Compare commits

..

40 Commits

Author SHA1 Message Date
b044a057df Update comments and README.md 2021-11-02 14:04:10 +01:00
fc48bc8ba4 Update docs and version number 2021-11-02 12:17:46 +01:00
Ricardo Montañana Gómez
8251f07674 Fix Citation (#49) 2021-11-02 10:58:30 +01:00
Ricardo Montañana Gómez
0b15a5af11 Fix space in CITATION.cff 2021-11-02 00:25:21 +01:00
Ricardo Montañana Gómez
28d905368b Create CITATION.cff 2021-11-02 00:20:49 +01:00
e5d49132ec Update benchmark hyperparams os STree 2021-10-31 12:41:30 +01:00
8daecc4726 Remove obsolete binder links 2021-10-31 11:51:31 +01:00
Ricardo Montañana Gómez
bf678df159 (#46) Implement true random feature selection (#48)
* (#46) Implement true random feature selection
2021-10-29 12:59:03 +02:00
Ricardo Montañana Gómez
36b08b1bcf Implement iwss feature selection (#45) (#47) 2021-10-29 11:49:46 +02:00
36ff3da26d Update Docs 2021-09-13 18:32:59 +02:00
Ricardo Montañana Gómez
6b281ebcc8 Add DOI to README 2021-09-13 18:23:11 +02:00
Ricardo Montañana Gómez
3aaddd096f Add package version badge in README 2021-08-17 12:00:36 +02:00
Ricardo Montañana Gómez
15a5a4c407 Add python 3.8 badge to README
Add badge from shields.io
2021-08-12 11:05:07 +02:00
Ricardo Montañana Gómez
0afe14a447 Mfstomufs #43 (#44)
* Implement module mfs changed name to mufs

* Update github CI file
2021-08-02 18:03:59 +02:00
Ricardo Montañana Gómez
fc9b7b5c92 Update version info (#42)
* Update version info and update docs (#41)
2021-07-31 01:45:16 +02:00
Ricardo Montañana Gómez
3f79d2877f Add cfs fcbf #39 (#40)
* Implement CFS/FCBF in splitter

* Split Splitter class to its own file
Update hyperparams table in docs
Implement CFS/FCBS with max_features and variable type

* Set mfs to continuous variables

* Fix some tests and style issues in Splitter

* Update requirements in github CI
2021-07-30 20:01:08 +02:00
ecc2800705 Fix mistakes in README and in docs 2021-07-21 11:24:37 +02:00
0524d47d64 Complete splitter description in hyperparameters 2021-07-14 18:10:46 +02:00
d46f544466 Add docs config
Update setup remove ipympl dependency
Update Project Name
add build to Makefile
2021-05-11 19:11:03 +02:00
79190ef2e1 Add doc-clean and lgtm badge 2021-05-11 09:03:26 +02:00
Ricardo Montañana Gómez
4f04e72670 Implement ovo strategy (#37)
* Implement ovo strategy
* Set ovo strategy as default
* Add kernel liblinear with LinearSVC classifier
* Fix weak test
2021-05-10 12:16:53 +02:00
5cef0f4875 Implement splitter type mutual info 2021-05-01 23:38:34 +02:00
28c7558f01 Update Readme
Add max_features > n_features test
Add make doc
2021-04-27 23:15:21 +02:00
Ricardo Montañana Gómez
e19d10f6a7 Package doc #7 (#34)
* Add first doc info to sources

* Update doc to separate classes in api

* Refactor build_predictor

* Fix random_sate issue in non linear kernels

* Refactor score method using base class implementation

* Some quality refactoring

* Fix codecov config.

* Add sigmoid kernel

* Refactor setup and add Makefile
2021-04-26 09:10:01 +02:00
Ricardo Montañana Gómez
02de394c96 Add select KBest features #17 (#35) 2021-04-26 01:48:50 +02:00
Ricardo Montañana Gómez
a4aac9d310 Create codeql-analysis.yml (#25) 2021-04-19 23:34:26 +02:00
Ricardo Montañana Gómez
8a18c998df Implement hyperparam. context based normalization (#32) 2021-04-18 18:57:39 +02:00
b55f59a3ec Fix compute number of nodes 2021-04-13 22:31:05 +02:00
783d105099 Add another nodes, leaves test 2021-04-09 10:56:54 +02:00
c36f685263 Fix unintended nested if in partition 2021-04-08 08:27:31 +02:00
0f89b044f1 Refactor train method 2021-04-07 01:02:30 +02:00
Ricardo Montañana Gómez
6ba973dfe1 Add a method that return nodes and leaves (#27) (#30)
Add a test
Fix #27
2021-03-23 14:30:32 +01:00
Ricardo Montañana Gómez
460c63a6d0 Fix depth sometimes is wrong (#26) (#29)
Add a test to the tests set
Add depth to node description
Fix iterator and str test due to this addon
2021-03-23 14:08:53 +01:00
Ricardo Montañana Gómez
f438124057 Fix mistakes (#24) (#28)
Put pandas requirements in notebooks
clean requirements.txt
2021-03-23 13:27:32 +01:00
Ricardo Montañana Gómez
147dad684c Weight0samples error (#23)
* Add Hyperparameters description to README
Comment get_subspace method
Add environment info for binder (runtime.txt)

* Complete source comments
Change docstring type to numpy
update hyperameters table and explanation

* Fix problem with zero weighted samples
Solve WARNING: class label x specified in weight is not found
with a different approach

* Allow update of scikitlearn to latest version
2021-01-19 11:40:46 +01:00
Ricardo Montañana Gómez
3bdac9bd60 Complete source comments (#22)
* Add Hyperparameters description to README
Comment get_subspace method
Add environment info for binder (runtime.txt)

* Complete source comments
Change docstring type to numpy
update hyperameters table and explanation

* Update Jupyter notebooks
2021-01-19 10:44:59 +01:00
Ricardo Montañana Gómez
e4ac5075e5 Add main workflow action (#20)
* Add main workflow action

* lock scikit-learn version to 0.23.2

* exchange codeship badge with githubs
2021-01-11 13:46:30 +01:00
Ricardo Montañana Gómez
36816074ff Combinatorial explosion (#19)
* Remove itertools combinations from subspaces

* Generates 5 random subspaces at most
2021-01-10 13:32:22 +01:00
475ad7e752 Fix mistakes in function comments 2020-11-11 19:14:36 +01:00
Ricardo Montañana Gómez
1c869e154e Enhance partition (#16)
#15 Create impurity function in Stree (consistent name, same criteria as other splitter parameter)
Create test for the new function
Update init test
Update test splitter parameters
Rename old impurity function to partition_impurity
close #15
* Complete implementation of splitter_type = impurity with tests
Remove max_distance & min_distance splitter types

* Fix mistake in computing multiclass node belief
Set default criterion for split to entropy instead of gini
Set default max_iter to 1e5 instead of 1e3
change up-down criterion to match SVC multiclass
Fix impurity method of splitting nodes
Update jupyter Notebooks
2020-11-03 11:36:05 +01:00
38 changed files with 2576 additions and 1249 deletions

56
.github/workflows/codeql-analysis.yml vendored Normal file
View File

@@ -0,0 +1,56 @@
name: "CodeQL"
on:
push:
branches: [ master ]
pull_request:
# The branches below must be a subset of the branches above
branches: [ master ]
schedule:
- cron: '16 17 * * 3'
jobs:
analyze:
name: Analyze
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
language: [ 'python' ]
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
# Learn more:
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
steps:
- name: Checkout repository
uses: actions/checkout@v2
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v1
with:
languages: ${{ matrix.language }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# queries: ./path/to/local/query, your-org/your-repo/queries@main
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
# If this step fails, then you should remove it and run the build manually (see below)
- name: Autobuild
uses: github/codeql-action/autobuild@v1
# Command-line programs to run using the OS shell.
# 📚 https://git.io/JvXDl
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
# and modify them (or add more) to build your code if your project
# uses a compiled language
#- run: |
# make bootstrap
# make release
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v1

47
.github/workflows/main.yml vendored Normal file
View File

@@ -0,0 +1,47 @@
name: CI
on:
push:
branches: [master]
pull_request:
branches: [master]
workflow_dispatch:
jobs:
build:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [macos-latest, ubuntu-latest]
python: [3.8]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python }}
- name: Install dependencies
run: |
pip install -q --upgrade pip
pip install -q -r requirements.txt
pip install -q --upgrade codecov coverage black flake8 codacy-coverage
- name: Lint
run: |
black --check --diff stree
flake8 --count stree
- name: Tests
run: |
coverage run -m unittest -v stree.tests
coverage xml
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
files: ./coverage.xml
- name: Run codacy-coverage-reporter
if: runner.os == 'Linux'
uses: codacy/codacy-coverage-reporter-action@master
with:
project-token: ${{ secrets.CODACY_PROJECT_TOKEN }}
coverage-reports: coverage.xml

1
.gitignore vendored
View File

@@ -133,3 +133,4 @@ dmypy.json
.pre-commit-config.yaml
**.csv
.virtual_documents

37
CITATION.cff Normal file
View File

@@ -0,0 +1,37 @@
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Montañana"
given-names: "Ricardo"
orcid: "https://orcid.org/0000-0003-3242-5452"
- family-names: "Gámez"
given-names: "José A."
orcid: "https://orcid.org/0000-0003-1188-1117"
- family-names: "Puerta"
given-names: "José M."
orcid: "https://orcid.org/0000-0002-9164-5191"
title: "STree"
version: 1.0.2
doi: 10.5281/zenodo.5504083
date-released: 2021-11-02
url: "https://github.com/Doctorado-ML/STree"
preferred-citation:
type: article
authors:
- family-names: "Montañana"
given-names: "Ricardo"
orcid: "https://orcid.org/0000-0003-3242-5452"
- family-names: "Gámez"
given-names: "José A."
orcid: "https://orcid.org/0000-0003-1188-1117"
- family-names: "Puerta"
given-names: "José M."
orcid: "https://orcid.org/0000-0002-9164-5191"
doi: "10.1007/978-3-030-85713-4_6"
journal: "Lecture Notes in Computer Science"
month: 9
start: 54
end: 64
title: "STree: A Single Multi-class Oblique Decision Tree Based on Support Vector Machines"
volume: 12882
year: 2021

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2020 Doctorado-ML
Copyright (c) 2020-2021, Ricardo Montañana Gómez
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

50
Makefile Normal file
View File

@@ -0,0 +1,50 @@
SHELL := /bin/bash
.DEFAULT_GOAL := help
.PHONY: coverage deps help lint push test doc build
coverage: ## Run tests with coverage
coverage erase
coverage run -m unittest -v stree.tests
coverage report -m
deps: ## Install dependencies
pip install -r requirements.txt
lint: ## Lint and static-check
black stree
flake8 stree
mypy stree
push: ## Push code with tags
git push && git push --tags
test: ## Run tests
python -m unittest -v stree.tests
doc: ## Update documentation
make -C docs --makefile=Makefile html
build: ## Build package
rm -fr dist/*
rm -fr build/*
python setup.py sdist bdist_wheel
doc-clean: ## Update documentation
make -C docs --makefile=Makefile clean
help: ## Show help message
@IFS=$$'\n' ; \
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
printf "%s\n\n" "Usage: make [task]"; \
printf "%-20s %s\n" "task" "help" ; \
printf "%-20s %s\n" "------" "----" ; \
for help_line in $${help_lines[@]}; do \
IFS=$$':' ; \
help_split=($$help_line) ; \
help_command=`echo $${help_split[0]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
help_info=`echo $${help_split[2]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
printf '\033[36m'; \
printf "%-20s %s" $$help_command ; \
printf '\033[0m'; \
printf "%s\n" $$help_info; \
done

