Compare commits

...

40 Commits

Author SHA1 Message Date
Ricardo Montañana Gómez
1c869e154e Enhance partition (#16)
#15 Create impurity function in Stree (consistent name, same criteria as other splitter parameter)
Create test for the new function
Update init test
Update test splitter parameters
Rename old impurity function to partition_impurity
close #15
* Complete implementation of splitter_type = impurity with tests
Remove max_distance & min_distance splitter types

* Fix mistake in computing multiclass node belief
Set default criterion for split to entropy instead of gini
Set default max_iter to 1e5 instead of 1e3
change up-down criterion to match SVC multiclass
Fix impurity method of splitting nodes
Update jupyter Notebooks
2020-11-03 11:36:05 +01:00
f5706c3159 Update version and notebooks 2020-06-28 10:44:29 +02:00
be552fdd6c Add test for getting 3 feature_sets in Splitter
Add ensemble notebook
2020-06-28 02:45:08 +02:00
5e3a8e3ec5 Change adaboost notebook 2020-06-27 23:34:15 +02:00
554ec03c32 Get only 3 sets for best split
Fix flaky test in Splitter_test
2020-06-27 18:29:40 +02:00
4b7e4a3fb0 better solution to the sklearn bagging problem
Add better tests
enhance .coveragerc
2020-06-26 11:22:45 +02:00
76723993fd Solve Warning class label not found when bagging 2020-06-25 13:07:50 +02:00
ecd0b86f4d Solve the mistake of min and max distance
The split criteria functions min and max distance return classes while
max_samples return distances positives and negatives to hyperplane of
the class with more samples in node
2020-06-17 00:13:52 +02:00
3e52a4746c Fix entroy and information_gain functions 2020-06-16 13:56:02 +02:00
Ricardo Montañana Gómez
a20e45e8e7 Merge pull request #10 from Doctorado-ML/add_subspaces
#2 Add subspaces
2020-06-15 11:30:53 +02:00
9334951d1b #2 Cosmetic and style updates 2020-06-15 11:09:11 +02:00
736ab7ef20 #2 update benchmark notebook 2020-06-15 10:33:51 +02:00
c94bc068bd #2 Refactor Stree & create Splitter
Add and test splitter parameter
2020-06-15 00:22:57 +02:00
502ee72799 #2 Add predict and score support
Add a test in features notebook
Show max_features in main.py
2020-06-14 14:00:21 +02:00
f1ee4de37b #2 - Add gini and entropy measures
rename get_dataset to load_dataset
add features and impurity to  __str__ of node
2020-06-14 03:08:55 +02:00
ae1c199e21 # 2 - add max_features parameters 2020-06-13 17:58:45 +02:00
1bfe273a70 Fix problem in _min_distance
Remove grapher (moved to another repo)
2020-06-12 00:50:25 +02:00
Ricardo Montañana Gómez
647d21bdb5 Merge pull request #9 from Doctorado-ML/add_multiclass
#6 Add multiclass
2020-06-11 16:30:16 +02:00
1d392d534f #6 - Update tests and codecov conf 2020-06-11 13:45:24 +02:00
f360a2640c #6 - Add multiclass support
Removed (by now) predict_proba. Created a notebook in jupyter
Added split_criteria parameter with min_distance and max_samples values
Refactor _distances
Refactor _split_criteria
Refactor _reorder_results
2020-06-11 13:10:52 +02:00
Ricardo Montañana Gómez
45510b43bc Merge pull request #5 from Doctorado-ML/add_kernels
#3 Add kernels to STree
2020-06-09 13:43:31 +02:00
286a91a3d7 #3 refactor unneeded code and new test 2020-06-09 13:01:01 +02:00
5c31c2b2a5 #3 update features notebook 2020-06-09 02:12:56 +02:00
7e932de072 #3 Add sample_weights to score, update notebooks
Update readme to use new names of notebooks
2020-06-09 01:46:38 +02:00
26273e936a #3 Add degree hyperparam and update notebooks
Update readme to add new  notebooks
2020-06-08 20:16:42 +02:00
d7c0bc3bc5 #3 Complete multiclass in Stree
Add multiclass dimensions management in distances method
Add gamma hyperparameter for non linear kernels
2020-06-08 13:54:24 +02:00
3a48d8b405 #3 Rewrite some tests & remove use_predictions
Remove use_predictions parameter as of now, the model always use it
2020-06-08 01:51:21 +02:00
05b462716e #3 First try, change LinearSVC to SVC
make a builder
start changing tests
2020-06-07 20:26:59 +02:00
b824229121 #1 Add min_samples_split
Fix #1
2020-06-07 16:12:25 +02:00
8ba9b1b6a1 Remove travis ci and set codecov percentage 2020-06-06 19:47:00 +02:00
37577849db Fix parameter missing in method overload 2020-06-06 18:18:03 +02:00
cb10aea36e remove unneed test and cosmetic 2020-06-06 14:20:07 +02:00
b9f14aec05 #4 Add code coverage & codacy badge
Add code coverage configuration in codecov
Add some tests
2020-06-06 03:04:18 +02:00
b4816b2995 Show sample_weight use in test2 notebook
Update revision to RC4
Lint Stree grapher
2020-05-30 23:59:40 +02:00
5e5fea9c6a Document & lint code 2020-05-30 23:10:10 +02:00
724a4855fb Adapt some notebooks 2020-05-30 11:09:59 +02:00
a22ae81b54 Refactor split_data adding sample_weight 2020-05-29 18:52:23 +02:00
ed98054f0d First approach
Added max_depth, tol, weighted samples
2020-05-29 12:46:10 +02:00
e95bd9697a Make Stree a sklearn estimator
Added check_estimator in notebook test2
Added a Stree test with check_estimator
2020-05-25 19:51:39 +02:00
5956cd0cd2 Update google colab setup in notebooks
Undate save_all in grapher to make dest. folder if it doesn't exist
2020-05-24 20:13:27 +02:00
27 changed files with 3364 additions and 1781 deletions

