Compare commits

...

5 Commits

Author SHA1 Message Date
724a4855fb Adapt some notebooks 2020-05-30 11:09:59 +02:00
a22ae81b54 Refactor split_data adding sample_weight 2020-05-29 18:52:23 +02:00
ed98054f0d First approach
Added max_depth, tol, weighted samples
2020-05-29 12:46:10 +02:00
e95bd9697a Make Stree a sklearn estimator
Added check_estimator in notebook test2
Added a Stree test with check_estimator
2020-05-25 19:51:39 +02:00
5956cd0cd2 Update google colab setup in notebooks
Undate save_all in grapher to make dest. folder if it doesn't exist
2020-05-24 20:13:27 +02:00
14 changed files with 1014 additions and 592 deletions

View File

@@ -2,7 +2,7 @@
# Stree # Stree
Oblique Tree classifier based on SVM nodes Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn LinearSVC models.Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.
![Stree](https://raw.github.com/doctorado-ml/stree/master/example.png) ![Stree](https://raw.github.com/doctorado-ml/stree/master/example.png)
@@ -18,15 +18,15 @@ pip install git+https://github.com/doctorado-ml/stree
##### Slow launch but better integration ##### Slow launch but better integration
* [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/test.ipynb) Test notebook * [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/notebooks/test.ipynb) Test notebook
##### Fast launch but have to run first commented out cell for setup ##### Fast launch but have to run first commented out cell for setup
* [![Test](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/test.ipynb) Test notebook * [![Test](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test.ipynb) Test notebook
* [![Test2](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/test2.ipynb) Another Test notebook * [![Test2](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test2.ipynb) Another Test notebook
* [![Test Graphics](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/test_graphs.ipynb) Test Graphics notebook * [![Test Graphics](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test_graphs.ipynb) Test Graphics notebook
### Command line ### Command line

1
data/.gitignore vendored
View File

@@ -1 +0,0 @@
*

190
notebooks/adaboost.ipynb Normal file
View File

@@ -0,0 +1,190 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
"from sklearn.datasets import load_iris\n",
"from stree import Stree"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.244% 196\nValid: 99.755% 80234\nX.shape (1196, 28) y.shape (1196,)\nFraud: 16.722% 200\nValid: 83.278% 996\n"
}
],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"data = load_creditcard(-1000) # Take all true samples + 1000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"# data = load_creditcard(0) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Score Train: 0.986857825567503\nScore Test: 0.9805013927576601\nTook 0.12 seconds\n"
}
],
"source": [
"now = time.time()\n",
"clf = Stree(max_depth=3, random_state=random_state)\n",
"clf.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf.score(Xtest, ytest))\n",
"print(f\"Took {time.time() - now:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Score Train: 0.997610513739546\nScore Test: 0.9721448467966574\nTook 7.80 seconds\n"
}
],
"source": [
"now = time.time()\n",
"clf2 = AdaBoostClassifier(Stree(max_depth=3, random_state=random_state), n_estimators=100, random_state=random_state)\n",
"clf2.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf2.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf2.score(Xtest, ytest))\n",
"print(f\"Took {time.time() - now:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Score Train: 0.9796893667861409\nScore Test: 0.9554317548746518\nTook 0.48 seconds\n"
}
],
"source": [
"now = time.time()\n",
"clf3 = AdaBoostClassifier(LinearSVC(random_state=random_state), n_estimators=100, random_state=random_state, algorithm='SAMME')\n",
"clf3.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf3.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf3.score(Xtest, ytest))\n",
"print(f\"Took {time.time() - now:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Score Train: 1.0\nScore Test: 0.9721448467966574\nTook 0.86 seconds\n"
}
],
"source": [
"now = time.time()\n",
"clf4 = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1, random_state=random_state), n_estimators=100, random_state=random_state)\n",
"clf4.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf4.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf4.score(Xtest, ytest))\n",
"print(f\"Took {time.time() - now:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39",
"display_name": "Python 3.7.6 64-bit ('general': venv)"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -9,10 +9,7 @@
"#\n", "#\n",
"# Google Colab setup\n", "# Google Colab setup\n",
"#\n", "#\n",
"#import os\n", "#!pip install git+https://github.com/doctorado-ml/stree"
"#os.chdir(\"/content\")\n",
"#!git clone https://github.com/Doctorado-ML/STree.git\n",
"#os.chdir(\"/content/STree\")"
] ]
}, },
{ {

236
notebooks/gridsearch.ipynb Normal file

File diff suppressed because one or more lines are too long

View File

@@ -9,10 +9,7 @@
"#\n", "#\n",
"# Google Colab setup\n", "# Google Colab setup\n",
"#\n", "#\n",
"#import os\n", "#!pip install git+https://github.com/doctorado-ml/stree"
"#os.chdir(\"/content\")\n",
"#!git clone https://github.com/Doctorado-ML/STree.git\n",
"#os.chdir(\"/content/STree\")"
] ]
}, },
{ {