View File

@@ -1,8 +1,12 @@
[![Codeship Status for Doctorado-ML/STree](https://app.codeship.com/projects/8b2bd350-8a1b-0138-5f2c-3ad36f3eb318/status?branch=master)](https://app.codeship.com/projects/399170)
![CI](https://github.com/Doctorado-ML/STree/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/Doctorado-ML/STree.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/Doctorado-ML/STree/context:python)
[![PyPI version](https://badge.fury.io/py/STree.svg)](https://badge.fury.io/py/STree)
![https://img.shields.io/badge/python-3.8%2B-blue](https://img.shields.io/badge/python-3.8%2B-brightgreen)
[![DOI](https://zenodo.org/badge/262658230.svg)](https://zenodo.org/badge/latestdoi/262658230)
# Stree
# STree
Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.
@@ -14,30 +18,62 @@ Oblique Tree classifier based on SVM nodes. The nodes are built and splitted wit
pip install git+https://github.com/doctorado-ml/stree
```
## Documentation
Can be found in [stree.readthedocs.io](https://stree.readthedocs.io/en/stable/)
## Examples
### Jupyter notebooks
* [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/notebooks/benchmark.ipynb) Benchmark
- [![benchmark](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/benchmark.ipynb) Benchmark
* [![Test](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/benchmark.ipynb) Benchmark
- [![features](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/features.ipynb) Some features
* [![Test2](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/features.ipynb) Test features
- [![Gridsearch](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/gridsearch.ipynb) Gridsearch
* [![Adaboost](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/adaboost.ipynb) Adaboost
- [![Ensemble](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/ensemble.ipynb) Ensembles
* [![Gridsearch](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/gridsearch.ipynb) Gridsearch
## Hyperparameters
* [![Test Graphics](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test_graphs.ipynb) Test Graphics
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
| --- | ------------------- | -------------------------------------------------------------- | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf, poly and sigmoid.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random", "trandom", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **trandom”**: The algorithm generates only one random combination. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter. **"iwss"**: IWSS based algorithm |
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
### Command line
\* Hyperparameter used by the support vector classifier of every node
```bash
python main.py
```
\*\* **Splitting in a STree node**
The decision function is applied to the dataset and distances from samples to hyperplanes are computed in a matrix. This matrix has as many columns as classes the samples belongs to (if more than two, i.e. multiclass classification) or 1 column if it's a binary class dataset. In binary classification only one hyperplane is computed and therefore only one column is needed to store the distances of the samples to it. If three or more classes are present in the dataset we need as many hyperplanes as classes are there, and therefore one column per hyperplane is needed.
In case of multiclass classification we have to decide which column take into account to make the split, that depends on hyperparameter _split_criteria_, if "impurity" is chosen then STree computes information gain of every split candidate using each column and chooses the one that maximize the information gain, otherwise STree choses the column with more samples with a predicted class (the column with more positive numbers in it).
Once we have the column to take into account for the split, the algorithm splits samples with positive distances to hyperplane from the rest.
## Tests
```bash
python -m unittest -v stree.tests
```
## License
STree is [MIT](https://github.com/doctorado-ml/stree/blob/master/LICENSE) licensed
## Reference
R. Montañana, J. A. Gámez, J. M. Puerta, "STree: a single multi-class oblique decision tree based on support vector machines.", 2021 LNAI 12882, pg. 54-64

View File

@@ -1,8 +1,8 @@
overage:
coverage:
status:
project:
default:
target: 90%
target: 100%
comment:
layout: "reach, diff, flags, files"
behavior: default

20
docs/Makefile Normal file
View File

@@ -0,0 +1,20 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = source
BUILDDIR = build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

4
docs/requirements.txt Normal file
View File

@@ -0,0 +1,4 @@
sphinx
sphinx-rtd-theme
myst-parser
mufs

View File

@@ -0,0 +1,9 @@
Siterator
=========
.. automodule:: Splitter
.. autoclass:: Siterator
:members:
:undoc-members:
:private-members:
:show-inheritance:

View File

@@ -0,0 +1,9 @@
Snode
=====
.. automodule:: Splitter
.. autoclass:: Snode
:members:
:undoc-members:
:private-members:
:show-inheritance:

View File

@@ -0,0 +1,9 @@
Splitter
========
.. automodule:: Splitter
.. autoclass:: Splitter
:members:
:undoc-members:
:private-members:
:show-inheritance:

View File

@@ -0,0 +1,9 @@
Stree
=====
.. automodule:: stree
.. autoclass:: Stree
:members:
:undoc-members:
:private-members:
:show-inheritance:

11
docs/source/api/index.rst Normal file
View File

@@ -0,0 +1,11 @@
API index
=========
.. toctree::
:maxdepth: 2
:caption: Contents:
Stree
Siterator
Snode
Splitter

57
docs/source/conf.py Normal file
View File

@@ -0,0 +1,57 @@
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
import stree
sys.path.insert(0, os.path.abspath("../../stree/"))
# -- Project information -----------------------------------------------------
project = "STree"
copyright = "2020 - 2021, Ricardo Montañana Gómez"
author = "Ricardo Montañana Gómez"
# The full version, including alpha/beta/rc tags
version = stree.__version__
release = version
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = ["myst_parser", "sphinx.ext.autodoc", "sphinx.ext.viewcode"]
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = []
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = "sphinx_rtd_theme"
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = []

42
docs/source/example.md Normal file
View File

@@ -0,0 +1,42 @@
# Examples
## Notebooks
- [![benchmark](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/benchmark.ipynb) Benchmark
- [![features](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/features.ipynb) Some features
- [![Gridsearch](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/gridsearch.ipynb) Gridsearch
- [![Ensemble](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/ensemble.ipynb) Ensembles
## Sample Code
```python
import time
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from stree import Stree
random_state = 1
X, y = load_iris(return_X_y=True)
Xtrain, Xtest, ytrain, ytest = train_test_split(
X, y, test_size=0.2, random_state=random_state
)
now = time.time()
print("Predicting with max_features=sqrt(n_features)")
clf = Stree(random_state=random_state, max_features="auto")
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")
print(clf)
print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")
print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")
print("=" * 40)
print("Predicting with max_features=n_features")
clf = Stree(random_state=random_state)
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")
print(clf)
print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")
print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")
```

BIN
docs/source/example.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 MiB

View File

@@ -0,0 +1,29 @@
# Hyperparameters
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
| --- | ------------------- | -------------------------------------------------------------- | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf, poly and sigmoid.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random", "trandom", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **trandom”**: The algorithm generates only one random combination. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter. **"iwss"**: IWSS based algorithm |
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
\* Hyperparameter used by the support vector classifier of every node
\*\* **Splitting in a STree node**
The decision function is applied to the dataset and distances from samples to hyperplanes are computed in a matrix. This matrix has as many columns as classes the samples belongs to (if more than two, i.e. multiclass classification) or 1 column if it's a binary class dataset. In binary classification only one hyperplane is computed and therefore only one column is needed to store the distances of the samples to it. If three or more classes are present in the dataset we need as many hyperplanes as classes are there, and therefore one column per hyperplane is needed.
In case of multiclass classification we have to decide which column take into account to make the split, that depends on hyperparameter _split_criteria_, if "impurity" is chosen then STree computes information gain of every split candidate using each column and chooses the one that maximize the information gain, otherwise STree choses the column with more samples with a predicted class (the column with more positive numbers in it).
Once we have the column to take into account for the split, the algorithm splits samples with positive distances to hyperplane from the rest.

15
docs/source/index.rst Normal file
View File

@@ -0,0 +1,15 @@
Welcome to STree's documentation!
=================================
.. toctree::
:caption: Contents:
:titlesonly:
stree
install
hyperparameters
example
api/index
* :ref:`genindex`

16
docs/source/install.rst Normal file
View File

@@ -0,0 +1,16 @@
Install
=======
The main stable release
``pip install stree``
or the last development branch
``pip install git+https://github.com/doctorado-ml/stree``
Tests
*****
``python -m unittest -v stree.tests``

17
docs/source/stree.md Normal file
View File

@@ -0,0 +1,17 @@
# STree
![CI](https://github.com/Doctorado-ML/STree/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/Doctorado-ML/STree.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/Doctorado-ML/STree/context:python)
[![PyPI version](https://badge.fury.io/py/STree.svg)](https://badge.fury.io/py/STree)
![https://img.shields.io/badge/python-3.8%2B-blue](https://img.shields.io/badge/python-3.8%2B-brightgreen)
[![DOI](https://zenodo.org/badge/262658230.svg)](https://zenodo.org/badge/latestdoi/262658230)
Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.
![Stree](./example.png)
## License
STree is [MIT](https://github.com/doctorado-ml/stree/blob/master/LICENSE) licensed

29
main.py
View File

@@ -1,29 +0,0 @@
import time
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from stree import Stree
random_state = 1
X, y = load_iris(return_X_y=True)
Xtrain, Xtest, ytrain, ytest = train_test_split(
X, y, test_size=0.2, random_state=random_state
)
now = time.time()
print("Predicting with max_features=sqrt(n_features)")
clf = Stree(C=0.01, random_state=random_state, max_features="auto")
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")
print(clf)
print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")
print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")
print("=" * 40)
print("Predicting with max_features=n_features")
clf = Stree(C=0.01, random_state=random_state)
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")
print(clf)
print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")
print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")

File diff suppressed because one or more lines are too long

View File

@@ -17,35 +17,43 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
"#!pip install git+https://github.com/doctorado-ml/stree\n",
"!pip install pandas"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"import os\n",
"import random\n",
"import warnings\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier\n",
"from sklearn.model_selection import train_test_split\n",
"from stree import Stree"
"from sklearn.exceptions import ConvergenceWarning\n",
"from stree import Stree\n",
"\n",
"warnings.filterwarnings(\"ignore\", category=ConvergenceWarning)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
@@ -53,24 +61,15 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (100492, 28) y.shape (100492,)\nFraud: 0.644% 647\nValid: 99.356% 99845\n"
}
],
"outputs": [],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
@@ -121,20 +120,14 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Score Train: 0.9985784146480154\nScore Test: 0.9981093273185617\nTook 73.27 seconds\n"
}
],
"outputs": [],
"source": [
"now = time.time()\n",
"clf = Stree(max_depth=3, random_state=random_state)\n",
"clf = Stree(max_depth=3, random_state=random_state, max_iter=1e3)\n",
"clf.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf.score(Xtest, ytest))\n",
@@ -150,7 +143,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -161,21 +154,15 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Kernel: linear\tTime: 93.78 seconds\tScore Train: 0.9983083\tScore Test: 0.9983083\nKernel: rbf\tTime: 18.32 seconds\tScore Train: 0.9935602\tScore Test: 0.9935651\nKernel: poly\tTime: 69.68 seconds\tScore Train: 0.9973132\tScore Test: 0.9972801\n"
}
],
"outputs": [],
"source": [
"for kernel in ['linear', 'rbf', 'poly']:\n",
" now = time.time()\n",
" clf = AdaBoostClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state), algorithm=\"SAMME\", n_estimators=n_estimators, random_state=random_state)\n",
" clf = AdaBoostClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state, max_iter=1e3), algorithm=\"SAMME\", n_estimators=n_estimators, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" score_train = clf.score(Xtrain, ytrain)\n",