13
.coveragerc Normal file
View File

@@ -0,0 +1,13 @@
[run]
branch = True
source = stree
[report]
exclude_lines =
if self.debug:
pragma: no cover
raise NotImplementedError
if __name__ == .__main__.:
ignore_errors = True
omit =
stree/__init__.py

3
.gitignore vendored
View File

@@ -130,3 +130,6 @@ dmypy.json
.idea
.vscode
.pre-commit-config.yaml
**.csv

View File

@@ -1,13 +0,0 @@
language: python
os: linux
dist: xenial
install:
- pip install -r requirements.txt
notifications:
email:
recipients:
- ricardo.montanana@alu.uclm.es
on_success: never # default: change
on_failure: always # default: always
# command to run tests
script: python -m unittest stree.tests

View File

@@ -1,8 +1,10 @@
[![Build Status](https://travis-ci.com/Doctorado-ML/STree.svg?branch=master)](https://travis-ci.com/Doctorado-ML/STree)
[![Codeship Status for Doctorado-ML/STree](https://app.codeship.com/projects/8b2bd350-8a1b-0138-5f2c-3ad36f3eb318/status?branch=master)](https://app.codeship.com/projects/399170)
[![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
# Stree
Oblique Tree classifier based on SVM nodes
Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.
![Stree](https://raw.github.com/doctorado-ml/stree/master/example.png)
@@ -16,17 +18,17 @@ pip install git+https://github.com/doctorado-ml/stree
### Jupyter notebooks
##### Slow launch but better integration
* [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/notebooks/benchmark.ipynb) Benchmark
* [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/test.ipynb) Test notebook
* [![Test](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/benchmark.ipynb) Benchmark
##### Fast launch but have to run first commented out cell for setup
* [![Test2](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/features.ipynb) Test features
* [![Test](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/test.ipynb) Test notebook
* [![Adaboost](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/adaboost.ipynb) Adaboost
* [![Test2](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/test2.ipynb) Another Test notebook
* [![Gridsearch](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/gridsearch.ipynb) Gridsearch
* [![Test Graphics](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/test_graphs.ipynb) Test Graphics notebook
* [![Test Graphics](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test_graphs.ipynb) Test Graphics
### Command line