227
notebooks/test2.ipynb Normal file
View File

@@ -0,0 +1,227 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.datasets import make_classification, load_iris, load_wine\n",
"from sklearn.model_selection import train_test_split\n",
"from stree import Stree\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.244% 196\nValid: 99.755% 80234\nX.shape (1196, 28) y.shape (1196,)\nFraud: 16.722% 200\nValid: 83.278% 996\n"
}
],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"# data = load_creditcard(-5000) # Take all true samples + 5000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"data = load_creditcard(-1000) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": [
"outputPrepend"
]
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9797\nClassifier's accuracy (test) : 0.9749\nroot\nroot - Down\nroot - Down - Down, <cgaf> - Leaf class=1.0 belief=0.984127 counts=(array([0., 1.]), array([ 2, 124]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up\nroot - Up - Down, <cgaf> - Leaf class=0.0 belief=0.750000 counts=(array([0., 1.]), array([3, 1]))\nroot - Up - Up\nroot - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.980029 counts=(array([0., 1.]), array([687, 14]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9809\nClassifier's accuracy (test) : 0.9749\nroot\nroot - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([124]))\nroot - Up, <cgaf> - Leaf class=0.0 belief=0.977560 counts=(array([0., 1.]), array([697, 16]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9869\nClassifier's accuracy (test) : 0.9749\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([129]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([2]))\nroot - Up, <cgaf> - Leaf class=0.0 belief=0.984419 counts=(array([0., 1.]), array([695, 11]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9869\nClassifier's accuracy (test) : 0.9777\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([129]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([2]))\nroot - Up, <cgaf> - Leaf class=0.0 belief=0.984419 counts=(array([0., 1.]), array([695, 11]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9916\nClassifier's accuracy (test) : 0.9833\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([131]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([8]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.989855 counts=(array([0., 1.]), array([683, 7]))\n\n**************************************************\n0.2235 secs\n"
}
],
"source": [
"t = time.time()\n",
"for C in (.001, .01, 1, 5, 17):\n",
" clf = Stree(C=C, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" print(f\"************** C={C} ****************************\")\n",
" print(f\"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}\")\n",
" print(f\"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}\")\n",
" print(clf)\n",
" print(f\"**************************************************\")\n",
"print(f\"{time.time() - t:.4f} secs\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.calibration import CalibratedClassifierCV\n",
"scaler = StandardScaler()\n",
"cclf = CalibratedClassifierCV(base_estimator=LinearSVC(), cv=5)\n",
"cclf.fit(Xtrain, ytrain)\n",
"res = cclf.predict_proba(Xtest)\n",
"#an array containing probabilities of belonging to the 1st class"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([131]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([8]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.989855 counts=(array([0., 1.]), array([683, 7]))\n"
}
],
"source": [
"#check iterator\n",
"for i in list(clf):\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([131]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([8]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.989855 counts=(array([0., 1.]), array([683, 7]))\n"
}
],
"source": [
"#check iterator again\n",
"for i in clf:\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# Check if the classifier is a sklearn estimator\n",
"from sklearn.utils.estimator_checks import check_estimator\n",
"check_estimator(Stree())"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "1 functools.partial(<function check_no_attributes_set_in_init at 0x12aabb320>, 'Stree')\n2 functools.partial(<function check_estimators_dtypes at 0x12aab0440>, 'Stree')\n3 functools.partial(<function check_fit_score_takes_y at 0x12aab0320>, 'Stree')\n4 functools.partial(<function check_sample_weights_pandas_series at 0x12aaaac20>, 'Stree')\n5 functools.partial(<function check_sample_weights_not_an_array at 0x12aaaad40>, 'Stree')\n6 functools.partial(<function check_sample_weights_list at 0x12aaaae60>, 'Stree')\n7 functools.partial(<function check_sample_weights_shape at 0x12aaaaf80>, 'Stree')\n8 functools.partial(<function check_sample_weights_invariance at 0x12aaac0e0>, 'Stree')\n9 functools.partial(<function check_estimators_fit_returns_self at 0x12aab6440>, 'Stree')\n10 functools.partial(<function check_estimators_fit_returns_self at 0x12aab6440>, 'Stree', readonly_memmap=True)\n11 functools.partial(<function check_complex_data at 0x12aaac290>, 'Stree')\n12 functools.partial(<function check_dtype_object at 0x12aaac200>, 'Stree')\n13 functools.partial(<function check_estimators_empty_data_messages at 0x12aab0560>, 'Stree')\n14 functools.partial(<function check_pipeline_consistency at 0x12aab0200>, 'Stree')\n15 functools.partial(<function check_estimators_nan_inf at 0x12aab0680>, 'Stree')\n16 functools.partial(<function check_estimators_overwrite_params at 0x12aabb200>, 'Stree')\n17 functools.partial(<function check_estimator_sparse_data at 0x12aaaab00>, 'Stree')\n18 functools.partial(<function check_estimators_pickle at 0x12aab08c0>, 'Stree')\n19 functools.partial(<function check_classifier_data_not_an_array at 0x12aabb560>, 'Stree')\n20 functools.partial(<function check_classifiers_one_label at 0x12aab0f80>, 'Stree')\n21 functools.partial(<function check_classifiers_classes at 0x12aab69e0>, 'Stree')\n22 functools.partial(<function check_estimators_partial_fit_n_features at 0x12aab09e0>, 'Stree')\n23 functools.partial(<function check_classifiers_train at 0x12aab60e0>, 'Stree')\n24 functools.partial(<function check_classifiers_train at 0x12aab60e0>, 'Stree', readonly_memmap=True)\n25 functools.partial(<function check_classifiers_train at 0x12aab60e0>, 'Stree', readonly_memmap=True, X_dtype='float32')\n26 functools.partial(<function check_classifiers_regression_target at 0x12aabf050>, 'Stree')\n27 functools.partial(<function check_supervised_y_no_nan at 0x12aaa0c20>, 'Stree')\n28 functools.partial(<function check_supervised_y_2d at 0x12aab6680>, 'Stree')\n29 functools.partial(<function check_estimators_unfitted at 0x12aab6560>, 'Stree')\n30 functools.partial(<function check_non_transformer_estimators_n_iter at 0x12aabbb90>, 'Stree')\n31 functools.partial(<function check_decision_proba_consistency at 0x12aabf170>, 'Stree')\n32 functools.partial(<function check_fit2d_predict1d at 0x12aaac7a0>, 'Stree')\n33 functools.partial(<function check_methods_subset_invariance at 0x12aaac950>, 'Stree')\n34 functools.partial(<function check_fit2d_1sample at 0x12aaaca70>, 'Stree')\n35 functools.partial(<function check_fit2d_1feature at 0x12aaacb90>, 'Stree')\n36 functools.partial(<function check_fit1d at 0x12aaaccb0>, 'Stree')\n37 functools.partial(<function check_get_params_invariance at 0x12aabbdd0>, 'Stree')\n38 functools.partial(<function check_set_params at 0x12aabbef0>, 'Stree')\n39 functools.partial(<function check_dict_unchanged at 0x12aaac3b0>, 'Stree')\n40 functools.partial(<function check_dont_overwrite_parameters at 0x12aaac680>, 'Stree')\n41 functools.partial(<function check_fit_idempotent at 0x12aabf320>, 'Stree')\n42 functools.partial(<function check_n_features_in at 0x12aabf3b0>, 'Stree')\n"
}
],
"source": [
"# Make checks one by one\n",
"c = 0\n",
"checks = check_estimator(Stree(), generate_only=True)\n",
"for check in checks:\n",
" c += 1\n",
" print(c, check[1])\n",
" check[1](check[0])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.7.6 64-bit ('general': venv)",
"language": "python",
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