" score_test = clf.score(Xtest, ytest)\n",
@@ -191,7 +178,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -202,21 +189,15 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Kernel: linear\tTime: 387.06 seconds\tScore Train: 0.9985784\tScore Test: 0.9981093\nKernel: rbf\tTime: 144.00 seconds\tScore Train: 0.9992750\tScore Test: 0.9983415\nKernel: poly\tTime: 101.78 seconds\tScore Train: 0.9992466\tScore Test: 0.9981757\n"
}
],
"outputs": [],
"source": [
"for kernel in ['linear', 'rbf', 'poly']:\n",
" now = time.time()\n",
" clf = BaggingClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state), n_estimators=n_estimators, random_state=random_state)\n",
" clf = BaggingClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state, max_iter=1e3), n_estimators=n_estimators, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" score_train = clf.score(Xtrain, ytrain)\n",
" score_test = clf.score(Xtest, ytest)\n",
@@ -225,6 +206,11 @@
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
@@ -235,14 +221,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python37664bitgeneralvenve3128601eb614c5da59c5055670b6040",
"display_name": "Python 3.7.6 64-bit ('general': venv)"
"version": "3.8.2-final"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

File diff suppressed because one or more lines are too long

View File

@@ -18,64 +18,67 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
"#!pip install git+https://github.com/doctorado-ml/stree\n",
"!pip install pandas"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "zIHKVxthDZEa",
"colab": {},
"colab_type": "code",
"colab": {}
"id": "zIHKVxthDZEa"
},
"outputs": [],
"source": [
"import random\n",
"import os\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
"from stree import Stree"
],
"execution_count": 2,
"outputs": []
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "IEmq50QgDZEi",
"colab": {},
"colab_type": "code",
"colab": {}
"id": "IEmq50QgDZEi"
},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
],
"execution_count": 3,
"outputs": []
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "z9Q-YUfBDZEq",
"colab_type": "code",
"colab": {},
"colab_type": "code",
"id": "z9Q-YUfBDZEq",
"outputId": "afc822fb-f16a-4302-8a67-2b9e2880159b",
"tags": []
},
"outputs": [],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
@@ -107,14 +110,6 @@
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 32.976% 492\nValid: 67.024% 1000\n"
}
]
},
{
@@ -126,100 +121,120 @@
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HmX3kR4PDZEw",
"colab": {},
"colab_type": "code",
"colab": {}
"id": "HmX3kR4PDZEw"
},
"outputs": [],
"source": [
"parameters = {\n",
" 'base_estimator': [Stree()],\n",
"parameters = [{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5],\n",
" 'base_estimator__C': [7, 55],\n",
" 'base_estimator__kernel': ['linear', 'poly', 'rbf']\n",
"}"
],
"execution_count": 5,
"outputs": []
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__kernel': ['linear']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__degree': [3, 5, 7],\n",
" 'base_estimator__kernel': ['poly']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__gamma': [.1, 1, 10],\n",
" 'base_estimator__kernel': ['rbf']\n",
"}]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": "{'C': 1.0,\n 'criterion': 'gini',\n 'degree': 3,\n 'gamma': 'scale',\n 'kernel': 'linear',\n 'max_depth': None,\n 'max_features': None,\n 'max_iter': 1000,\n 'min_samples_split': 0,\n 'random_state': None,\n 'split_criteria': 'max_samples',\n 'splitter': 'random',\n 'tol': 0.0001}"
},
"metadata": {},
"execution_count": 6
}
],
"outputs": [],
"source": [
"Stree().get_params()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CrcB8o6EDZE5",
"colab_type": "code",
"colab": {},
"colab_type": "code",
"id": "CrcB8o6EDZE5",
"outputId": "7703413a-d563-4289-a13b-532f38f82762",
"tags": []
},
"outputs": [],
"source": [
"random_state=2020\n",
"clf = AdaBoostClassifier(random_state=random_state, algorithm=\"SAMME\")\n",
"grid = GridSearchCV(clf, parameters, verbose=10, n_jobs=-1, return_train_score=True)\n",
"grid = GridSearchCV(clf, parameters, verbose=5, n_jobs=-1, return_train_score=True)\n",
"grid.fit(Xtrain, ytrain)"
],
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fitting 5 folds for each of 96 candidates, totalling 480 fits\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 2 tasks | elapsed: 2.0s\n[Parallel(n_jobs=-1)]: Done 9 tasks | elapsed: 2.4s\n[Parallel(n_jobs=-1)]: Done 16 tasks | elapsed: 2.7s\n[Parallel(n_jobs=-1)]: Done 25 tasks | elapsed: 3.3s\n[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 4.3s\n[Parallel(n_jobs=-1)]: Done 45 tasks | elapsed: 5.3s\n[Parallel(n_jobs=-1)]: Done 56 tasks | elapsed: 6.6s\n[Parallel(n_jobs=-1)]: Done 69 tasks | elapsed: 8.1s\n[Parallel(n_jobs=-1)]: Done 82 tasks | elapsed: 9.4s\n[Parallel(n_jobs=-1)]: Done 97 tasks | elapsed: 10.1s\n[Parallel(n_jobs=-1)]: Done 112 tasks | elapsed: 11.1s\n[Parallel(n_jobs=-1)]: Done 129 tasks | elapsed: 12.3s\n[Parallel(n_jobs=-1)]: Done 146 tasks | elapsed: 13.6s\n[Parallel(n_jobs=-1)]: Done 165 tasks | elapsed: 14.9s\n[Parallel(n_jobs=-1)]: Done 184 tasks | elapsed: 16.2s\n[Parallel(n_jobs=-1)]: Done 205 tasks | elapsed: 17.6s\n[Parallel(n_jobs=-1)]: Done 226 tasks | elapsed: 19.1s\n[Parallel(n_jobs=-1)]: Done 249 tasks | elapsed: 21.6s\n[Parallel(n_jobs=-1)]: Done 272 tasks | elapsed: 25.9s\n[Parallel(n_jobs=-1)]: Done 297 tasks | elapsed: 30.4s\n[Parallel(n_jobs=-1)]: Done 322 tasks | elapsed: 36.7s\n[Parallel(n_jobs=-1)]: Done 349 tasks | elapsed: 38.1s\n[Parallel(n_jobs=-1)]: Done 376 tasks | elapsed: 39.6s\n[Parallel(n_jobs=-1)]: Done 405 tasks | elapsed: 41.9s\n[Parallel(n_jobs=-1)]: Done 434 tasks | elapsed: 44.9s\n[Parallel(n_jobs=-1)]: Done 465 tasks | elapsed: 48.2s\n[Parallel(n_jobs=-1)]: Done 480 out of 480 | elapsed: 49.2s finished\n"
},
{
"output_type": "execute_result",
"data": {
"text/plain": "GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=2020),\n n_jobs=-1,\n param_grid={'base_estimator': [Stree(C=55, max_depth=3, tol=0.01)],\n 'base_estimator__C': [7, 55],\n 'base_estimator__kernel': ['linear', 'poly', 'rbf'],\n 'base_estimator__max_depth': [3, 5],\n 'base_estimator__tol': [0.1, 0.01],\n 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n return_train_score=True, verbose=10)"
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ZjX88NoYDZE8",
"colab_type": "code",
"colab": {},
"colab_type": "code",
"id": "ZjX88NoYDZE8",
"outputId": "285163c8-fa33-4915-8ae7-61c4f7844344",
"tags": []
},
"outputs": [],
"source": [
"print(\"Best estimator: \", grid.best_estimator_)\n",
"print(\"Best hyperparameters: \", grid.best_params_)\n",
"print(\"Best accuracy: \", grid.best_score_)"
],
"execution_count": 8,
"outputs": [
]
},
{
"output_type": "stream",
"name": "stdout",
"text": "Best estimator: AdaBoostClassifier(algorithm='SAMME',\n base_estimator=Stree(C=55, max_depth=3, tol=0.01),\n learning_rate=0.5, n_estimators=25, random_state=2020)\nBest hyperparameters: {'base_estimator': Stree(C=55, max_depth=3, tol=0.01), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 3, 'base_estimator__tol': 0.01, 'learning_rate': 0.5, 'n_estimators': 25}\nBest accuracy: 0.9559440559440558\n"
}
"cell_type": "markdown",
"metadata": {},
"source": [
"Best estimator: AdaBoostClassifier(algorithm='SAMME',\n",
" base_estimator=Stree(C=55, max_depth=7, random_state=1,\n",
" split_criteria='max_samples', tol=0.1),\n",
" learning_rate=0.5, n_estimators=25, random_state=1)\n",
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=7, random_state=1, split_criteria='max_samples', tol=0.1), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 7, 'base_estimator__split_criteria': 'max_samples', 'base_estimator__tol': 0.1, 'learning_rate': 0.5, 'n_estimators': 25}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Best accuracy: 0.9511777695988222"
]
}
],
"metadata": {
"colab": {
"name": "gridsearch.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
@@ -230,18 +245,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39",
"display_name": "Python 3.7.6 64-bit ('general': venv)"
},
"colab": {
"name": "gridsearch.ipynb",
"provenance": []
"version": "3.8.2-final"
}
},
"nbformat": 4,
"nbformat_minor": 0
"nbformat_minor": 4
}

View File

@@ -1,4 +1,2 @@
numpy
scikit-learn
pandas
ipympl
scikit-learn>0.24
mufs

1
runtime.txt Normal file
View File

@@ -0,0 +1 @@
python-3.8

View File

@@ -1,36 +1,50 @@
import setuptools
__version__ = "0.9rc5"
__author__ = "Ricardo Montañana Gómez"
def readme():
with open("README.md") as f:
return f.read()
def get_data(field):
item = ""
with open("stree/__init__.py") as f:
for line in f.readlines():
if line.startswith(f"__{field}__"):
delim = '"' if '"' in line else "'"
item = line.split(delim)[1]
break
else:
raise RuntimeError(f"Unable to find {field} string.")
return item
setuptools.setup(
name="STree",
version=__version__,
license="MIT License",
version=get_data("version"),
license=get_data("license"),
description="Oblique decision tree with svm nodes",
long_description=readme(),
long_description_content_type="text/markdown",
packages=setuptools.find_packages(),
url="https://github.com/doctorado-ml/stree",
author=__author__,
author_email="ricardo.montanana@alu.uclm.es",
url="https://github.com/Doctorado-ML/STree#stree",
project_urls={
"Code": "https://github.com/Doctorado-ML/STree",
"Documentation": "https://stree.readthedocs.io/en/latest/index.html",
},
author=get_data("author"),
author_email=get_data("author_email"),
keywords="scikit-learn oblique-classifier oblique-decision-tree decision-\
tree svm svc",
classifiers=[
"Development Status :: 4 - Beta",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.7",
"Development Status :: 5 - Production/Stable",
"License :: OSI Approved :: " + get_data("license"),
"Programming Language :: Python :: 3.8",
"Natural Language :: English",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Intended Audience :: Science/Research",
],
install_requires=["scikit-learn>=0.23.0", "numpy", "ipympl"],
install_requires=["scikit-learn", "mufs"],
test_suite="stree.tests",
zip_safe=False,
)

10
stree/.readthedocs.yaml Normal file
View File

@@ -0,0 +1,10 @@
version: 2
sphinx:
configuration: docs/source/conf.py
python:
version: 3.8
install:
- requirements: requirements.txt
- requirements: docs/requirements.txt

786
stree/Splitter.py Normal file
View File

@@ -0,0 +1,786 @@
"""
Oblique decision tree classifier based on SVM nodes
Splitter class
"""
import os
import warnings
import random
from math import log, factorial
import numpy as np
from sklearn.feature_selection import SelectKBest, mutual_info_classif
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.exceptions import ConvergenceWarning
from mufs import MUFS
class Snode:
"""
Nodes of the tree that keeps the svm classifier and if testing the
dataset assigned to it
Parameters
----------
clf : SVC
Classifier used
X : np.ndarray
input dataset in train time (only in testing)
y : np.ndarray
input labes in train time
features : np.array
features used to compute hyperplane
impurity : float
impurity of the node
title : str
label describing the route to the node
weight : np.ndarray, optional
weights applied to input dataset in train time, by default None
scaler : StandardScaler, optional
scaler used if any, by default None
"""
def __init__(
self,
clf: SVC,
X: np.ndarray,
y: np.ndarray,
features: np.array,
impurity: float,
title: str,
weight: np.ndarray = None,
scaler: StandardScaler = None,
):
self._clf = clf
self._title = title
self._belief = 0.0
# Only store dataset in Testing
self._X = X if os.environ.get("TESTING", "NS") != "NS" else None
self._y = y
self._down = None
self._up = None
self._class = None
self._feature = None
self._sample_weight = (
weight if os.environ.get("TESTING", "NS") != "NS" else None
)
self._features = features
self._impurity = impurity
self._partition_column: int = -1
self._scaler = scaler
@classmethod
def copy(cls, node: "Snode") -> "Snode":
return cls(
node._clf,
node._X,
node._y,
node._features,
node._impurity,
node._title,
node._sample_weight,
node._scaler,
)
def set_partition_column(self, col: int):
self._partition_column = col
def get_partition_column(self) -> int:
return self._partition_column
def set_down(self, son):
self._down = son
def set_title(self, title):
self._title = title
def set_classifier(self, clf):
self._clf = clf
def set_features(self, features):
self._features = features
def set_impurity(self, impurity):
self._impurity = impurity
def get_title(self) -> str:
return self._title
def get_classifier(self) -> SVC:
return self._clf
def get_impurity(self) -> float:
return self._impurity
def get_features(self) -> np.array:
return self._features
def set_up(self, son):
self._up = son
def is_leaf(self) -> bool:
return self._up is None and self._down is None
def get_down(self) -> "Snode":
return self._down
def get_up(self) -> "Snode":
return self._up
def make_predictor(self):
"""Compute the class of the predictor and its belief based on the
subdataset of the node only if it is a leaf
"""
if not self.is_leaf():
return
classes, card = np.unique(self._y, return_counts=True)
if len(classes) > 1:
max_card = max(card)
self._class = classes[card == max_card][0]
self._belief = max_card / np.sum(card)
else:
self._belief = 1
try:
self._class = classes[0]
except IndexError:
self._class = None
def __str__(self) -> str:
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf():
return (
f"{self._title} - Leaf class={self._class} belief="
f"{self._belief: .6f} impurity={self._impurity:.4f} "
f"counts={count_values}"
)
return (
f"{self._title} feaures={self._features} impurity="
f"{self._impurity:.4f} "
f"counts={count_values}"
)
class Siterator:
"""Stree preorder iterator"""
def __init__(self, tree: Snode):
self._stack = []
self._push(tree)
def __iter__(self):
# To complete the iterator interface
return self
def _push(self, node: Snode):
if node is not None:
self._stack.append(node)
def __next__(self) -> Snode:
if len(self._stack) == 0:
raise StopIteration()
node = self._stack.pop()
self._push(node.get_up())
self._push(node.get_down())
return node
class Splitter:
"""
Splits a dataset in two based on different criteria
Parameters
----------
clf : SVC, optional
classifier, by default None
criterion : str, optional
The function to measure the quality of a split (only used if
max_features != num_features). Supported criteria are “gini” for the
Gini impurity and “entropy” for the information gain., by default
"entropy", by default None
feature_select : str, optional
The strategy used to choose the feature set at each node (only used if
max_features < num_features). Supported strategies are: “best”: sklearn
SelectKBest algorithm is used in every node to choose the max_features
best features. “random”: The algorithm generates 5 candidates and
choose the best (max. info. gain) of them. “trandom”: The algorithm
generates only one random combination. "mutual": Chooses the best
features w.r.t. their mutual info with the label. "cfs": Apply
Correlation-based Feature Selection. "fcbf": Apply Fast Correlation-
Based, by default None
criteria : str, optional
ecides (just in case of a multi class classification) which column
(class) use to split the dataset in a node. max_samples is
incompatible with 'ovo' multiclass_strategy, by default None
min_samples_split : int, optional
The minimum number of samples required to split an internal node. 0
(default) for any, by default None
random_state : optional
Controls the pseudo random number generation for shuffling the data for
probability estimates. Ignored when probability is False.Pass an int
for reproducible output across multiple function calls, by
default None
normalize : bool, optional
If standardization of features should be applied on each node with the
samples that reach it , by default False
Raises
------
ValueError
clf has to be a sklearn estimator
ValueError
criterion must be gini or entropy
ValueError
criteria has to be max_samples or impurity
ValueError
splitter must be in {random, best, mutual, cfs, fcbf}
"""
def __init__(
self,
clf: SVC = None,
criterion: str = None,
feature_select: str = None,
criteria: str = None,
min_samples_split: int = None,
random_state=None,
normalize=False,
):
self._clf = clf
self._random_state = random_state
if random_state is not None:
random.seed(random_state)
self._criterion = criterion
self._min_samples_split = min_samples_split
self._criteria = criteria
self._feature_select = feature_select
self._normalize = normalize
if clf is None:
raise ValueError(f"clf has to be a sklearn estimator, got({clf})")
if criterion not in ["gini", "entropy"]:
raise ValueError(
f"criterion must be gini or entropy got({criterion})"
)
if criteria not in [
"max_samples",
"impurity",
]:
raise ValueError(
f"criteria has to be max_samples or impurity; got ({criteria})"
)
if feature_select not in [
"random",
"trandom",
"best",
"mutual",
"cfs",
"fcbf",
"iwss",
]:
raise ValueError(
"splitter must be in {random, trandom, best, mutual, cfs, "
"fcbf, iwss} "
f"got ({feature_select})"
)
self.criterion_function = getattr(self, f"_{self._criterion}")
self.decision_criteria = getattr(self, f"_{self._criteria}")
self.fs_function = getattr(self, f"_fs_{self._feature_select}")
def _fs_random(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the best of five random feature set combinations
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# Random feature reduction
n_features = dataset.shape[1]
features_sets = self._generate_spaces(n_features, max_features)
return self._select_best_set(dataset, labels, features_sets)
@staticmethod
def _fs_trandom(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the a random feature set combination
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# Random feature reduction
n_features = dataset.shape[1]
return tuple(sorted(random.sample(range(n_features), max_features)))
@staticmethod
def _fs_best(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the variabes with higher f-score
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
return (
SelectKBest(k=max_features)
.fit(dataset, labels)
.get_support(indices=True)
)
@staticmethod
def _fs_mutual(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the best features with mutual information with labels
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# return best features with mutual info with the label
feature_list = mutual_info_classif(dataset, labels)
return tuple(
sorted(
range(len(feature_list)), key=lambda sub: feature_list[sub]
)[-max_features:]
)
@staticmethod
def _fs_cfs(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Correlattion-based feature selection with max_features limit
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
mufs = MUFS(max_features=max_features, discrete=False)
return mufs.cfs(dataset, labels).get_results()
@staticmethod
def _fs_fcbf(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Fast Correlation-based Filter algorithm with max_features limit
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
mufs = MUFS(max_features=max_features, discrete=False)
return mufs.fcbf(dataset, labels, 5e-4).get_results()
@staticmethod
def _fs_iwss(
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Correlattion-based feature selection based on iwss with max_features
limit
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(< number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
mufs = MUFS(max_features=max_features, discrete=False)
return mufs.iwss(dataset, labels, 0.25).get_results()
def partition_impurity(self, y: np.array) -> np.array:
return self.criterion_function(y)
@staticmethod
def _gini(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
return 1 - np.sum(np.square(count / np.sum(count)))
@staticmethod
def _entropy(y: np.array) -> float:
"""Compute entropy of a labels set
Parameters
----------
y : np.array
set of labels
Returns
-------
float
entropy
"""
n_labels = len(y)
if n_labels <= 1:
return 0
counts = np.bincount(y)
proportions = counts / n_labels
n_classes = np.count_nonzero(proportions)
if n_classes <= 1:
return 0
entropy = 0.0
# Compute standard entropy.
for prop in proportions:
if prop != 0.0:
entropy -= prop * log(prop, n_classes)
return entropy
def information_gain(
self, labels: np.array, labels_up: np.array, labels_dn: np.array
) -> float:
"""Compute information gain of a split candidate
Parameters
----------
labels : np.array
labels of the dataset
labels_up : np.array
labels of one side
labels_dn : np.array
labels on the other side
Returns
-------
float
information gain
"""
imp_prev = self.criterion_function(labels)
card_up = card_dn = imp_up = imp_dn = 0
if labels_up is not None:
card_up = labels_up.shape[0]
imp_up = self.criterion_function(labels_up)
if labels_dn is not None:
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_dn = self.criterion_function(labels_dn)
samples = card_up + card_dn
if samples == 0:
return 0.0
else:
result = (
imp_prev
- (card_up / samples) * imp_up
- (card_dn / samples) * imp_dn
)
return result
def _select_best_set(
self, dataset: np.array, labels: np.array, features_sets: list
) -> list:
"""Return the best set of features among feature_sets, the criterion is
the information gain
Parameters
----------
dataset : np.array
array of samples (# samples, # features)
labels : np.array
array of labels
features_sets : list
list of features sets to check
Returns
-------
list
best feature set
"""
max_gain = 0
selected = None
warnings.filterwarnings("ignore", category=ConvergenceWarning)
for feature_set in features_sets:
self._clf.fit(dataset[:, feature_set], labels)
node = Snode(
self._clf, dataset, labels, feature_set, 0.0, "subset"
)
self.partition(dataset, node, train=True)
y1, y2 = self.part(labels)
gain = self.information_gain(labels, y1, y2)
if gain > max_gain:
max_gain = gain
selected = feature_set
return selected if selected is not None else feature_set
@staticmethod
def _generate_spaces(features: int, max_features: int) -> list:
"""Generate at most 5 feature random combinations
Parameters
----------
features : int
number of features in each combination
max_features : int
number of features in dataset
Returns
-------
list
list with up to 5 combination of features randomly selected
"""
comb = set()
# Generate at most 5 combinations
number = factorial(features) / (
factorial(max_features) * factorial(features - max_features)
)
set_length = min(5, number)
while len(comb) < set_length:
comb.add(
tuple(sorted(random.sample(range(features), max_features)))
)
return list(comb)
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Compute the indices of the features selected by splitter depending
on the self._feature_select hyper parameter
Parameters
----------
dataset : np.array
array of samples
labels : np.array
labels of the dataset
max_features : int
number of features of the subspace
(<= number of features in dataset)
Returns
-------
tuple
indices of the features selected
"""
# No feature reduction
n_features = dataset.shape[1]
if n_features == max_features:
return tuple(range(n_features))
# select features as selected in constructor
return self.fs_function(dataset, labels, max_features)
def get_subspace(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Re3turn a subspace of the selected dataset of max_features length.
Depending on hyperparameter
Parameters
----------
dataset : np.array
array of samples (# samples, # features)
labels : np.array
labels of the dataset
max_features : int
number of features to form the subspace
Returns
-------
tuple
tuple with the dataset with only the features selected and the
indices of the features selected
"""
indices = self._get_subspaces_set(dataset, labels, max_features)
return dataset[:, indices], indices
def _impurity(self, data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
Parameters
----------
data : np.array
distances to hyper plane of every class
y : np.array
vector of labels (classes)
Returns
-------
np.array
column of dataset to be taken into account to split dataset
"""
max_gain = 0
selected = -1
for col in range(data.shape[1]):
tup = y[data[:, col] > 0]
tdn = y[data[:, col] <= 0]
info_gain = self.information_gain(y, tup, tdn)
if info_gain > max_gain:
selected = col
max_gain = info_gain
return selected
@staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
Parameters
----------
data : np.array
distances to hyper plane of every class
y : np.array
column of dataset to be taken into account to split dataset
Returns
-------
np.array
column of dataset to be taken into account to split dataset
"""
# select the class with max number of samples
_, samples = np.unique(y, return_counts=True)
return np.argmax(samples)
def partition(self, samples: np.array, node: Snode, train: bool):
"""Set the criteria to split arrays. Compute the indices of the samples
that should go to one side of the tree (up)
Parameters
----------
samples : np.array
array of samples (# samples, # features)
node : Snode
Node of the tree where partition is going to be made
train : bool
Train time - True / Test time - False
"""
# data contains the distances of every sample to every class hyperplane
# array of (m, nc) nc = # classes
data = self._distances(node, samples)
if data.shape[0] < self._min_samples_split:
# there aren't enough samples to split
self._up = np.ones((data.shape[0]), dtype=bool)
return
if data.ndim > 1:
# split criteria for multiclass
# Convert data to a (m, 1) array selecting values for samples
if train:
# in train time we have to compute the column to take into
# account to split the dataset
col = self.decision_criteria(data, node._y)
node.set_partition_column(col)
else:
# in predcit time just use the column computed in train time
# is taking the classifier of class <col>
col = node.get_partition_column()
if col == -1:
# No partition is producing information gain
data = np.ones(data.shape)
data = data[:, col]
self._up = data > 0
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (self._up) and its complement
partition has to be called first to establish up indices
Parameters
----------
origin : np.array
dataset to split
Returns
-------
list
list with two splits of the array
"""
down = ~self._up
return [
origin[self._up] if any(self._up) else None,
origin[down] if any(down) else None,
]
def _distances(self, node: Snode, data: np.ndarray) -> np.array:
"""Compute distances of the samples to the hyperplane of the node
Parameters
----------
node : Snode
node containing the svm classifier
data : np.ndarray
samples to compute distance to hyperplane
Returns
-------
np.array
array of shape (m, nc) with the distances of every sample to
the hyperplane of every class. nc = # of classes
"""
X_transformed = data[:, node._features]
if self._normalize:
X_transformed = node._scaler.transform(X_transformed)
return node._clf.decision_function(X_transformed)

View File

@@ -1,394 +1,158 @@
"""
__author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
__license__ = "MIT"
__version__ = "0.9"
Build an oblique tree classifier based on SVM Trees
Oblique decision tree classifier based on SVM nodes
"""
import os
import numbers
import random
import warnings
from math import log
from itertools import combinations
from typing import Optional
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.svm import SVC, LinearSVC
from sklearn.utils import check_consistent_length
from sklearn.preprocessing import StandardScaler
from sklearn.utils.multiclass import check_classification_targets
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils.validation import (
check_X_y,
check_array,
check_is_fitted,
_check_sample_weight,
)
from sklearn.metrics._classification import _weighted_sum, _check_targets
class Snode:
"""Nodes of the tree that keeps the svm classifier and if testing the
dataset assigned to it
"""
def __init__(
self,
clf: SVC,
X: np.ndarray,
y: np.ndarray,
features: np.array,