12
codecov.yml Normal file
View File

@@ -0,0 +1,12 @@
overage:
status:
project:
default:
target: 90%
comment:
layout: "reach, diff, flags, files"
behavior: default
require_changes: false
require_base: yes
require_head: yes
branches: null

File diff suppressed because one or more lines are too long

1
data/.gitignore vendored
View File

@@ -1 +0,0 @@
*

58
main.py
View File

@@ -1,57 +1,29 @@
import time
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from stree import Stree
random_state = 1
def load_creditcard(n_examples=0):
import pandas as pd
import numpy as np
import random
df = pd.read_csv('data/creditcard.csv')
print("Fraud: {0:.3f}% {1}".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))
print("Valid: {0:.3f}% {1}".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))
y = np.expand_dims(df.Class.values, axis=1)
X = df.drop(['Class', 'Time', 'Amount'], axis=1).values
if n_examples > 0:
# Take first n_examples samples
X = X[:n_examples, :]
y = y[:n_examples, :]
else:
# Take all the positive samples with a number of random negatives
if n_examples < 0:
Xt = X[(y == 1).ravel()]
yt = y[(y == 1).ravel()]
indices = random.sample(range(X.shape[0]), -1 * n_examples)
X = np.append(Xt, X[indices], axis=0)
y = np.append(yt, y[indices], axis=0)
print("X.shape", X.shape, " y.shape", y.shape)
print("Fraud: {0:.3f}% {1}".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))
print("Valid: {0:.3f}% {1}".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)
return Xtrain, Xtest, ytrain, ytest
X, y = load_iris(return_X_y=True)
# data = load_creditcard(-5000) # Take all true samples + 5000 of the others
# data = load_creditcard(5000) # Take the first 5000 samples
data = load_creditcard() # Take all the samples
Xtrain = data[0]
Xtest = data[1]
ytrain = data[2]
ytest = data[3]
Xtrain, Xtest, ytrain, ytest = train_test_split(
X, y, test_size=0.2, random_state=random_state
)
now = time.time()
clf = Stree(C=.01, random_state=random_state)
print("Predicting with max_features=sqrt(n_features)")
clf = Stree(C=0.01, random_state=random_state, max_features="auto")
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")
print(clf)
print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")
print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")
print("=" * 40)
print("Predicting with max_features=n_features")
clf = Stree(C=0.01, random_state=random_state)
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")
print(clf)
print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")
print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")
proba = clf.predict_proba(Xtest)
print("Checking that we have correct probabilities, these are probabilities of sample belonging to class 1")
res0 = proba[proba[:, 0] == 0]
res1 = proba[proba[:, 0] == 1]
print("++++++++++res0 > .8++++++++++++")
print(res0[res0[:, 1] > .8])
print("**********res1 < .4************")
print(res1[res1[:, 1] < .4])