197
notebooks/test_graphs.ipynb Normal file
View File

@@ -0,0 +1,197 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "ModuleNotFoundError",
"evalue": "No module named 'stree'",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-12-36af63297651>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdatasets\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmake_blobs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msvm\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLinearSVC\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mstree\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mStree\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mStree_grapher\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'stree'"
]
}
],
"source": [
"import time\n",
"import random\n",
"import numpy as np\n",
"from sklearn.datasets import make_blobs\n",
"from sklearn.svm import LinearSVC\n",
"from stree import Stree, Stree_grapher"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def build_data(random_state):\n",
" random.seed(random_state)\n",
" X, y = make_blobs(centers=10, n_features=3, n_samples=500, random_state=random_state)\n",
" def make_binary(y):\n",
" for i in range(2, 10):\n",
" y[y==i] = random.randint(0, 1)\n",
" return y\n",
" y = make_binary(y)\n",
" #print(X.shape, np.unique(y), y[y==0].shape, y[y==1].shape)\n",
" return X, y"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'Stree_grapher' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-4-b909470cb406>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuild_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mgr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mStree_grapher\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mC\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m.01\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmax_iter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#gr.save_all(save_folder='data/', save_prefix='7')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'Stree_grapher' is not defined"
]
}
],
"source": [
"X, y = build_data(10)\n",
"gr = Stree_grapher(dict(C=.01, max_iter=200))\n",
"gr.fit(X, y)\n",
"#gr.save_all(save_folder='data/', save_prefix='7')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'gr' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-5-efa3db892bfd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
]
}
],
"source": [
"print(gr)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'gr' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-6-0e62f081c9aa>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Agg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_folder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'data/'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
]
}
],
"source": [
"import matplotlib\n",
"matplotlib.use('Agg')\n",
"gr.save_all(save_folder='data/')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'gr' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-7-b0484cfe9d26>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m#%matplotlib inline\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'matplotlib'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'widget'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_tree_gr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_hyperplane\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
]
}
],
"source": [
"#Uncomment one of the following lines to display graphics: static(inline), dynamic(widget)\n",
"#%matplotlib inline\n",
"%matplotlib widget\n",
"gr._tree_gr.plot_hyperplane()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'gr' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-8-4277c1aacbe2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'matplotlib'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'inline'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m#%matplotlib widget\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
]
}
],
"source": [
"#Uncomment one of the following lines to display graphics: static(inline), dynamic(widget)\n",
"%matplotlib inline\n",
"#%matplotlib widget\n",
"gr.plot_all()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,6 +1,6 @@
import setuptools import setuptools
__version__ = "0.9rc1" __version__ = "0.9rc3"
__author__ = "Ricardo Montañana Gómez" __author__ = "Ricardo Montañana Gómez"
def readme(): def readme():
@@ -12,7 +12,7 @@ setuptools.setup(
name='STree', name='STree',
version=__version__, version=__version__,
license='MIT License', license='MIT License',
description='a python interface to oblique decision tree implementations', description='Oblique decision tree with svm nodes',
long_description=readme(), long_description=readme(),
long_description_content_type='text/markdown', long_description_content_type='text/markdown',
packages=setuptools.find_packages(), packages=setuptools.find_packages(),
@@ -34,7 +34,6 @@ setuptools.setup(
'matplotlib', 'matplotlib',
'ipympl' 'ipympl'
], ],
data_files=[('data', ['data/.gitignore'])],
test_suite="stree.tests", test_suite="stree.tests",
zip_safe=False zip_safe=False
) )