impurity: float,
title: str,
weight: np.ndarray = None,
):
self._clf = clf
self._title = title
self._belief = 0.0
# Only store dataset in Testing
self._X = X if os.environ.get("TESTING", "NS") != "NS" else None
self._y = y
self._down = None
self._up = None
self._class = None
self._feature = None
self._sample_weight = (
weight if os.environ.get("TESTING", "NS") != "NS" else None
)
self._features = features
self._impurity = impurity
@classmethod
def copy(cls, node: "Snode") -> "Snode":
return cls(
node._clf,
node._X,
node._y,
node._features,
node._impurity,
node._title,
)
def set_down(self, son):
self._down = son
def set_up(self, son):
self._up = son
def is_leaf(self) -> bool:
return self._up is None and self._down is None
def get_down(self) -> "Snode":
return self._down
def get_up(self) -> "Snode":
return self._up
def make_predictor(self):
"""Compute the class of the predictor and its belief based on the
subdataset of the node only if it is a leaf
"""
if not self.is_leaf():
return
classes, card = np.unique(self._y, return_counts=True)
if len(classes) > 1:
max_card = max(card)
min_card = min(card)
self._class = classes[card == max_card][0]
self._belief = max_card / (max_card + min_card)
else:
self._belief = 1
try:
self._class = classes[0]
except IndexError:
self._class = None
def __str__(self) -> str:
if self.is_leaf():
count_values = np.unique(self._y, return_counts=True)
result = (
f"{self._title} - Leaf class={self._class} belief="
f"{self._belief: .6f} impurity={self._impurity:.4f} "
f"counts={count_values}"
)
return result
else:
return (
f"{self._title} feaures={self._features} impurity="
f"{self._impurity:.4f}"
)
class Siterator:
"""Stree preorder iterator
"""
def __init__(self, tree: Snode):
self._stack = []
self._push(tree)
def _push(self, node: Snode):
if node is not None:
self._stack.append(node)
def __next__(self) -> Snode:
if len(self._stack) == 0:
raise StopIteration()
node = self._stack.pop()
self._push(node.get_up())
self._push(node.get_down())
return node
class Splitter:
def __init__(
self,
clf: SVC = None,
criterion: str = None,
splitter_type: str = None,
criteria: str = None,
min_samples_split: int = None,
random_state=None,
):
self._clf = clf
self._random_state = random_state
if random_state is not None:
random.seed(random_state)
self._criterion = criterion
self._min_samples_split = min_samples_split
self._criteria = criteria
self._splitter_type = splitter_type
if clf is None:
raise ValueError(f"clf has to be a sklearn estimator, got({clf})")
if criterion not in ["gini", "entropy"]:
raise ValueError(
f"criterion must be gini or entropy got({criterion})"
)
if criteria not in ["min_distance", "max_samples", "max_distance"]:
raise ValueError(
"split_criteria has to be min_distance "
f"max_distance or max_samples got ({criteria})"
)
if splitter_type not in ["random", "best"]:
raise ValueError(
f"splitter must be either random or best got({splitter_type})"
)
self.criterion_function = getattr(self, f"_{self._criterion}")
self.decision_criteria = getattr(self, f"_{self._criteria}")
def impurity(self, y: np.array) -> np.array:
return self.criterion_function(y)
@staticmethod
def _gini(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
return 1 - np.sum(np.square(count / np.sum(count)))
@staticmethod
def _entropy(y: np.array) -> float:
n_labels = len(y)
if n_labels <= 1:
return 0
counts = np.bincount(y)
proportions = counts / n_labels
n_classes = np.count_nonzero(proportions)
if n_classes <= 1:
return 0
entropy = 0.0
# Compute standard entropy.
for prop in proportions:
if prop != 0.0:
entropy -= prop * log(prop, n_classes)
return entropy
def information_gain(
self, labels: np.array, labels_up: np.array, labels_dn: np.array
) -> float:
imp_prev = self.criterion_function(labels)
card_up = card_dn = imp_up = imp_dn = 0
if labels_up is not None:
card_up = labels_up.shape[0]
imp_up = self.criterion_function(labels_up)
if labels_dn is not None:
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_dn = self.criterion_function(labels_dn)
samples = card_up + card_dn
if samples == 0:
return 0.0
else:
result = (
imp_prev
- (card_up / samples) * imp_up
- (card_dn / samples) * imp_dn
)
return result
def _select_best_set(
self, dataset: np.array, labels: np.array, features_sets: list
) -> list:
max_gain = 0
selected = None
warnings.filterwarnings("ignore", category=ConvergenceWarning)
for feature_set in features_sets:
self._clf.fit(dataset[:, feature_set], labels)
node = Snode(
self._clf, dataset, labels, feature_set, 0.0, "subset"
)
self.partition(dataset, node)
y1, y2 = self.part(labels)
gain = self.information_gain(labels, y1, y2)
if gain > max_gain:
max_gain = gain
selected = feature_set
return selected if selected is not None else feature_set
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
) -> np.array:
features = range(dataset.shape[1])
features_sets = list(combinations(features, max_features))
if len(features_sets) > 1:
if self._splitter_type == "random":
index = random.randint(0, len(features_sets) - 1)
return features_sets[index]
else:
# get only 3 sets at most
if len(features_sets) > 3:
features_sets = random.sample(features_sets, 3)
return self._select_best_set(dataset, labels, features_sets)
else:
return features_sets[0]
def get_subspace(
self, dataset: np.array, labels: np.array, max_features: int
) -> list:
"""Return the best subspace to make a split
"""
indices = self._get_subspaces_set(dataset, labels, max_features)
return dataset[:, indices], indices
@staticmethod
def _min_distance(data: np.array, _) -> np.array:
"""Assign class to min distances
return a vector of classes so partition can separate class 0 from
the rest of classes, ie. class 0 goes to one splitted node and the
rest of classes go to the other
:param data: distances to hyper plane of every class
:type data: np.array (m, n_classes)
:param _: enable call compat with other measures
:type _: None
:return: vector with the class assigned to each sample
:rtype: np.array shape (m,)
"""
return np.argmin(data, axis=1)
@staticmethod
def _max_distance(data: np.array, _) -> np.array:
"""Assign class to max distances
return a vector of classes so partition can separate class 0 from
the rest of classes, ie. class 0 goes to one splitted node and the
rest of classes go to the other
:param data: distances to hyper plane of every class
:type data: np.array (m, n_classes)
:param _: enable call compat with other measures
:type _: None
:return: vector with the class assigned to each sample values
(can be 0, 1, ...)
:rtype: np.array shape (m,)
"""
return np.argmax(data, axis=1)
@staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array:
"""return distances of the class with more samples
:param data: distances to hyper plane of every class
:type data: np.array (m, n_classes)
:param y: vector of labels (classes)
:type y: np.array (m,)
:return: vector with distances to hyperplane (can be positive or neg.)
:rtype: np.array shape (m,)
"""
# select the class with max number of samples
_, samples = np.unique(y, return_counts=True)
selected = np.argmax(samples)
return data[:, selected]
def partition(self, samples: np.array, node: Snode):
"""Set the criteria to split arrays. Compute the indices of the samples
that should go to one side of the tree (down)
"""
data = self._distances(node, samples)
if data.shape[0] < self._min_samples_split:
self._down = np.ones((data.shape[0]), dtype=bool)
return
if data.ndim > 1:
# split criteria for multiclass
data = self.decision_criteria(data, node._y)
self._down = data > 0
@staticmethod
def _distances(node: Snode, data: np.ndarray) -> np.array:
"""Compute distances of the samples to the hyperplane of the node
:param node: node containing the svm classifier
:type node: Snode
:param data: samples to find out distance to hyperplane
:type data: np.ndarray
:return: array of shape (m, 1) with the distances of every sample to
the hyperplane of the node
:rtype: np.array
"""
return node._clf.decision_function(data[:, node._features])
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (down) and its complement
:param origin: dataset to split
:type origin: np.array
:param down: indices to use to split array
:type down: np.array
:return: list with two splits of the array
:rtype: list
"""
up = ~self._down
return [
origin[up] if any(up) else None,
origin[self._down] if any(self._down) else None,
]
from .Splitter import Splitter, Snode, Siterator
class Stree(BaseEstimator, ClassifierMixin):
"""Estimator that is based on binary trees of svm nodes
"""
Estimator that is based on binary trees of svm nodes
can deal with sample_weights in predict, used in boosting sklearn methods
inheriting from BaseEstimator implements get_params and set_params methods
inheriting from ClassifierMixin implement the attribute _estimator_type
with "classifier" as value
Parameters
----------
C : float, optional
Regularization parameter. The strength of the regularization is
inversely proportional to C. Must be strictly positive., by default 1.0
kernel : str, optional
Specifies the kernel type to be used in the algorithm. It must be one
of liblinear, linear, poly or rbf. liblinear uses
[liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and
the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/)
library through scikit-learn library, by default "linear"
max_iter : int, optional
Hard limit on iterations within solver, or -1 for no limit., by default
1e5
random_state : int, optional
Controls the pseudo random number generation for shuffling the data for
probability estimates. Ignored when probability is False.Pass an int
for reproducible output across multiple function calls, by
default None
max_depth : int, optional
Specifies the maximum depth of the tree, by default None
tol : float, optional
Tolerance for stopping, by default 1e-4
degree : int, optional
Degree of the polynomial kernel function (poly). Ignored by all other
kernels., by default 3
gamma : str, optional
Kernel coefficient for rbf, poly and sigmoid.if gamma='scale'
(default) is passed then it uses 1 / (n_features * X.var()) as value
of gamma,if auto, uses 1 / n_features., by default "scale"
split_criteria : str, optional
Decides (just in case of a multi class classification) which column
(class) use to split the dataset in a node. max_samples is
incompatible with 'ovo' multiclass_strategy, by default "impurity"
criterion : str, optional
The function to measure the quality of a split (only used if
max_features != num_features). Supported criteria are “gini” for the
Gini impurity and “entropy” for the information gain., by default
"entropy"
min_samples_split : int, optional
The minimum number of samples required to split an internal node. 0
(default) for any, by default 0
max_features : optional
The number of features to consider when looking for the split: If int,
then consider max_features features at each split. If float, then
max_features is a fraction and int(max_features * n_features) features
are considered at each split. If “auto”, then max_features=
sqrt(n_features). If “sqrt”, then max_features=sqrt(n_features). If
“log2”, then max_features=log2(n_features). If None, then max_features=
n_features., by default None
splitter : str, optional
The strategy used to choose the feature set at each node (only used if
max_features < num_features). Supported strategies are: “best”: sklearn
SelectKBest algorithm is used in every node to choose the max_features
best features. “random”: The algorithm generates 5 candidates and
choose the best (max. info. gain) of them. “trandom”: The algorithm
generates only one random combination. "mutual": Chooses the best
features w.r.t. their mutual info with the label. "cfs": Apply
Correlation-based Feature Selection. "fcbf": Apply Fast Correlation-
Based , by default "random"
multiclass_strategy : str, optional
Strategy to use with multiclass datasets, "ovo": one versus one. "ovr":
one versus rest, by default "ovo"
normalize : bool, optional
If standardization of features should be applied on each node with the
samples that reach it , by default False
Attributes
----------
classes_ : ndarray of shape (n_classes,)
The classes labels.
n_classes_ : int
The number of classes
n_iter_ : int
Max number of iterations in classifier
depth_ : int
Max depht of the tree
n_features_ : int
The number of features when ``fit`` is performed.
n_features_in_ : int
Number of features seen during :term:`fit`.
max_features_ : int
Number of features to use in hyperplane computation
tree_ : Node
root of the tree
X_ : ndarray
points to the input dataset
y_ : ndarray
points to the input labels
References
----------
R. Montañana, J. A. Gámez, J. M. Puerta, "STree: a single multi-class
oblique decision tree based on support vector machines.", 2021 LNAI 12882
"""
def __init__(
self,
C: float = 1.0,
kernel: str = "linear",
max_iter: int = 1000,
max_iter: int = 1e5,
random_state: int = None,
max_depth: int = None,
tol: float = 1e-4,
degree: int = 3,
gamma="scale",
split_criteria: str = "max_samples",
criterion: str = "gini",
split_criteria: str = "impurity",
criterion: str = "entropy",
min_samples_split: int = 0,
max_features=None,
splitter: str = "random",
multiclass_strategy: str = "ovo",
normalize: bool = False,
):
self.max_iter = max_iter
self.C = C
self.kernel = kernel
@@ -402,9 +166,12 @@ class Stree(BaseEstimator, ClassifierMixin):
self.max_features = max_features
self.criterion = criterion
self.splitter = splitter
self.normalize = normalize
self.multiclass_strategy = multiclass_strategy
def _more_tags(self) -> dict:
"""Required by sklearn to supply features of the classifier
make mandatory the labels array
:return: the tag required
:rtype: dict
@@ -416,16 +183,19 @@ class Stree(BaseEstimator, ClassifierMixin):
) -> "Stree":
"""Build the tree based on the dataset of samples and its labels
:param X: dataset of samples to make predictions
:type X: np.array
:param y: samples labels
:type y: np.array