588
notebooks/benchmark.ipynb Normal file
View File

@@ -0,0 +1,588 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Compare STree with different estimators"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup\n",
"Uncomment the next cell if STree is not already installed"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import datetime, time\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn import tree\n",
"from sklearn.metrics import classification_report, confusion_matrix, f1_score\n",
"from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, BaggingClassifier\n",
"from stree import Stree"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tests"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"2020-11-01 11:14:06\n"
]
}
],
"source": [
"print(datetime.date.today(), time.strftime(\"%H:%M:%S\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load dataset and normalize values"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Load Dataset\n",
"df = pd.read_csv('data/creditcard.csv')\n",
"df.shape\n",
"random_state = 2020"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Fraud: 0.173% 492\nValid: 99.827% 284,315\n"
]
}
],
"source": [
"print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
"print(\"Valid: {0:.3f}% {1:,}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Normalize Amount\n",
"from sklearn.preprocessing import RobustScaler\n",
"values = RobustScaler().fit_transform(df.Amount.values.reshape(-1, 1))\n",
"df['Amount_Scaled'] = values"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"X shape: (284807, 29)\ny shape: (284807,)\n"
]
}
],
"source": [
"# Remove unneeded features\n",
"y = df.Class.values\n",
"X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
"print(f\"X shape: {X.shape}\\ny shape: {y.shape}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build the models"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# Divide dataset\n",
"train_size = .7\n",
"Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=train_size, shuffle=True, random_state=random_state, stratify=y)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Linear Tree\n",
"linear_tree = tree.DecisionTreeClassifier(random_state=random_state)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Random Forest\n",
"random_forest = RandomForestClassifier(random_state=random_state)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# Stree\n",
"stree = Stree(random_state=random_state, C=.01, max_iter=1e3)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# AdaBoost\n",
"adaboost = AdaBoostClassifier(random_state=random_state)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# Bagging\n",
"bagging = BaggingClassifier(random_state=random_state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Do the test"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"def try_model(name, model):\n",
" print(f\"************************** {name} **********************\")\n",
" now = time.time()\n",
" model.fit(Xtrain, ytrain)\n",
" spent = time.time() - now\n",
" print(f\"Train Model {name} took: {spent:.4} seconds\")\n",
" predict = model.predict(Xtrain)\n",
" predictt = model.predict(Xtest)\n",
" print(f\"=========== {name} - Train {Xtrain.shape[0]:,} samples =============\",)\n",
" print(classification_report(ytrain, predict, digits=6))\n",
" print(f\"=========== {name} - Test {Xtest.shape[0]:,} samples =============\")\n",
" print(classification_report(ytest, predictt, digits=6))\n",
" print(\"Confusion Matrix in Train\")\n",
" print(confusion_matrix(ytrain, predict))\n",
" print(\"Confusion Matrix in Test\")\n",
" print(confusion_matrix(ytest, predictt))\n",
" return f1_score(ytest, predictt), spent"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"************************** Linear Tree **********************\n",
"Train Model Linear Tree took: 15.14 seconds\n",
"=========== Linear Tree - Train 199,364 samples =============\n",
" precision recall f1-score support\n",