View File

@@ -13,7 +13,9 @@ import os
import numpy as np import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.svm import LinearSVC from sklearn.svm import LinearSVC
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted, _check_sample_weight, check_random_state
class Snode: class Snode:
def __init__(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray, title: str): def __init__(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray, title: str):
@@ -97,61 +99,84 @@ class Siterator:
self._push(node.get_down()) self._push(node.get_down())
return node return node
class Stree(BaseEstimator, ClassifierMixin): class Stree(BaseEstimator, ClassifierMixin):
""" """
""" """
def __init__(self, C: float = 1.0, max_iter: int = 1000, random_state: int = 0, use_predictions: bool = False): def __init__(self, C: float = 1.0, max_iter: int = 1000, random_state: int = None,
self._max_iter = max_iter max_depth: int=None, tol: float=1e-4, use_predictions: bool = False):
self._C = C self.max_iter = max_iter
self._random_state = random_state self.C = C
self._tree = None self.random_state = random_state
self.__folder = 'data/' self.use_predictions = use_predictions
self.__use_predictions = use_predictions self.max_depth = max_depth
self.__trained = False self.tol = tol
self.__proba = False
def get_params(self, deep=True): def get_params(self, deep: bool=True) -> dict:
"""Get dict with hyperparameters and its values to accomplish sklearn rules """Get dict with hyperparameters and its values to accomplish sklearn rules
""" """
return {"C": self._C, "random_state": self._random_state, 'max_iter': self._max_iter} return {
'C': self.C,
'random_state': self.random_state,
'max_iter': self.max_iter,
'use_predictions': self.use_predictions,
'max_depth': self.max_depth,
'tol': self.tol
}
def set_params(self, **parameters): def set_params(self, **parameters: dict):
"""Set hyperparmeters as specified by sklearn, needed in Gridsearchs """Set hyperparmeters as specified by sklearn, needed in Gridsearchs
""" """
for parameter, value in parameters.items(): for parameter, value in parameters.items():
setattr(self, parameter, value) setattr(self, parameter, value)
return self return self
# Added binary_only tag as required by sklearn check_estimator
def _more_tags(self) -> dict:
return {'binary_only': True}
def _linear_function(self, data: np.array, node: Snode) -> np.array: def _linear_function(self, data: np.array, node: Snode) -> np.array:
coef = node._vector[0, :].reshape(-1, data.shape[1]) coef = node._vector[0, :].reshape(-1, data.shape[1])
return data.dot(coef.T) + node._interceptor[0] return data.dot(coef.T) + node._interceptor[0]
def _split_data(self, node: Snode, data: np.ndarray, indices: np.ndarray) -> list: def _split_array(self, origin: np.array, down: np.array) -> list:
if self.__use_predictions: up = ~down
yp = node._clf.predict(data) return origin[up[:, 0]] if any(up) else None, \
down = (yp == 1).reshape(-1, 1) origin[down[:, 0]] if any(down) else None
def _distances(self, node: Snode, data: np.ndarray) -> np.array:
if self.use_predictions:
res = np.expand_dims(node._clf.decision_function(data), 1) res = np.expand_dims(node._clf.decision_function(data), 1)
else: else:
# doesn't work with multiclass as each sample has to do inner product with its own coeficients # doesn't work with multiclass as each sample has to do inner product with its own coeficients
# computes positition of every sample is w.r.t. the hyperplane # computes positition of every sample is w.r.t. the hyperplane
res = self._linear_function(data, node) res = self._linear_function(data, node)
down = res > 0 return res
up = ~down
data_down = data[down[:, 0]] if any(down) else None
indices_down = indices[down[:, 0]] if any(down) else None
res_down = res[down[:, 0]] if any(down) else None
data_up = data[up[:, 0]] if any(up) else None
indices_up = indices[up[:, 0]] if any(up) else None
res_up = res[up[:, 0]] if any(up) else None
return [data_up, indices_up, data_down, indices_down, res_up, res_down]
def fit(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> 'Stree': def _split_criteria(self, data: np.array) -> np.array:
X, y = check_X_y(X, y.ravel()) return data > 0
def fit(self, X: np.ndarray, y: np.ndarray, sample_weight: np.array = None) -> 'Stree':
# Check parameters are Ok.
if type(y).__name__ == 'np.ndarray':