:param sample_weight: weights of the samples. Rescale C per sample.
Hi' weights force the classifier to put more emphasis on these points
:type sample_weight: np.array optional
:raises ValueError: if parameters C or max_depth are out of bounds
:return: itself to be able to chain actions: fit().predict() ...
:rtype: Stree
Returns
-------
Stree
itself to be able to chain actions: fit().predict() ...
Raises
------
ValueError
if C < 0
ValueError
if max_depth < 1
ValueError
if all samples have 0 or negative weights
"""
# Check parameters are Ok.
if self.C < 0:
@@ -442,21 +212,44 @@ class Stree(BaseEstimator, ClassifierMixin):
f"Maximum depth has to be greater than 1... got (max_depth=\
{self.max_depth})"
)
if self.multiclass_strategy not in ["ovr", "ovo"]:
raise ValueError(
"mutliclass_strategy has to be either ovr or ovo"
f" but got {self.multiclass_strategy}"
)
if self.multiclass_strategy == "ovo":
if self.kernel == "liblinear":
raise ValueError(
"The kernel liblinear is incompatible with ovo "
"multiclass_strategy"
)
if self.split_criteria == "max_samples":
raise ValueError(
"The multiclass_strategy 'ovo' is incompatible with "
"split_criteria 'max_samples'"
)
kernels = ["liblinear", "linear", "rbf", "poly", "sigmoid"]
if self.kernel not in kernels:
raise ValueError(f"Kernel {self.kernel} not in {kernels}")
check_classification_targets(y)
X, y = check_X_y(X, y)
sample_weight = _check_sample_weight(
sample_weight, X, dtype=np.float64
)
if not any(sample_weight):
raise ValueError(
"Invalid input - all samples have zero or negative weights."
)
check_classification_targets(y)
# Initialize computed parameters
self.splitter_ = Splitter(
clf=self._build_clf(),
criterion=self.criterion,
splitter_type=self.splitter,
feature_select=self.splitter,
criteria=self.split_criteria,
random_state=self.random_state,
min_samples_split=self.min_samples_split,
normalize=self.normalize,
)
if self.random_state is not None:
random.seed(self.random_state)
@@ -467,98 +260,87 @@ class Stree(BaseEstimator, ClassifierMixin):
self.n_features_ = X.shape[1]
self.n_features_in_ = X.shape[1]
self.max_features_ = self._initialize_max_features()
self.tree_ = self.train(X, y, sample_weight, 1, "root")
self._build_predictor()
self.tree_ = self._train(X, y, sample_weight, 1, "root")
self.X_ = X
self.y_ = y
return self
def train(
def _train(
self,
X: np.ndarray,
y: np.ndarray,
sample_weight: np.ndarray,
depth: int,
title: str,
) -> Snode:
) -> Optional[Snode]:
"""Recursive function to split the original dataset into predictor
nodes (leaves)
:param X: samples dataset
:type X: np.ndarray
:param y: samples labels
:type y: np.ndarray
:param sample_weight: weight of samples. Rescale C per sample.
Hi weights force the classifier to put more emphasis on these points.
:type sample_weight: np.ndarray
:param depth: actual depth in the tree
:type depth: int
:param title: description of the node
:type title: str
:return: binary tree
:rtype: Snode
Parameters
----------
X : np.ndarray
samples dataset
y : np.ndarray
samples labels
sample_weight : np.ndarray
weight of samples. Rescale C per sample.
depth : int
actual depth in the tree
title : str
description of the node
Returns
-------
Optional[Snode]
binary tree
"""
if depth > self.__max_depth:
return None
# Mask samples with 0 weight
if any(sample_weight == 0):
indices_zero = sample_weight == 0
X = X[~indices_zero, :]
y = y[~indices_zero]
sample_weight = sample_weight[~indices_zero]
self.depth_ = max(depth, self.depth_)
scaler = StandardScaler()
node = Snode(None, X, y, X.shape[1], 0.0, title, sample_weight, scaler)
if np.unique(y).shape[0] == 1:
# only 1 class => pure dataset
return Snode(
clf=None,
X=X,
y=y,
features=X.shape[1],
impurity=0.0,
title=title + ", <pure>",
weight=sample_weight,
)
node.set_title(title + ", <pure>")
node.make_predictor()
return node
# Train the model
clf = self._build_clf()
Xs, features = self.splitter_.get_subspace(X, y, self.max_features_)
# solve WARNING: class label 0 specified in weight is not found
# in bagging
if any(sample_weight == 0):
indices = sample_weight == 0
y_next = y[~indices]
# touch weights if removing any class
if np.unique(y_next).shape[0] != self.n_classes_:
sample_weight += 1e-5
if self.normalize:
scaler.fit(Xs)
Xs = scaler.transform(Xs)
clf.fit(Xs, y, sample_weight=sample_weight)
impurity = self.splitter_.impurity(y)
node = Snode(clf, X, y, features, impurity, title, sample_weight)
self.depth_ = max(depth, self.depth_)
self.splitter_.partition(X, node)
node.set_impurity(self.splitter_.partition_impurity(y))
node.set_classifier(clf)
node.set_features(features)
self.splitter_.partition(X, node, True)
X_U, X_D = self.splitter_.part(X)
y_u, y_d = self.splitter_.part(y)
sw_u, sw_d = self.splitter_.part(sample_weight)
if X_U is None or X_D is None:
# didn't part anything
return Snode(
clf,
X,
y,
features=X.shape[1],
impurity=impurity,
title=title + ", <cgaf>",
weight=sample_weight,
node.set_title(title + ", <cgaf>")
node.make_predictor()
return node
node.set_up(
self._train(X_U, y_u, sw_u, depth + 1, title + f" - Up({depth+1})")
)
node.set_down(
self._train(
X_D, y_d, sw_d, depth + 1, title + f" - Down({depth+1})"
)
)
node.set_up(self.train(X_U, y_u, sw_u, depth + 1, title + " - Up"))
node.set_down(self.train(X_D, y_d, sw_d, depth + 1, title + " - Down"))
return node
def _build_predictor(self):
"""Process the leaves to make them predictors
"""
def run_tree(node: Snode):
if node.is_leaf():
node.make_predictor()
return
run_tree(node.get_down())
run_tree(node.get_up())
run_tree(self.tree_)
def _build_clf(self):
""" Build the correct classifier for the node
"""
"""Build the right classifier for the node"""
return (
LinearSVC(
max_iter=self.max_iter,
@@ -566,7 +348,7 @@ class Stree(BaseEstimator, ClassifierMixin):
C=self.C,
tol=self.tol,
)
if self.kernel == "linear"
if self.kernel == "liblinear"
else SVC(
kernel=self.kernel,
max_iter=self.max_iter,
@@ -574,6 +356,8 @@ class Stree(BaseEstimator, ClassifierMixin):
C=self.C,
gamma=self.gamma,
degree=self.degree,
random_state=self.random_state,
decision_function_shape=self.multiclass_strategy,
)
)
@@ -581,12 +365,17 @@ class Stree(BaseEstimator, ClassifierMixin):
def _reorder_results(y: np.array, indices: np.array) -> np.array:
"""Reorder an array based on the array of indices passed
:param y: data untidy
:type y: np.array
:param indices: indices used to set order
:type indices: np.array
:return: array y ordered
:rtype: np.array
Parameters
----------
y : np.array
data untidy
indices : np.array
indices used to set order
Returns
-------
np.array
array y ordered
"""
# return array of same type given in y
y_ordered = y.copy()
@@ -598,10 +387,22 @@ class Stree(BaseEstimator, ClassifierMixin):
def predict(self, X: np.array) -> np.array:
"""Predict labels for each sample in dataset passed
:param X: dataset of samples
:type X: np.array
:return: array of labels
:rtype: np.array
Parameters
----------
X : np.array
dataset of samples
Returns
-------
np.array
array of labels
Raises
------
ValueError
if dataset with inconsistent number of features
NotFittedError
if model is not fitted
"""
def predict_class(
@@ -613,7 +414,7 @@ class Stree(BaseEstimator, ClassifierMixin):
# set a class for every sample in dataset
prediction = np.full((xp.shape[0], 1), node._class)
return prediction, indices
self.splitter_.partition(xp, node)
self.splitter_.partition(xp, node, train=False)
x_u, x_d = self.splitter_.part(xp)
i_u, i_d = self.splitter_.part(indices)
prx_u, prin_u = predict_class(x_u, i_u, node.get_up())
@@ -638,38 +439,30 @@ class Stree(BaseEstimator, ClassifierMixin):
)
return self.classes_[result]
def score(
self, X: np.array, y: np.array, sample_weight: np.array = None
) -> float:
"""Compute accuracy of the prediction
def nodes_leaves(self) -> tuple:
"""Compute the number of nodes and leaves in the built tree
:param X: dataset of samples to make predictions
:type X: np.array
:param y_true: samples labels
:type y_true: np.array
:param sample_weight: weights of the samples. Rescale C per sample.
Hi' weights force the classifier to put more emphasis on these points
:type sample_weight: np.array optional
:return: accuracy of the prediction
:rtype: float
Returns
-------
[tuple]
tuple with the number of nodes and the number of leaves
"""
# sklearn check
check_is_fitted(self)
check_classification_targets(y)
X, y = check_X_y(X, y)
y_pred = self.predict(X).reshape(y.shape)
# Compute accuracy for each possible representation
_, y_true, y_pred = _check_targets(y, y_pred)
check_consistent_length(y_true, y_pred, sample_weight)
score = y_true == y_pred
return _weighted_sum(score, sample_weight, normalize=True)
nodes = 0
leaves = 0
for node in self:
nodes += 1
if node.is_leaf():
leaves += 1
return nodes, leaves
def __iter__(self) -> Siterator:
"""Create an iterator to be able to visit the nodes of the tree in
preorder, can make a list with all the nodes in preorder
:return: an iterator, can for i in... and list(...)
:rtype: Siterator
Returns
-------
Siterator
an iterator, can for i in... and list(...)
"""
try:
tree = self.tree_
@@ -680,8 +473,10 @@ class Stree(BaseEstimator, ClassifierMixin):
def __str__(self) -> str:
"""String representation of the tree
:return: description of nodes in the tree in preorder
:rtype: str
Returns
-------
str
description of nodes in the tree in preorder
"""
output = ""
for i in self:
@@ -705,6 +500,12 @@ class Stree(BaseEstimator, ClassifierMixin):
elif self.max_features is None:
max_features = self.n_features_
elif isinstance(self.max_features, numbers.Integral):
if self.max_features > self.n_features_:
raise ValueError(
"Invalid value for max_features. "
"It can not be greater than number of features "
f"({self.n_features_})"
)
max_features = self.max_features
else: # float
if self.max_features > 0.0:

View File

@@ -1,3 +1,10 @@
from .Strees import Stree, Snode, Siterator, Splitter
from .Strees import Stree, Siterator
__all__ = ["Stree", "Snode", "Siterator", "Splitter"]
__version__ = "1.2.2"
__author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020-2021, Ricardo Montañana Gómez"
__license__ = "MIT License"
__author_email__ = "ricardo.montanana@alu.uclm.es"
__all__ = ["Stree", "Siterator"]

View File

@@ -1,16 +1,19 @@
import os
import unittest
import numpy as np
from stree import Stree, Snode
from stree import Stree
from stree.Splitter import Snode
from .utils import load_dataset
class Snode_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
self._clf = Stree(random_state=self._random_state)
self._clf = Stree(
random_state=self._random_state,
kernel="liblinear",
multiclass_strategy="ovr",
)
self._clf.fit(*load_dataset(self._random_state))
super().__init__(*args, **kwargs)
@@ -40,12 +43,13 @@ class Snode_test(unittest.TestCase):
# Check Class
class_computed = classes[card == max_card]
self.assertEqual(class_computed, node._class)
# Check Partition column
self.assertEqual(node._partition_column, -1)
check_leave(self._clf.tree_)
def test_nodes_coefs(self):
"""Check if the nodes of the tree have the right attributes filled
"""
"""Check if the nodes of the tree have the right attributes filled"""
def run_tree(node: Snode):
if node._belief < 1:
@@ -54,16 +58,44 @@ class Snode_test(unittest.TestCase):
self.assertIsNotNone(node._clf.coef_)
if node.is_leaf():
return
run_tree(node.get_down())
run_tree(node.get_up())
run_tree(node.get_down())
run_tree(self._clf.tree_)
model = Stree(self._random_state)
model.fit(*load_dataset(self._random_state, 3, 4))
run_tree(model.tree_)
def test_make_predictor_on_leaf(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
test.make_predictor()
self.assertEqual(1, test._class)
self.assertEqual(0.75, test._belief)
self.assertEqual(-1, test._partition_column)
def test_set_title(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
self.assertEqual("test", test.get_title())
test.set_title("another")
self.assertEqual("another", test.get_title())
def test_set_classifier(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
clf = Stree()
self.assertIsNone(test.get_classifier())
test.set_classifier(clf)
self.assertEqual(clf, test.get_classifier())
def test_set_impurity(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
self.assertEqual(0.0, test.get_impurity())
test.set_impurity(54.7)
self.assertEqual(54.7, test.get_impurity())
def test_set_features(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [0, 1], 0.0, "test")
self.assertListEqual([0, 1], test.get_features())
test.set_features([1, 2])
self.assertListEqual([1, 2], test.get_features())
def test_make_predictor_on_not_leaf(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
@@ -71,11 +103,14 @@ class Snode_test(unittest.TestCase):
test.make_predictor()
self.assertIsNone(test._class)
self.assertEqual(0, test._belief)
self.assertEqual(-1, test._partition_column)
self.assertEqual(-1, test.get_up()._partition_column)
def test_make_predictor_on_leaf_bogus_data(self):
test = Snode(None, [1, 2, 3, 4], [], [], 0.0, "test")
test.make_predictor()
self.assertIsNone(test._class)
self.assertEqual(-1, test._partition_column)
def test_copy_node(self):
px = [1, 2, 3, 4]
@@ -86,3 +121,6 @@ class Snode_test(unittest.TestCase):
self.assertListEqual(computed._y, py)
self.assertEqual("test", computed._title)
self.assertIsInstance(computed._clf, Stree)
self.assertEqual(test._partition_column, computed._partition_column)
self.assertEqual(test._sample_weight, computed._sample_weight)
self.assertEqual(test._scaler, computed._scaler)

View File

@@ -5,7 +5,8 @@ import random
import numpy as np
from sklearn.svm import SVC
from sklearn.datasets import load_wine, load_iris
from stree import Splitter
from stree.Splitter import Splitter
from .utils import load_dataset, load_disc_dataset
class Splitter_test(unittest.TestCase):
@@ -17,15 +18,15 @@ class Splitter_test(unittest.TestCase):
def build(
clf=SVC,
min_samples_split=0,
splitter_type="random",
feature_select="random",
criterion="gini",
criteria="min_distance",
criteria="max_samples",
