def test_max_features(self):
@@ -297,7 +300,10 @@ class Stree_test(unittest.TestCase):
0.9433333333333334, 0.9433333333333334,
] ]
for kernel, accuracy_expected in zip(self._kernels, accuracies): for kernel, accuracy_expected in zip(self._kernels, accuracies):
clf = Stree(random_state=self._random_state, kernel=kernel,) clf = Stree(
random_state=self._random_state,
kernel=kernel,
)
clf.fit(X, y) clf.fit(X, y)
accuracy_score = clf.score(X, y) accuracy_score = clf.score(X, y)
yp = clf.predict(X) yp = clf.predict(X)
@@ -309,108 +315,127 @@ class Stree_test(unittest.TestCase):
X, y = load_dataset(self._random_state) X, y = load_dataset(self._random_state)
clf = Stree(random_state=self._random_state, max_features=2) clf = Stree(random_state=self._random_state, max_features=2)
clf.fit(X, y) clf.fit(X, y)
self.assertAlmostEqual(0.9426666666666667, clf.score(X, y)) self.assertAlmostEqual(0.9246666666666666, clf.score(X, y))
def test_score_multi_class(self):
warnings.filterwarnings("ignore")
accuracies = [
0.8258427, # Wine linear min_distance
0.6741573, # Wine linear max_distance
0.8314607, # Wine linear max_samples
0.6629213, # Wine rbf min_distance
1.0000000, # Wine rbf max_distance
0.4044944, # Wine rbf max_samples
0.9157303, # Wine poly min_distance
1.0000000, # Wine poly max_distance
0.7640449, # Wine poly max_samples
0.9933333, # Iris linear min_distance
0.9666667, # Iris linear max_distance
0.9666667, # Iris linear max_samples
0.9800000, # Iris rbf min_distance
0.9800000, # Iris rbf max_distance
0.9800000, # Iris rbf max_samples
1.0000000, # Iris poly min_distance
1.0000000, # Iris poly max_distance
1.0000000, # Iris poly max_samples
0.8993333, # Synthetic linear min_distance
0.6533333, # Synthetic linear max_distance
0.9313333, # Synthetic linear max_samples
0.8320000, # Synthetic rbf min_distance
0.6660000, # Synthetic rbf max_distance
0.8320000, # Synthetic rbf max_samples
0.6066667, # Synthetic poly min_distance
0.6840000, # Synthetic poly max_distance
0.6340000, # Synthetic poly max_samples
]
datasets = [
("Wine", load_wine(return_X_y=True)),
("Iris", load_iris(return_X_y=True)),
(
"Synthetic",
load_dataset(self._random_state, n_classes=3, n_features=5),
),
]
for dataset_name, dataset in datasets:
X, y = dataset
for kernel in self._kernels:
for criteria in [
"min_distance",
"max_distance",
"max_samples",
]:
clf = Stree(
C=17,
random_state=self._random_state,
kernel=kernel,
split_criteria=criteria,
degree=5,
gamma="auto",
)
clf.fit(X, y)
accuracy_score = clf.score(X, y)
yp = clf.predict(X)
accuracy_computed = np.mean(yp == y)
# print(
# "{:.7f}, # {:7} {:5} {}".format(
# accuracy_score, dataset_name, kernel, criteria
# )
# )
accuracy_expected = accuracies.pop(0)
self.assertEqual(accuracy_score, accuracy_computed)
self.assertAlmostEqual(accuracy_expected, accuracy_score)
def test_bogus_splitter_parameter(self): def test_bogus_splitter_parameter(self):
clf = Stree(splitter="duck") clf = Stree(splitter="duck")
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
clf.fit(*load_dataset()) clf.fit(*load_dataset())
def test_weights_removing_class(self): def test_multiclass_classifier_integrity(self):
# This patch solves an stderr message from sklearn svm lib """Checks if the multiclass operation is done right"""
# "WARNING: class label x specified in weight is not found" X, y = load_iris(return_X_y=True)
clf = Stree(random_state=0)
clf.fit(X, y)
score = clf.score(X, y)
# Check accuracy of the whole model
self.assertAlmostEquals(0.98, score, 5)
svm = LinearSVC(random_state=0)
svm.fit(X, y)
self.assertAlmostEquals(0.9666666666666667, svm.score(X, y), 5)
data = svm.decision_function(X)
expected = [
0.4444444444444444,
0.35777777777777775,
0.4569777777777778,
]
ty = data.copy()
ty[data <= 0] = 0
ty[data > 0] = 1
ty = ty.astype(int)