y = y.ravel()
if self.C < 0:
raise ValueError(f"Penalty term must be positive... got (C={self.C:f})")
self.__max_depth = np.iinfo(np.int32).max if self.max_depth is None else self.max_depth
if self.__max_depth < 1:
raise ValueError(f"Maximum depth has to be greater than 1... got (max_depth={self.max_depth})")
check_classification_targets(y)
X, y = check_X_y(X, y)
sample_weight = _check_sample_weight(sample_weight, X)
check_classification_targets(y)
# Initialize computed parameters
self.classes_ = np.unique(y)
self.n_iter_ = self.max_iter
self.depth_ = 0
self.n_features_in_ = X.shape[1] self.n_features_in_ = X.shape[1]
self._tree = self.train(X, y.ravel(), title) self.tree_ = self.train(X, y, sample_weight, 1, 'root')
self._build_predictor() self._build_predictor()
self.__trained = True
return self return self
def _build_predictor(self): def _build_predictor(self):
@@ -165,27 +190,39 @@ class Stree(BaseEstimator, ClassifierMixin):
run_tree(node.get_down()) run_tree(node.get_down())
run_tree(node.get_up()) run_tree(node.get_up())
run_tree(self._tree) run_tree(self.tree_)
def train(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> Snode: def train(self, X: np.ndarray, y: np.ndarray, sample_weight: np.ndarray, depth: int, title: str) -> Snode:
if depth > self.__max_depth:
return None
if np.unique(y).shape[0] == 1 : if np.unique(y).shape[0] == 1 :
# only 1 class => pure dataset # only 1 class => pure dataset
return Snode(None, X, y, title + ', <pure>') return Snode(None, X, y, title + ', <pure>')
# Train the model # Train the model
clf = LinearSVC(max_iter=self._max_iter, C=self._C, clf = LinearSVC(max_iter=self.max_iter, random_state=self.random_state,
random_state=self._random_state) C=self.C) #, sample_weight=sample_weight)
clf.fit(X, y) clf.fit(X, y, sample_weight=sample_weight)
tree = Snode(clf, X, y, title) tree = Snode(clf, X, y, title)
X_U, y_u, X_D, y_d, _, _ = self._split_data(tree, X, y) self.depth_ = max(depth, self.depth_)
down = self._split_criteria(self._distances(tree, X))
X_U, X_D = self._split_array(X, down)
y_u, y_d = self._split_array(y, down)
sw_u, sw_d = self._split_array(sample_weight, down)
if X_U is None or X_D is None: if X_U is None or X_D is None:
# didn't part anything # didn't part anything
return Snode(clf, X, y, title + ', <cgaf>') return Snode(clf, X, y, title + ', <cgaf>')
tree.set_up(self.train(X_U, y_u, title + ' - Up')) tree.set_up(self.train(X_U, y_u, sw_u, depth + 1, title + ' - Up'))
tree.set_down(self.train(X_D, y_d, title + ' - Down')) tree.set_down(self.train(X_D, y_d, sw_d, depth + 1, title + ' - Down'))
return tree return tree
def _reorder_results(self, y: np.array, indices: np.array) -> np.array: def _reorder_results(self, y: np.array, indices: np.array) -> np.array:
y_ordered = np.zeros(y.shape, dtype=int if y.ndim == 1 else float) if y.ndim > 1 and y.shape[1] > 1:
# if predict_proba return np.array of floats
y_ordered = np.zeros(y.shape, dtype=float)
else:
# return array of same type given in y
y_ordered = y.copy()
indices = indices.astype(int) indices = indices.astype(int)
for i, index in enumerate(indices): for i, index in enumerate(indices):
y_ordered[index] = y[i] y_ordered[index] = y[i]
@@ -199,23 +236,23 @@ class Stree(BaseEstimator, ClassifierMixin):
# set a class for every sample in dataset # set a class for every sample in dataset
prediction = np.full((xp.shape[0], 1), node._class) prediction = np.full((xp.shape[0], 1), node._class)
return prediction, indices return prediction, indices
u, i_u, d, i_d, _, _ = self._split_data(node, xp, indices) down = self._split_criteria(self._distances(node, xp))
k, l = predict_class(d, i_d, node.get_down()) X_U, X_D = self._split_array(xp, down)
m, n = predict_class(u, i_u, node.get_up()) i_u, i_d = self._split_array(indices, down)
return np.append(k, m), np.append(l, n) prx_u, prin_u = predict_class(X_U, i_u, node.get_up())
prx_d, prin_d = predict_class(X_D, i_d, node.get_down())
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
# sklearn check # sklearn check
check_is_fitted(self) check_is_fitted(self, ['tree_'])
# Input validation # Input validation
X = check_array(X) X = check_array(X)
# setup prediction & make it happen # setup prediction & make it happen
indices = np.arange(X.shape[0]) indices = np.arange(X.shape[0])