random_state=None,
):
return Splitter(
clf=clf(random_state=random_state, kernel="rbf"),
min_samples_split=min_samples_split,
splitter_type=splitter_type,
feature_select=feature_select,
criterion=criterion,
criteria=criteria,
random_state=random_state,
@@ -39,24 +40,20 @@ class Splitter_test(unittest.TestCase):
with self.assertRaises(ValueError):
self.build(criterion="duck")
with self.assertRaises(ValueError):
self.build(splitter_type="duck")
self.build(feature_select="duck")
with self.assertRaises(ValueError):
self.build(criteria="duck")
with self.assertRaises(ValueError):
_ = Splitter(clf=None)
for splitter_type in ["best", "random"]:
for feature_select in ["best", "random"]:
for criterion in ["gini", "entropy"]:
for criteria in [
"min_distance",
"max_samples",
"max_distance",
]:
for criteria in ["max_samples", "impurity"]:
tcl = self.build(
splitter_type=splitter_type,
feature_select=feature_select,
criterion=criterion,
criteria=criteria,
)
self.assertEqual(splitter_type, tcl._splitter_type)
self.assertEqual(feature_select, tcl._feature_select)
self.assertEqual(criterion, tcl._criterion)
self.assertEqual(criteria, tcl._criteria)
@@ -138,78 +135,81 @@ class Splitter_test(unittest.TestCase):
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
]
)
expected = np.array([0.2, 0.01, -0.9, 0.2])
y = [1, 2, 1, 0]
expected = data[:, 0]
y = [1, 2, 1, 0, 0, 0]
computed = tcl._max_samples(data, y)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
self.assertEqual(0, computed)
computed_data = data[:, computed]
self.assertEqual((6,), computed_data.shape)
self.assertListEqual(expected.tolist(), computed_data.tolist())
def test_min_distance(self):
tcl = self.build()
def test_impurity(self):
tcl = self.build(criteria="impurity")
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
]
)
expected = np.array([2, 2, 1, 0])
computed = tcl._min_distance(data, None)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
expected = data[:, 2]
y = np.array([1, 2, 1, 0, 0, 0])
computed = tcl._impurity(data, y)
self.assertEqual(2, computed)
computed_data = data[:, computed]
self.assertEqual((6,), computed_data.shape)
self.assertListEqual(expected.tolist(), computed_data.tolist())
def test_max_distance(self):
tcl = self.build(criteria="max_distance")
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
]
)
expected = np.array([1, 0, 0, 2])
computed = tcl._max_distance(data, None)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
def test_generate_subspaces(self):
features = 250
for max_features in range(2, features):
num = len(Splitter._generate_spaces(features, max_features))
self.assertEqual(5, num)
self.assertEqual(3, len(Splitter._generate_spaces(3, 2)))
self.assertEqual(4, len(Splitter._generate_spaces(4, 3)))
def test_best_splitter_few_sets(self):
X, y = load_iris(return_X_y=True)
X = np.delete(X, 3, 1)
tcl = self.build(splitter_type="best", random_state=self._random_state)
tcl = self.build(
feature_select="best", random_state=self._random_state
)
dataset, computed = tcl.get_subspace(X, y, max_features=2)
self.assertListEqual([0, 2], list(computed))
self.assertListEqual(X[:, computed].tolist(), dataset.tolist())
def test_splitter_parameter(self):
expected_values = [
[2, 3, 5, 7], # best entropy min_distance
[0, 2, 4, 5], # best entropy max_samples
[0, 2, 8, 12], # best entropy max_distance
[1, 2, 5, 12], # best gini min_distance
[0, 3, 4, 10], # best gini max_samples
[1, 2, 9, 12], # best gini max_distance
[3, 9, 11, 12], # random entropy min_distance
[1, 5, 6, 9], # random entropy max_samples
[1, 2, 4, 8], # random entropy max_distance
[2, 6, 7, 12], # random gini min_distance
[3, 9, 10, 11], # random gini max_samples
[2, 5, 8, 12], # random gini max_distance
[0, 6, 11, 12], # best entropy max_samples
[0, 6, 11, 12], # best entropy impurity
[0, 6, 11, 12], # best gini max_samples
[0, 6, 11, 12], # best gini impurity
[0, 3, 8, 12], # random entropy max_samples
[0, 3, 7, 12], # random entropy impurity
[1, 7, 9, 12], # random gini max_samples
[1, 5, 8, 12], # random gini impurity
[6, 9, 11, 12], # mutual entropy max_samples
[6, 9, 11, 12], # mutual entropy impurity
[6, 9, 11, 12], # mutual gini max_samples
[6, 9, 11, 12], # mutual gini impurity
]
X, y = load_wine(return_X_y=True)
rn = 0
for splitter_type in ["best", "random"]:
for feature_select in ["best", "random", "mutual"]:
for criterion in ["entropy", "gini"]:
for criteria in [
"min_distance",
"max_samples",
"max_distance",
"impurity",
]:
tcl = self.build(
splitter_type=splitter_type,
feature_select=feature_select,
criterion=criterion,
criteria=criteria,
)
@@ -219,11 +219,94 @@ class Splitter_test(unittest.TestCase):
dataset, computed = tcl.get_subspace(X, y, max_features=4)
# print(
# "{}, # {:7s}{:8s}{:15s}".format(
# list(computed), splitter_type, criterion,
# list(computed),
# feature_select,
# criterion,
# criteria,
# )
# )
self.assertListEqual(expected, list(computed))
self.assertListEqual(expected, sorted(list(computed)))
self.assertListEqual(
X[:, computed].tolist(), dataset.tolist()
)
def test_get_best_subspaces(self):
results = [
(4, [3, 4, 11, 13]),
(7, [1, 3, 4, 5, 11, 13, 16]),
(9, [1, 3, 4, 5, 7, 10, 11, 13, 16]),
]
X, y = load_dataset(n_features=20)
for k, expected in results:
tcl = self.build(
feature_select="best",
)
Xs, computed = tcl.get_subspace(X, y, k)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_best_subspaces_discrete(self):
results = [
(4, [0, 3, 16, 18]),
(7, [0, 3, 13, 14, 16, 18, 19]),
(9, [0, 3, 7, 13, 14, 15, 16, 18, 19]),
]
X, y = load_disc_dataset(n_features=20)
for k, expected in results:
tcl = self.build(
feature_select="best",
)
Xs, computed = tcl.get_subspace(X, y, k)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_cfs_subspaces(self):
results = [
(4, [1, 5, 9, 12]),
(6, [1, 5, 9, 12, 4, 2]),
(7, [1, 5, 9, 12, 4, 2, 3]),
]
X, y = load_dataset(n_features=20, n_informative=7)
for k, expected in results:
tcl = self.build(feature_select="cfs")
Xs, computed = tcl.get_subspace(X, y, k)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_fcbf_subspaces(self):
results = [
(4, [1, 5, 9, 12]),
(6, [1, 5, 9, 12, 4, 2]),
(7, [1, 5, 9, 12, 4, 2, 16]),
]
for rs, expected in results:
X, y = load_dataset(n_features=20, n_informative=7)
tcl = self.build(feature_select="fcbf", random_state=rs)
Xs, computed = tcl.get_subspace(X, y, rs)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_iwss_subspaces(self):
results = [
(4, [1, 5, 9, 12]),
(6, [1, 5, 9, 12, 4, 15]),
]
for rs, expected in results:
X, y = load_dataset(n_features=20, n_informative=7)
tcl = self.build(feature_select="iwss", random_state=rs)
Xs, computed = tcl.get_subspace(X, y, rs)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
def test_get_trandom_subspaces(self):
results = [
(4, [3, 7, 9, 12]),
(6, [0, 1, 2, 8, 15, 18]),
(7, [1, 2, 4, 8, 10, 12, 13]),
]
for rs, expected in results:
X, y = load_dataset(n_features=20, n_informative=7)
tcl = self.build(feature_select="trandom", random_state=rs)
Xs, computed = tcl.get_subspace(X, y, rs)
self.assertListEqual(expected, list(computed))
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())

View File

@@ -5,28 +5,46 @@ import warnings
import numpy as np
from sklearn.datasets import load_iris, load_wine
from sklearn.exceptions import ConvergenceWarning
from sklearn.svm import LinearSVC
from stree import Stree, Snode
from stree import Stree
from stree.Splitter import Snode
from .utils import load_dataset
class Stree_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
self._kernels = ["linear", "rbf", "poly"]
self._kernels = ["liblinear", "linear", "rbf", "poly", "sigmoid"]
super().__init__(*args, **kwargs)
@classmethod
def setUp(cls):
os.environ["TESTING"] = "1"
def test_valid_kernels(self):
X, y = load_dataset()
for kernel in self._kernels:
clf = Stree(kernel=kernel, multiclass_strategy="ovr")
clf.fit(X, y)
self.assertIsNotNone(clf.tree_)
def test_bogus_kernel(self):
kernel = "other"
X, y = load_dataset()
clf = Stree(kernel=kernel)
with self.assertRaises(ValueError):
clf.fit(X, y)
def _check_tree(self, node: Snode):
"""Check recursively that the nodes that are not leaves have the
correct number of labels and its sons have the right number of elements
in their dataset
Arguments:
node {Snode} -- node to check
Parameters
----------
node : Snode
node to check
"""
if node.is_leaf():
return
@@ -37,37 +55,49 @@ class Stree_test(unittest.TestCase):
# i.e. The partition algorithm didn't forget any sample
self.assertEqual(node._y.shape[0], y_down.shape[0] + y_up.shape[0])
unique_y, count_y = np.unique(node._y, return_counts=True)
_, count_d = np.unique(y_down, return_counts=True)
_, count_u = np.unique(y_up, return_counts=True)
labels_d, count_d = np.unique(y_down, return_counts=True)
labels_u, count_u = np.unique(y_up, return_counts=True)
dict_d = {label: count_d[i] for i, label in enumerate(labels_d)}
dict_u = {label: count_u[i] for i, label in enumerate(labels_u)}
#
for i in unique_y:
number_down = count_d[i]
try:
number_up = count_u[i]
except IndexError:
number_up = dict_u[i]
except KeyError:
number_up = 0
try:
number_down = dict_d[i]
except KeyError:
number_down = 0
self.assertEqual(count_y[i], number_down + number_up)
# Is the partition made the same as the prediction?
# as the node is not a leaf...
_, count_yp = np.unique(y_prediction, return_counts=True)
self.assertEqual(count_yp[0], y_up.shape[0])
self.assertEqual(count_yp[1], y_down.shape[0])
self.assertEqual(count_yp[1], y_up.shape[0])
self.assertEqual(count_yp[0], y_down.shape[0])
self._check_tree(node.get_down())
self._check_tree(node.get_up())
def test_build_tree(self):
"""Check if the tree is built the same way as predictions of models
"""
"""Check if the tree is built the same way as predictions of models"""
warnings.filterwarnings("ignore")
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
clf = Stree(
kernel="sigmoid",
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
random_state=self._random_state,
)
clf.fit(*load_dataset(self._random_state))
self._check_tree(clf.tree_)
def test_single_prediction(self):
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
clf = Stree(
kernel=kernel,
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
random_state=self._random_state,
)
yp = clf.fit(X, y).predict((X[0, :].reshape(-1, X.shape[1])))
self.assertEqual(yp[0], y[0])
@@ -75,8 +105,12 @@ class Stree_test(unittest.TestCase):
# First 27 elements the predictions are the same as the truth
num = 27
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
for kernel in ["liblinear", "linear", "rbf", "poly"]:
clf = Stree(
kernel=kernel,
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
random_state=self._random_state,
)
yp = clf.fit(X, y).predict(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp.tolist())
@@ -86,7 +120,11 @@ class Stree_test(unittest.TestCase):
"""
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
clf = Stree(
kernel=kernel,
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
random_state=self._random_state,
)
clf.fit(X, y)
# Compute prediction line by line
yp_line = np.array([], dtype=int)
@@ -99,26 +137,32 @@ class Stree_test(unittest.TestCase):
self.assertListEqual(yp_line.tolist(), yp_once.tolist())
def test_iterator_and_str(self):
"""Check preorder iterator
"""
"""Check preorder iterator"""
expected = [
"root feaures=(0, 1, 2) impurity=0.5000",
"root - Down feaures=(0, 1, 2) impurity=0.0671",
"root - Down - Down, <cgaf> - Leaf class=1 belief= 0.975989 "
"impurity=0.0469 counts=(array([0, 1]), array([ 17, 691]))",
"root - Down - Up feaures=(0, 1, 2) impurity=0.3967",
"root - Down - Up - Down, <cgaf> - Leaf class=1 belief= 0.750000 "
"impurity=0.3750 counts=(array([0, 1]), array([1, 3]))",
"root - Down - Up - Up, <pure> - Leaf class=0 belief= 1.000000 "
"impurity=0.0000 counts=(array([0]), array([7]))",
"root - Up, <cgaf> - Leaf class=0 belief= 0.928297 impurity=0.1331"
" counts=(array([0, 1]), array([725, 56]))",
"root feaures=(0, 1, 2) impurity=1.0000 counts=(array([0, 1]), "
"array([750, 750]))",
"root - Down(2), <cgaf> - Leaf class=0 belief= 0.928297 impurity="
"0.3722 counts=(array([0, 1]), array([725, 56]))",
"root - Up(2) feaures=(0, 1, 2) impurity=0.2178 counts=(array([0, "
"1]), array([ 25, 694]))",
"root - Up(2) - Down(3) feaures=(0, 1, 2) impurity=0.8454 counts="
"(array([0, 1]), array([8, 3]))",
"root - Up(2) - Down(3) - Down(4), <pure> - Leaf class=0 belief= "
"1.000000 impurity=0.0000 counts=(array([0]), array([7]))",
"root - Up(2) - Down(3) - Up(4), <cgaf> - Leaf class=1 belief= "
"0.750000 impurity=0.8113 counts=(array([0, 1]), array([1, 3]))",
"root - Up(2) - Up(3), <cgaf> - Leaf class=1 belief= 0.975989 "
"impurity=0.1634 counts=(array([0, 1]), array([ 17, 691]))",
]
computed = []
expected_string = ""
clf = Stree(kernel="linear", random_state=self._random_state)
clf = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
)
clf.fit(*load_dataset(self._random_state))
for node in clf:
for node in iter(clf):
computed.append(str(node))
expected_string += str(node) + "\n"
self.assertListEqual(expected, computed)
@@ -154,7 +198,12 @@ class Stree_test(unittest.TestCase):
def test_check_max_depth(self):
depths = (3, 4)
for depth in depths:
tcl = Stree(random_state=self._random_state, max_depth=depth)
tcl = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
max_depth=depth,
)
tcl.fit(*load_dataset(self._random_state))
self.assertEqual(depth, tcl.depth_)
@@ -175,7 +224,7 @@ class Stree_test(unittest.TestCase):
for kernel in self._kernels:
clf = Stree(
kernel=kernel,
split_criteria="max_samples",
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
random_state=self._random_state,
)
px = [[1, 2], [5, 6], [9, 10]]
@@ -186,47 +235,60 @@ class Stree_test(unittest.TestCase):
self.assertListEqual(py, clf.classes_.tolist())
def test_muticlass_dataset(self):
warnings.filterwarnings("ignore", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
datasets = {
