mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-18 00:46:02 +00:00
Compare commits
2 Commits
codeql-ana
...
complete-s
Author | SHA1 | Date | |
---|---|---|---|
0340584c52
|
|||
9b3c7ccdfa
|
56
.github/workflows/codeql-analysis.yml
vendored
56
.github/workflows/codeql-analysis.yml
vendored
@@ -1,56 +0,0 @@
|
|||||||
name: "CodeQL"
|
|
||||||
|
|
||||||
on:
|
|
||||||
push:
|
|
||||||
branches: [ master ]
|
|
||||||
pull_request:
|
|
||||||
# The branches below must be a subset of the branches above
|
|
||||||
branches: [ master ]
|
|
||||||
schedule:
|
|
||||||
- cron: '16 17 * * 3'
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
analyze:
|
|
||||||
name: Analyze
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
|
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
language: [ 'python' ]
|
|
||||||
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
|
|
||||||
# Learn more:
|
|
||||||
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
|
|
||||||
|
|
||||||
steps:
|
|
||||||
- name: Checkout repository
|
|
||||||
uses: actions/checkout@v2
|
|
||||||
|
|
||||||
# Initializes the CodeQL tools for scanning.
|
|
||||||
- name: Initialize CodeQL
|
|
||||||
uses: github/codeql-action/init@v1
|
|
||||||
with:
|
|
||||||
languages: ${{ matrix.language }}
|
|
||||||
# If you wish to specify custom queries, you can do so here or in a config file.
|
|
||||||
# By default, queries listed here will override any specified in a config file.
|
|
||||||
# Prefix the list here with "+" to use these queries and those in the config file.
|
|
||||||
# queries: ./path/to/local/query, your-org/your-repo/queries@main
|
|
||||||
|
|
||||||
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
|
|
||||||
# If this step fails, then you should remove it and run the build manually (see below)
|
|
||||||
- name: Autobuild
|
|
||||||
uses: github/codeql-action/autobuild@v1
|
|
||||||
|
|
||||||
# ℹ️ Command-line programs to run using the OS shell.
|
|
||||||
# 📚 https://git.io/JvXDl
|
|
||||||
|
|
||||||
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
|
|
||||||
# and modify them (or add more) to build your code if your project
|
|
||||||
# uses a compiled language
|
|
||||||
|
|
||||||
#- run: |
|
|
||||||
# make bootstrap
|
|
||||||
# make release
|
|
||||||
|
|
||||||
- name: Perform CodeQL Analysis
|
|
||||||
uses: github/codeql-action/analyze@v1
|
|
@@ -1,4 +1,4 @@
|
|||||||
numpy
|
numpy
|
||||||
scikit-learn
|
scikit-learn==0.23.2
|
||||||
pandas
|
pandas
|
||||||
ipympl
|
ipympl
|
4
setup.py
4
setup.py
@@ -1,6 +1,6 @@
|
|||||||
import setuptools
|
import setuptools
|
||||||
|
|
||||||
__version__ = "1.0rc1"
|
__version__ = "0.9rc6"
|
||||||
__author__ = "Ricardo Montañana Gómez"
|
__author__ = "Ricardo Montañana Gómez"
|
||||||
|
|
||||||
|
|
||||||
@@ -30,7 +30,7 @@ setuptools.setup(
|
|||||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||||
"Intended Audience :: Science/Research",
|
"Intended Audience :: Science/Research",
|
||||||
],
|
],
|
||||||
install_requires=["scikit-learn", "numpy", "ipympl"],
|
install_requires=["scikit-learn==0.23.2", "numpy", "ipympl"],
|
||||||
test_suite="stree.tests",
|
test_suite="stree.tests",
|
||||||
zip_safe=False,
|
zip_safe=False,
|
||||||
)
|
)
|
||||||
|
@@ -629,12 +629,6 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
"""
|
"""
|
||||||
if depth > self.__max_depth:
|
if depth > self.__max_depth:
|
||||||
return None
|
return None
|
||||||
# Mask samples with 0 weight
|
|
||||||
if any(sample_weight == 0):
|
|
||||||
indices_zero = sample_weight == 0
|