return self._reorder_results(*predict_class(X, indices, self._tree)) return self._reorder_results(*predict_class(X, indices, self.tree_)).ravel()
def predict_proba(self, X: np.array) -> np.array: def predict_proba(self, X: np.array) -> np.array:
"""Computes an approximation of the probability of samples belonging to class 1 """Computes an approximation of the probability of samples belonging to class 0 and 1
(nothing more, nothing less)
:param X: dataset :param X: dataset
:type X: np.array :type X: np.array
""" """
@@ -241,35 +278,46 @@ class Stree(BaseEstimator, ClassifierMixin):
prediction = np.full((xp.shape[0], 1), node._class) prediction = np.full((xp.shape[0], 1), node._class)
prediction_proba = dist prediction_proba = dist
return np.append(prediction, prediction_proba, axis=1), indices return np.append(prediction, prediction_proba, axis=1), indices
u, i_u, d, i_d, r_u, r_d = self._split_data(node, xp, indices) distances = self._distances(node, xp)
k, l = predict_class(d, i_d, r_d, node.get_down()) down = self._split_criteria(distances)
m, n = predict_class(u, i_u, r_u, node.get_up())
return np.append(k, m), np.append(l, n) X_U, X_D = self._split_array(xp, down)
i_u, i_d = self._split_array(indices, down)
di_u, di_d = self._split_array(distances, down)
prx_u, prin_u = predict_class(X_U, i_u, di_u, node.get_up())
prx_d, prin_d = predict_class(X_D, i_d, di_d, node.get_down())
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
# sklearn check # sklearn check
check_is_fitted(self) check_is_fitted(self, ['tree_'])
# Input validation # Input validation
X = check_array(X) X = check_array(X)
# setup prediction & make it happen # setup prediction & make it happen
indices = np.arange(X.shape[0]) indices = np.arange(X.shape[0])
result, indices = predict_class(X, indices, [], self._tree) empty_dist = np.empty((X.shape[0], 1), dtype=float)
result, indices = predict_class(X, indices, empty_dist, self.tree_)
result = result.reshape(X.shape[0], 2) result = result.reshape(X.shape[0], 2)
# Turn distances to hyperplane into probabilities based on fitting distances # Turn distances to hyperplane into probabilities based on fitting distances
# of samples to its hyperplane that classified them, to the sigmoid function # of samples to its hyperplane that classified them, to the sigmoid function
# Probability of being 1
result[:, 1] = 1 / (1 + np.exp(-result[:, 1])) result[:, 1] = 1 / (1 + np.exp(-result[:, 1]))
result[:, 0] = 1 - result[:, 1] # Probability of being 0
return self._reorder_results(result, indices) return self._reorder_results(result, indices)
def score(self, X: np.array, y: np.array) -> float: def score(self, X: np.array, y: np.array) -> float:
"""Return accuracy """Return accuracy
""" """
if not self.__trained: # sklearn check
self.fit(X, y) check_is_fitted(self)
yp = self.predict(X).reshape(y.shape) yp = self.predict(X).reshape(y.shape)
right = (yp == y).astype(int) return np.mean(yp == y)
return np.sum(right) / len(y)
def __iter__(self): def __iter__(self) -> Siterator:
return Siterator(self._tree) try:
tree = self.tree_
except:
tree = None
return Siterator(tree)
def __str__(self) -> str: def __str__(self) -> str:
output = '' output = ''
@@ -277,35 +325,3 @@ class Stree(BaseEstimator, ClassifierMixin):
output += str(i) + '\n' output += str(i) + '\n'
return output return output
def _save_datasets(self, tree: Snode, catalog: typing.TextIO, number: int):
"""Save the dataset of the node in a csv file
:param tree: node with data to save
:type tree: Snode
:param catalog: catalog file handler
:type catalog: typing.TextIO
:param number: sequential number for the generated file name
:type number: int
"""
data = np.append(tree._X, tree._y.reshape(-1, 1), axis=1)
name = f"{self.__folder}dataset{number}.csv"
np.savetxt(name, data, delimiter=",")
catalog.write(f"{name}, - {str(tree)}")
if tree.is_leaf():
return
self._save_datasets(tree.get_down(), catalog, number + 1)
self._save_datasets(tree.get_up(), catalog, number + 2)
def get_catalog_name(self):
return self.__folder + "catalog.txt"
def save_sub_datasets(self):
"""Save the every dataset stored in the tree to check with manual classifier
"""
if not os.path.isdir(self.__folder):
os.mkdir(self.__folder)
with open(self.get_catalog_name(), 'w', encoding='utf-8') as catalog:
self._save_datasets(self._tree, catalog, 1)