"Synt": load_dataset(random_state=self._random_state, n_classes=3),
"Iris": load_iris(return_X_y=True),
"Iris": load_wine(return_X_y=True),
}
outcomes = {
"Synt": {
"max_samples linear": 0.9533333333333334,
"max_samples rbf": 0.836,
"max_samples poly": 0.9473333333333334,
"min_distance linear": 0.9533333333333334,
"min_distance rbf": 0.836,
"min_distance poly": 0.9473333333333334,
"max_distance linear": 0.9533333333333334,
"max_distance rbf": 0.836,
"max_distance poly": 0.9473333333333334,
"max_samples liblinear": 0.9493333333333334,
"max_samples linear": 0.9426666666666667,
"max_samples rbf": 0.9606666666666667,
"max_samples poly": 0.9373333333333334,
"max_samples sigmoid": 0.824,
"impurity liblinear": 0.9493333333333334,
"impurity linear": 0.9426666666666667,
"impurity rbf": 0.9606666666666667,
"impurity poly": 0.9373333333333334,
"impurity sigmoid": 0.824,
},
"Iris": {
"max_samples linear": 0.98,
"max_samples rbf": 1.0,
"max_samples poly": 1.0,
"min_distance linear": 0.98,
"min_distance rbf": 1.0,
"min_distance poly": 1.0,
"max_distance linear": 0.98,
"max_distance rbf": 1.0,
"max_distance poly": 1.0,
"max_samples liblinear": 0.9550561797752809,
"max_samples linear": 1.0,
"max_samples rbf": 0.6685393258426966,
"max_samples poly": 0.6853932584269663,
"max_samples sigmoid": 0.6404494382022472,
"impurity liblinear": 0.9550561797752809,
"impurity linear": 1.0,
"impurity rbf": 0.6685393258426966,
"impurity poly": 0.6853932584269663,
"impurity sigmoid": 0.6404494382022472,
},
}
for name, dataset in datasets.items():
px, py = dataset
for criteria in ["max_samples", "min_distance", "max_distance"]:
for criteria in ["max_samples", "impurity"]:
for kernel in self._kernels:
clf = Stree(
C=1e4,
max_iter=1e4,
multiclass_strategy="ovr"
if kernel == "liblinear"
else "ovo",
kernel=kernel,
random_state=self._random_state,
)
clf.fit(px, py)
outcome = outcomes[name][f"{criteria} {kernel}"]
self.assertAlmostEqual(outcome, clf.score(px, py))
# print(f'"{criteria} {kernel}": {clf.score(px, py)},')
self.assertAlmostEqual(
outcome,
clf.score(px, py),
5,
f"{name} - {criteria} - {kernel}",
)
def test_max_features(self):
n_features = 16
@@ -251,6 +313,12 @@ class Stree_test(unittest.TestCase):
with self.assertRaises(ValueError):
_ = clf._initialize_max_features()
def test_wrong_max_features(self):
X, y = load_dataset(n_features=15)
clf = Stree(max_features=16)
with self.assertRaises(ValueError):
clf.fit(X, y)
def test_get_subspaces(self):
dataset = np.random.random((10, 16))
y = np.random.randint(0, 2, 10)
@@ -288,16 +356,21 @@ class Stree_test(unittest.TestCase):
clf.predict(X[:, :3])
# Tests of score
def test_score_binary(self):
X, y = load_dataset(self._random_state)
accuracies = [
0.9506666666666667,
0.9493333333333334,
0.9606666666666667,
0.9433333333333334,
0.9153333333333333,
]
for kernel, accuracy_expected in zip(self._kernels, accuracies):
clf = Stree(random_state=self._random_state, kernel=kernel,)
clf = Stree(
random_state=self._random_state,
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
kernel=kernel,
)
clf.fit(X, y)
accuracy_score = clf.score(X, y)
yp = clf.predict(X)
@@ -307,110 +380,284 @@ class Stree_test(unittest.TestCase):
def test_score_max_features(self):
X, y = load_dataset(self._random_state)
clf = Stree(random_state=self._random_state, max_features=2)
clf.fit(X, y)
self.assertAlmostEqual(0.9426666666666667, clf.score(X, y))
def test_score_multi_class(self):
warnings.filterwarnings("ignore")
accuracies = [
0.8258427, # Wine linear min_distance
0.6741573, # Wine linear max_distance
0.8314607, # Wine linear max_samples
0.6629213, # Wine rbf min_distance
1.0000000, # Wine rbf max_distance
0.4044944, # Wine rbf max_samples
0.9157303, # Wine poly min_distance
1.0000000, # Wine poly max_distance
0.7640449, # Wine poly max_samples
0.9933333, # Iris linear min_distance
0.9666667, # Iris linear max_distance
0.9666667, # Iris linear max_samples
0.9800000, # Iris rbf min_distance
0.9800000, # Iris rbf max_distance
0.9800000, # Iris rbf max_samples
1.0000000, # Iris poly min_distance
1.0000000, # Iris poly max_distance
1.0000000, # Iris poly max_samples
0.8993333, # Synthetic linear min_distance
0.6533333, # Synthetic linear max_distance
0.9313333, # Synthetic linear max_samples
0.8320000, # Synthetic rbf min_distance
0.6660000, # Synthetic rbf max_distance
0.8320000, # Synthetic rbf max_samples
0.6066667, # Synthetic poly min_distance
0.6840000, # Synthetic poly max_distance
0.6340000, # Synthetic poly max_samples
]
datasets = [
("Wine", load_wine(return_X_y=True)),
("Iris", load_iris(return_X_y=True)),
(
"Synthetic",
load_dataset(self._random_state, n_classes=3, n_features=5),
),
]
for dataset_name, dataset in datasets:
X, y = dataset
for kernel in self._kernels:
for criteria in [
"min_distance",
"max_distance",
"max_samples",
]:
clf = Stree(
C=17,
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
kernel=kernel,
split_criteria=criteria,
degree=5,
gamma="auto",
max_features=2,
)
clf.fit(X, y)
accuracy_score = clf.score(X, y)
yp = clf.predict(X)
accuracy_computed = np.mean(yp == y)
# print(
# "{:.7f}, # {:7} {:5} {}".format(
# accuracy_score, dataset_name, kernel, criteria
# )
# )
accuracy_expected = accuracies.pop(0)
self.assertEqual(accuracy_score, accuracy_computed)
self.assertAlmostEqual(accuracy_expected, accuracy_score)
self.assertAlmostEqual(0.9453333333333334, clf.score(X, y))
def test_bogus_splitter_parameter(self):
clf = Stree(splitter="duck")
with self.assertRaises(ValueError):
clf.fit(*load_dataset())
def test_weights_removing_class(self):
# This patch solves an stderr message from sklearn svm lib
# "WARNING: class label x specified in weight is not found"
def test_multiclass_classifier_integrity(self):
"""Checks if the multiclass operation is done right"""
X, y = load_iris(return_X_y=True)
clf = Stree(
kernel="liblinear", multiclass_strategy="ovr", random_state=0
)
clf.fit(X, y)
score = clf.score(X, y)
# Check accuracy of the whole model
self.assertAlmostEquals(0.98, score, 5)
svm = LinearSVC(random_state=0)
svm.fit(X, y)
self.assertAlmostEquals(0.9666666666666667, svm.score(X, y), 5)
data = svm.decision_function(X)
expected = [
0.4444444444444444,
0.35777777777777775,
0.4569777777777778,
]
ty = data.copy()
ty[data <= 0] = 0
ty[data > 0] = 1
ty = ty.astype(int)
for i in range(3):
self.assertAlmostEquals(
expected[i],
clf.splitter_._gini(ty[:, i]),
)
# 1st Branch
# up has to have 50 samples of class 0
# down should have 100 [50, 50]
up = data[:, 2] > 0
resup = np.unique(y[up], return_counts=True)
resdn = np.unique(y[~up], return_counts=True)
self.assertListEqual([1, 2], resup[0].tolist())
self.assertListEqual([3, 50], resup[1].tolist())
self.assertListEqual([0, 1], resdn[0].tolist())
self.assertListEqual([50, 47], resdn[1].tolist())
# 2nd Branch
# up should have 53 samples of classes [1, 2] [3, 50]
# down shoud have 47 samples of class 1
node_up = clf.tree_.get_down().get_up()
node_dn = clf.tree_.get_down().get_down()
resup = np.unique(node_up._y, return_counts=True)
resdn = np.unique(node_dn._y, return_counts=True)
self.assertListEqual([1, 2], resup[0].tolist())
self.assertListEqual([3, 50], resup[1].tolist())
self.assertListEqual([1], resdn[0].tolist())
self.assertListEqual([47], resdn[1].tolist())
def test_score_multiclass_rbf(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(kernel="rbf", random_state=self._random_state)
clf2 = Stree(
kernel="rbf", random_state=self._random_state, normalize=True
)
self.assertEqual(0.966, clf.fit(X, y).score(X, y))
self.assertEqual(0.964, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.6685393258426966, clf.fit(X, y).score(X, y))
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_poly(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(
kernel="poly", random_state=self._random_state, C=10, degree=5
)
clf2 = Stree(
kernel="poly",
random_state=self._random_state,
normalize=True,
)
self.assertEqual(0.946, clf.fit(X, y).score(X, y))
self.assertEqual(0.972, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.7808988764044944, clf.fit(X, y).score(X, y))
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_liblinear(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
C=10,
)
clf2 = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
normalize=True,
)
self.assertEqual(0.968, clf.fit(X, y).score(X, y))
self.assertEqual(0.97, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(1.0, clf.fit(X, y).score(X, y))
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_sigmoid(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(kernel="sigmoid", random_state=self._random_state, C=10)
clf2 = Stree(
kernel="sigmoid",
random_state=self._random_state,
normalize=True,
C=10,
)
self.assertEqual(0.796, clf.fit(X, y).score(X, y))
self.assertEqual(0.952, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.6910112359550562, clf.fit(X, y).score(X, y))
self.assertEqual(0.9662921348314607, clf2.fit(X, y).score(X, y))
def test_score_multiclass_linear(self):
warnings.filterwarnings("ignore", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=1500,
)
clf = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
)
self.assertEqual(0.9533333333333334, clf.fit(X, y).score(X, y))
# Check with context based standardization
clf2 = Stree(
kernel="liblinear",
multiclass_strategy="ovr",
random_state=self._random_state,
normalize=True,
)
self.assertEqual(0.9526666666666667, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.9831460674157303, clf.fit(X, y).score(X, y))
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_zero_all_sample_weights(self):
X, y = load_dataset(self._random_state)
with self.assertRaises(ValueError):
Stree().fit(X, y, np.zeros(len(y)))
def test_mask_samples_weighted_zero(self):
X = np.array(
[
[0.1, 0.1],
[0.1, 0.2],
[0.2, 0.1],
[5, 6],
[8, 9],
[6, 7],
[0.2, 0.2],
[1, 1],
[1, 1],
[1, 1],
[2, 2],
[2, 2],
[2, 2],
[3, 3],
[3, 3],
[3, 3],
]
)
y = np.array([0, 0, 0, 1, 1, 1, 0])
epsilon = 1e-5
weights = [1, 1, 1, 0, 0, 0, 1]
weights = np.array(weights, dtype="float64")
weights_epsilon = [x + epsilon for x in weights]
weights_no_zero = np.array([1, 1, 1, 0, 0, 2, 1])
original = weights_no_zero.copy()
clf = Stree()
y = np.array([1, 1, 1, 2, 2, 2, 5, 5, 5])
yw = np.array([1, 1, 1, 1, 1, 1, 5, 5, 5])
w = [1, 1, 1, 0, 0, 0, 1, 1, 1]
model1 = Stree().fit(X, y)
model2 = Stree().fit(X, y, w)
predict1 = model1.predict(X)
predict2 = model2.predict(X)
self.assertListEqual(y.tolist(), predict1.tolist())
self.assertListEqual(yw.tolist(), predict2.tolist())
self.assertEqual(model1.score(X, y), 1)
self.assertAlmostEqual(model2.score(X, y), 0.66666667)
self.assertEqual(model2.score(X, y, w), 1)
def test_depth(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=1500,
)
clf = Stree(random_state=self._random_state)
clf.fit(X, y)
self.assertEqual(6, clf.depth_)
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)
clf.fit(X, y)
self.assertEqual(4, clf.depth_)
def test_nodes_leaves(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=1500,
)
clf = Stree(random_state=self._random_state)
clf.fit(X, y)
nodes, leaves = clf.nodes_leaves()
self.assertEqual(31, nodes)
self.assertEqual(16, leaves)
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)
clf.fit(X, y)
nodes, leaves = clf.nodes_leaves()
self.assertEqual(11, nodes)
self.assertEqual(6, leaves)
def test_nodes_leaves_artificial(self):
n1 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test1")
n2 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test2")
n3 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test3")
n4 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test4")
n5 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test5")
n6 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test6")
n1.set_up(n2)
n2.set_up(n3)
n2.set_down(n4)
n3.set_up(n5)
n4.set_down(n6)
clf = Stree(random_state=self._random_state)
clf.tree_ = n1
nodes, leaves = clf.nodes_leaves()
self.assertEqual(6, nodes)
self.assertEqual(2, leaves)
def test_bogus_multiclass_strategy(self):
clf = Stree(multiclass_strategy="other")
X, y = load_wine(return_X_y=True)
with self.assertRaises(ValueError):
clf.fit(X, y)
def test_multiclass_strategy(self):
X, y = load_wine(return_X_y=True)
clf_o = Stree(multiclass_strategy="ovo")
clf_r = Stree(multiclass_strategy="ovr")
score_o = clf_o.fit(X, y).score(X, y)
score_r = clf_r.fit(X, y).score(X, y)
self.assertEqual(1.0, score_o)
self.assertEqual(0.9269662921348315, score_r)
def test_incompatible_hyperparameters(self):
X, y = load_wine(return_X_y=True)
clf = Stree(kernel="liblinear", multiclass_strategy="ovo")
with self.assertRaises(ValueError):
clf.fit(X, y)
clf = Stree(multiclass_strategy="ovo", split_criteria="max_samples")
with self.assertRaises(ValueError):
clf.fit(X, y)
node = clf.train(X, y, weights, 1, "test",)
# if a class is lost with zero weights the patch adds epsilon
self.assertListEqual(weights.tolist(), weights_epsilon)
self.assertListEqual(node._sample_weight.tolist(), weights_epsilon)
# zero weights are ok when they don't erase a class
_ = clf.train(X, y, weights_no_zero, 1, "test")
self.assertListEqual(weights_no_zero.tolist(), original.tolist())

View File

@@ -1,11 +1,14 @@
from sklearn.datasets import make_classification
import numpy as np
def load_dataset(random_state=0, n_classes=2, n_features=3):
def load_dataset(
random_state=0, n_classes=2, n_features=3, n_samples=1500, n_informative=3
):
X, y = make_classification(
n_samples=1500,
n_samples=n_samples,
n_features=n_features,
n_informative=3,
n_informative=n_informative,
n_redundant=0,
n_repeated=0,
n_classes=n_classes,
@@ -15,3 +18,12 @@ def load_dataset(random_state=0, n_classes=2, n_features=3):
random_state=random_state,
)
return X, y
def load_disc_dataset(
random_state=0, n_classes=2, n_features=3, n_samples=1500
):
np.random.seed(random_state)
X = np.random.randint(1, 17, size=(n_samples, n_features)).astype(float)
y = np.random.randint(low=0, high=n_classes, size=(n_samples), dtype=int)
return X, y