|
||||||
X = X[~indices_zero, :]
|
|
||||||
y = y[~indices_zero]
|
|
||||||
sample_weight = sample_weight[~indices_zero]
|
|
||||||
if np.unique(y).shape[0] == 1:
|
if np.unique(y).shape[0] == 1:
|
||||||
# only 1 class => pure dataset
|
# only 1 class => pure dataset
|
||||||
return Snode(
|
return Snode(
|
||||||
@@ -649,6 +643,14 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
# Train the model
|
# Train the model
|
||||||
clf = self._build_clf()
|
clf = self._build_clf()
|
||||||
Xs, features = self.splitter_.get_subspace(X, y, self.max_features_)
|
Xs, features = self.splitter_.get_subspace(X, y, self.max_features_)
|
||||||
|
# solve WARNING: class label 0 specified in weight is not found
|
||||||
|
# in bagging
|
||||||
|
if any(sample_weight == 0):
|
||||||
|
indices = sample_weight == 0
|
||||||
|
y_next = y[~indices]
|
||||||
|
# touch weights if removing any class
|
||||||
|
if np.unique(y_next).shape[0] != self.n_classes_:
|
||||||
|
sample_weight += 1e-5
|
||||||
clf.fit(Xs, y, sample_weight=sample_weight)
|
clf.fit(Xs, y, sample_weight=sample_weight)
|
||||||
impurity = self.splitter_.partition_impurity(y)
|
impurity = self.splitter_.partition_impurity(y)
|
||||||
node = Snode(clf, X, y, features, impurity, title, sample_weight)
|
node = Snode(clf, X, y, features, impurity, title, sample_weight)
|
||||||
|
@@ -413,29 +413,39 @@ class Stree_test(unittest.TestCase):
|
|||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
Stree().fit(X, y, np.zeros(len(y)))
|
Stree().fit(X, y, np.zeros(len(y)))
|
||||||
|
|
||||||
def test_mask_samples_weighted_zero(self):
|
def test_weights_removing_class(self):
|
||||||
|
# This patch solves an stderr message from sklearn svm lib
|
||||||
|
# "WARNING: class label x specified in weight is not found"
|
||||||
X = np.array(
|
X = np.array(
|
||||||
[
|
[
|
||||||
[1, 1],
|
[0.1, 0.1],
|
||||||
[1, 1],
|
[0.1, 0.2],
|
||||||
[1, 1],
|
[0.2, 0.1],
|
||||||
[2, 2],
|
[5, 6],
|
||||||
[2, 2],
|
[8, 9],
|
||||||
[2, 2],
|
[6, 7],
|
||||||
[3, 3],
|
[0.2, 0.2],
|
||||||
[3, 3],
|
|
||||||
[3, 3],
|
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
y = np.array([1, 1, 1, 2, 2, 2, 5, 5, 5])
|
y = np.array([0, 0, 0, 1, 1, 1, 0])
|
||||||
yw = np.array([1, 1, 1, 5, 5, 5, 5, 5, 5])
|
epsilon = 1e-5
|
||||||
w = [1, 1, 1, 0, 0, 0, 1, 1, 1]
|
weights = [1, 1, 1, 0, 0, 0, 1]
|
||||||
model1 = Stree().fit(X, y)
|
weights = np.array(weights, dtype="float64")
|
||||||
model2 = Stree().fit(X, y, w)
|
weights_epsilon = [x + epsilon for x in weights]
|
||||||
predict1 = model1.predict(X)
|
weights_no_zero = np.array([1, 1, 1, 0, 0, 2, 1])
|
||||||
predict2 = model2.predict(X)
|
original = weights_no_zero.copy()
|
||||||
self.assertListEqual(y.tolist(), predict1.tolist())
|
clf = Stree()
|
||||||
self.assertListEqual(yw.tolist(), predict2.tolist())
|
clf.fit(X, y)
|
||||||
self.assertEqual(model1.score(X, y), 1)
|
node = clf.train(
|
||||||
self.assertAlmostEqual(model2.score(X, y), 0.66666667)
|
X,
|
||||||
self.assertEqual(model2.score(X, y, w), 1)
|
y,
|
||||||
|
weights,
|
||||||
|
1,
|
||||||
|
"test",
|
||||||
|
)
|
||||||
|
# if a class is lost with zero weights the patch adds epsilon
|
||||||
|
self.assertListEqual(weights.tolist(), weights_epsilon)
|
||||||
|
self.assertListEqual(node._sample_weight.tolist(), weights_epsilon)
|
||||||
|
# zero weights are ok when they don't erase a class
|
||||||
|
_ = clf.train(X, y, weights_no_zero, 1, "test")
|
||||||
|
self.assertListEqual(weights_no_zero.tolist(), original.tolist())
|
||||||
|
Reference in New Issue
Block a user