View File

@@ -143,7 +143,7 @@ class Stree_grapher(Stree):
self._pca = PCA(n_components=3) self._pca = PCA(n_components=3)
X = self._pca.fit_transform(X) X = self._pca.fit_transform(X)
res = super().fit(X, y) res = super().fit(X, y)
self._tree_gr = self._copy_tree(self._tree) self._tree_gr = self._copy_tree(self.tree_)
self._fitted = True self._fitted = True
return res return res
@@ -164,6 +164,8 @@ class Stree_grapher(Stree):
:type save_folder: str, optional :type save_folder: str, optional
""" """
self._check_fitted() self._check_fitted()
if not os.path.isdir(save_folder):
os.mkdir(save_folder)
seq = 1 seq = 1
for node in self: for node in self:
node.save_hyperplane(save_folder=save_folder, node.save_hyperplane(save_folder=save_folder,

View File

@@ -71,7 +71,7 @@ class Stree_test(unittest.TestCase):
def test_build_tree(self): def test_build_tree(self):
"""Check if the tree is built the same way as predictions of models """Check if the tree is built the same way as predictions of models
""" """
self._check_tree(self._clf._tree) self._check_tree(self._clf.tree_)
def _get_file_data(self, file_name: str) -> tuple: def _get_file_data(self, file_name: str) -> tuple:
"""Return X, y from data, y is the last column in array """Return X, y from data, y is the last column in array
@@ -107,18 +107,6 @@ class Stree_test(unittest.TestCase):
res.append(y_original[row]) res.append(y_original[row])
return res return res
def test_subdatasets(self):
"""Check if the subdatasets files have the same labels as the original dataset
"""
self._clf.save_sub_datasets()
with open(self._clf.get_catalog_name()) as cat_file:
catalog = csv.reader(cat_file, delimiter=',')
for row in catalog:
X, y = self._get_Xy()
x_file, y_file = self._get_file_data(row[0])
y_original = np.array(self._find_out(x_file, X, y), dtype=int)
self.assertTrue(np.array_equal(y_file, y_original))
def test_single_prediction(self): def test_single_prediction(self):
X, y = self._get_Xy() X, y = self._get_Xy()
yp = self._clf.predict((X[0, :].reshape(-1, X.shape[1]))) yp = self._clf.predict((X[0, :].reshape(-1, X.shape[1])))
@@ -135,22 +123,23 @@ class Stree_test(unittest.TestCase):
X, y = self._get_Xy() X, y = self._get_Xy()
accuracy_score = self._clf.score(X, y) accuracy_score = self._clf.score(X, y)
yp = self._clf.predict(X) yp = self._clf.predict(X)
right = (yp == y).astype(int) accuracy_computed = np.mean(yp == y)
accuracy_computed = sum(right) / len(y)
self.assertEqual(accuracy_score, accuracy_computed) self.assertEqual(accuracy_score, accuracy_computed)
self.assertGreater(accuracy_score, 0.8) self.assertGreater(accuracy_score, 0.9)
def test_single_predict_proba(self): def test_single_predict_proba(self):
"""Check that element 28 has a prediction different that the current label """Check that element 28 has a prediction different that the current label
""" """
# Element 28 has a different prediction than the truth # Element 28 has a different prediction than the truth
decimals = 5 decimals = 5
prob = 0.29026400766
X, y = self._get_Xy() X, y = self._get_Xy()
yp = self._clf.predict_proba(X[28, :].reshape(-1, X.shape[1])) yp = self._clf.predict_proba(X[28, :].reshape(-1, X.shape[1]))
self.assertEqual(0, yp[0:, 0]) self.assertEqual(np.round(1 - prob, decimals), np.round(yp[0:, 0], decimals))
self.assertEqual(1, y[28]) self.assertEqual(1, y[28])
self.assertAlmostEqual( self.assertAlmostEqual(
round(0.29026400766, decimals), round(prob, decimals),
round(yp[0, 1], decimals), round(yp[0, 1], decimals),
decimals decimals
) )
@@ -161,7 +150,7 @@ class Stree_test(unittest.TestCase):
decimals = 5 decimals = 5
X, y = self._get_Xy() X, y = self._get_Xy()
yp = self._clf.predict_proba(X[:num, :]) yp = self._clf.predict_proba(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp[:, 0].tolist()) self.assertListEqual(y[:num].tolist(), np.argmax(yp[:num], axis=1).tolist())
expected_proba = [0.88395641, 0.36746962, 0.84158767, 0.34106833, 0.14269291, 0.85193236, expected_proba = [0.88395641, 0.36746962, 0.84158767, 0.34106833, 0.14269291, 0.85193236,
0.29876058, 0.7282164, 0.85958616, 0.89517877, 0.99745224, 0.18860349, 0.29876058, 0.7282164, 0.85958616, 0.89517877, 0.99745224, 0.18860349,
0.30756427, 0.8318412, 0.18981198, 0.15564624, 0.25740655, 0.22923355, 0.30756427, 0.8318412, 0.18981198, 0.15564624, 0.25740655, 0.22923355,
@@ -243,6 +232,38 @@ class Stree_test(unittest.TestCase):
computed.append(str(node)) computed.append(str(node))
self.assertListEqual(expected, computed) self.assertListEqual(expected, computed)
def test_is_a_sklearn_classifier(self):
import warnings
from sklearn.exceptions import ConvergenceWarning
warnings.filterwarnings('ignore', category=ConvergenceWarning)
warnings.filterwarnings('ignore', category=RuntimeWarning)
from sklearn.utils.estimator_checks import check_estimator
check_estimator(Stree())
def test_exception_if_C_is_negative(self):
tclf = Stree(C=-1)
with self.assertRaises(ValueError):
tclf.fit(*self._get_Xy())
def test_check_max_depth_is_positive_or_None(self):
tcl = Stree()
self.assertIsNone(tcl.max_depth)
tcl = Stree(max_depth=1)
self.assertGreaterEqual(1, tcl.max_depth)
with self.assertRaises(ValueError):
tcl = Stree(max_depth=-1)
tcl.fit(*self._get_Xy())
def test_check_max_depth(self):
depth = 3
tcl = Stree(random_state=self._random_state, max_depth=depth)
tcl.fit(*self._get_Xy())
self.assertEqual(depth, tcl.depth_)
def test_unfitted_tree_is_iterable(self):
tcl = Stree()
self.assertEqual(0, len(list(tcl)))
class Snode_test(unittest.TestCase): class Snode_test(unittest.TestCase):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
@@ -291,7 +312,7 @@ class Snode_test(unittest.TestCase):
class_computed = classes[card == max_card] class_computed = classes[card == max_card]
self.assertEqual(class_computed, node._class) self.assertEqual(class_computed, node._class)
check_leave(self._clf._tree) check_leave(self._clf.tree_)
def test_nodes_coefs(self): def test_nodes_coefs(self):
"""Check if the nodes of the tree have the right attributes filled """Check if the nodes of the tree have the right attributes filled
@@ -309,5 +330,4 @@ class Snode_test(unittest.TestCase):
run_tree(node.get_down()) run_tree(node.get_down())
run_tree(node.get_up()) run_tree(node.get_up())
run_tree(self._clf._tree) run_tree(self._clf.tree_)