for i in range(3):
self.assertAlmostEquals(
expected[i],
clf.splitter_._gini(ty[:, i]),
)
# 1st Branch
# up has to have 50 samples of class 0
# down should have 100 [50, 50]
up = data[:, 2] > 0
resup = np.unique(y[up], return_counts=True)
resdn = np.unique(y[~up], return_counts=True)
self.assertListEqual([1, 2], resup[0].tolist())
self.assertListEqual([3, 50], resup[1].tolist())
self.assertListEqual([0, 1], resdn[0].tolist())
self.assertListEqual([50, 47], resdn[1].tolist())
# 2nd Branch
# up should have 53 samples of classes [1, 2] [3, 50]
# down shoud have 47 samples of class 1
node_up = clf.tree_.get_down().get_up()
node_dn = clf.tree_.get_down().get_down()
resup = np.unique(node_up._y, return_counts=True)
resdn = np.unique(node_dn._y, return_counts=True)
self.assertListEqual([1, 2], resup[0].tolist())
self.assertListEqual([3, 50], resup[1].tolist())
self.assertListEqual([1], resdn[0].tolist())
self.assertListEqual([47], resdn[1].tolist())
def test_score_multiclass_rbf(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(kernel="rbf", random_state=self._random_state)
self.assertEqual(0.824, clf.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.6741573033707865, clf.fit(X, y).score(X, y))
def test_score_multiclass_poly(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(
kernel="poly", random_state=self._random_state, C=10, degree=5
)
self.assertEqual(0.786, clf.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.702247191011236, clf.fit(X, y).score(X, y))
def test_score_multiclass_linear(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=1500,
)
clf = Stree(kernel="linear", random_state=self._random_state)
self.assertEqual(0.9533333333333334, clf.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.9550561797752809, clf.fit(X, y).score(X, y))
def test_zero_all_sample_weights(self):
X, y = load_dataset(self._random_state)
with self.assertRaises(ValueError):
Stree().fit(X, y, np.zeros(len(y)))
def test_mask_samples_weighted_zero(self):
X = np.array( X = np.array(
[ [
[0.1, 0.1], [1, 1],
[0.1, 0.2], [1, 1],
[0.2, 0.1], [1, 1],
[5, 6], [2, 2],
[8, 9], [2, 2],
[6, 7], [2, 2],
[0.2, 0.2], [3, 3],
[3, 3],
[3, 3],
] ]
) )
y = np.array([0, 0, 0, 1, 1, 1, 0]) y = np.array([1, 1, 1, 2, 2, 2, 5, 5, 5])
epsilon = 1e-5 yw = np.array([1, 1, 1, 5, 5, 5, 5, 5, 5])
weights = [1, 1, 1, 0, 0, 0, 1] w = [1, 1, 1, 0, 0, 0, 1, 1, 1]
weights = np.array(weights, dtype="float64") model1 = Stree().fit(X, y)
weights_epsilon = [x + epsilon for x in weights] model2 = Stree().fit(X, y, w)
weights_no_zero = np.array([1, 1, 1, 0, 0, 2, 1]) predict1 = model1.predict(X)
original = weights_no_zero.copy() predict2 = model2.predict(X)
clf = Stree() self.assertListEqual(y.tolist(), predict1.tolist())
clf.fit(X, y) self.assertListEqual(yw.tolist(), predict2.tolist())
node = clf.train(X, y, weights, 1, "test",) self.assertEqual(model1.score(X, y), 1)
# if a class is lost with zero weights the patch adds epsilon self.assertAlmostEqual(model2.score(X, y), 0.66666667)
self.assertListEqual(weights.tolist(), weights_epsilon) self.assertEqual(model2.score(X, y, w), 1)
self.assertListEqual(node._sample_weight.tolist(), weights_epsilon)
# zero weights are ok when they don't erase a class
_ = clf.train(X, y, weights_no_zero, 1, "test")
self.assertListEqual(weights_no_zero.tolist(), original.tolist())

View File

@@ -1,9 +1,9 @@
from sklearn.datasets import make_classification from sklearn.datasets import make_classification
def load_dataset(random_state=0, n_classes=2, n_features=3): def load_dataset(random_state=0, n_classes=2, n_features=3, n_samples=1500):
X, y = make_classification( X, y = make_classification(
n_samples=1500, n_samples=n_samples,
n_features=n_features, n_features=n_features,
n_informative=3, n_informative=3,
n_redundant=0, n_redundant=0,