View File

@@ -1,194 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#import os\n",
"#os.chdir(\"/content\")\n",
"#!git clone https://github.com/Doctorado-ML/STree.git\n",
"#os.chdir(\"/content/STree\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.datasets import make_classification, load_iris, load_wine\n",
"from sklearn.model_selection import train_test_split\n",
"from stree import Stree\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 33.110% 494\nValid: 66.890% 998\n"
}
],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"# data = load_creditcard(-5000) # Take all true samples + 5000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"data = load_creditcard(-1000) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9521\nClassifier's accuracy (test) : 0.9598\nroot\nroot - Down, <cgaf> - Leaf class=1 belief=0.980519 counts=(array([0, 1]), array([ 6, 302]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.940217 counts=(array([0, 1]), array([692, 44]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9521\nClassifier's accuracy (test) : 0.9643\nroot\nroot - Down\nroot - Down - Down, <cgaf> - Leaf class=1 belief=0.986842 counts=(array([0, 1]), array([ 4, 300]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.937754 counts=(array([0, 1]), array([693, 46]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9636\nClassifier's accuracy (test) : 0.9688\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([308]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([8]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.947802 counts=(array([0, 1]), array([690, 38]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9665\nClassifier's accuracy (test) : 0.9621\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([308]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([11]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.951456 counts=(array([0, 1]), array([686, 35]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9741\nClassifier's accuracy (test) : 0.9576\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([306]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([3]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([7]))\nroot - Up - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([4]))\nroot - Up - Up - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.961538 counts=(array([0, 1]), array([675, 27]))\n\n**************************************************\n0.7816 secs\n"
}
],
"source": [
"t = time.time()\n",
"for C in (.001, .01, 1, 5, 17):\n",
" clf = Stree(C=C, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" print(f\"************** C={C} ****************************\")\n",
" print(f\"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}\")\n",
" print(f\"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}\")\n",
" print(clf)\n",
" print(f\"**************************************************\")\n",
"print(f\"{time.time() - t:.4f} secs\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.calibration import CalibratedClassifierCV\n",
"scaler = StandardScaler()\n",
"cclf = CalibratedClassifierCV(base_estimator=LinearSVC(), cv=5)\n",
"cclf.fit(Xtrain, ytrain)\n",
"res = cclf.predict_proba(Xtest)\n",
"#an array containing probabilities of belonging to the 1st class"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([306]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([3]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([7]))\nroot - Up - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([4]))\nroot - Up - Up - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.961538 counts=(array([0, 1]), array([675, 27]))\n"
}
],
"source": [
"#check iterator\n",
"for i in list(clf):\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([306]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([3]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([7]))\nroot - Up - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([4]))\nroot - Up - Up - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.961538 counts=(array([0, 1]), array([675, 27]))\n"
}
],
"source": [
"#check iterator again\n",
"for i in clf:\n",
" print(i)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because one or more lines are too long