"\n",
" 0 1.000000 1.000000 1.000000 199020\n",
" 1 1.000000 1.000000 1.000000 344\n",
"\n",
" accuracy 1.000000 199364\n",
" macro avg 1.000000 1.000000 1.000000 199364\n",
"weighted avg 1.000000 1.000000 1.000000 199364\n",
"\n",
"=========== Linear Tree - Test 85,443 samples =============\n",
" precision recall f1-score support\n",
"\n",
" 0 0.999578 0.999613 0.999596 85295\n",
" 1 0.772414 0.756757 0.764505 148\n",
"\n",
" accuracy 0.999192 85443\n",
" macro avg 0.885996 0.878185 0.882050 85443\n",
"weighted avg 0.999184 0.999192 0.999188 85443\n",
"\n",
"Confusion Matrix in Train\n",
"[[199020 0]\n",
" [ 0 344]]\n",
"Confusion Matrix in Test\n",
"[[85262 33]\n",
" [ 36 112]]\n",
"************************** Random Forest **********************\n",
"Train Model Random Forest took: 181.1 seconds\n",
"=========== Random Forest - Train 199,364 samples =============\n",
" precision recall f1-score support\n",
"\n",
" 0 1.000000 1.000000 1.000000 199020\n",
" 1 1.000000 1.000000 1.000000 344\n",
"\n",
" accuracy 1.000000 199364\n",
" macro avg 1.000000 1.000000 1.000000 199364\n",
"weighted avg 1.000000 1.000000 1.000000 199364\n",
"\n",
"=========== Random Forest - Test 85,443 samples =============\n",
" precision recall f1-score support\n",
"\n",
" 0 0.999660 0.999965 0.999812 85295\n",
" 1 0.975410 0.804054 0.881481 148\n",
"\n",
" accuracy 0.999625 85443\n",
" macro avg 0.987535 0.902009 0.940647 85443\n",
"weighted avg 0.999618 0.999625 0.999607 85443\n",
"\n",
"Confusion Matrix in Train\n",
"[[199020 0]\n",
" [ 0 344]]\n",
"Confusion Matrix in Test\n",
"[[85292 3]\n",
" [ 29 119]]\n",
"************************** Stree (SVM Tree) **********************\n",
"Train Model Stree (SVM Tree) took: 36.6 seconds\n",
"=========== Stree (SVM Tree) - Train 199,364 samples =============\n",
" precision recall f1-score support\n",
"\n",
" 0 0.999623 0.999864 0.999744 199020\n",
" 1 0.908784 0.781977 0.840625 344\n",
"\n",
" accuracy 0.999488 199364\n",
" macro avg 0.954204 0.890921 0.920184 199364\n",
"weighted avg 0.999467 0.999488 0.999469 199364\n",
"\n",
"=========== Stree (SVM Tree) - Test 85,443 samples =============\n",
" precision recall f1-score support\n",
"\n",
" 0 0.999637 0.999918 0.999777 85295\n",
" 1 0.943548 0.790541 0.860294 148\n",
"\n",
" accuracy 0.999555 85443\n",
" macro avg 0.971593 0.895229 0.930036 85443\n",
"weighted avg 0.999540 0.999555 0.999536 85443\n",
"\n",
"Confusion Matrix in Train\n",
"[[198993 27]\n",
" [ 75 269]]\n",
"Confusion Matrix in Test\n",
"[[85288 7]\n",
" [ 31 117]]\n",
"************************** AdaBoost model **********************\n",
"Train Model AdaBoost model took: 46.14 seconds\n",
"=========== AdaBoost model - Train 199,364 samples =============\n",
" precision recall f1-score support\n",
"\n",
" 0 0.999392 0.999678 0.999535 199020\n",
" 1 0.777003 0.648256 0.706815 344\n",
"\n",
" accuracy 0.999072 199364\n",
" macro avg 0.888198 0.823967 0.853175 199364\n",
"weighted avg 0.999008 0.999072 0.999030 199364\n",
"\n",
"=========== AdaBoost model - Test 85,443 samples =============\n",
" precision recall f1-score support\n",
"\n",
" 0 0.999484 0.999707 0.999596 85295\n",
" 1 0.806202 0.702703 0.750903 148\n",
"\n",
" accuracy 0.999192 85443\n",
" macro avg 0.902843 0.851205 0.875249 85443\n",
"weighted avg 0.999149 0.999192 0.999165 85443\n",
"\n",
"Confusion Matrix in Train\n",
"[[198956 64]\n",
" [ 121 223]]\n",
"Confusion Matrix in Test\n",
"[[85270 25]\n",
" [ 44 104]]\n",
"************************** Bagging model **********************\n",
"Train Model Bagging model took: 77.73 seconds\n",
"=========== Bagging model - Train 199,364 samples =============\n",
" precision recall f1-score support\n",
"\n",
" 0 0.999864 1.000000 0.999932 199020\n",
" 1 1.000000 0.921512 0.959153 344\n",
"\n",
" accuracy 0.999865 199364\n",
" macro avg 0.999932 0.960756 0.979542 199364\n",
"weighted avg 0.999865 0.999865 0.999862 199364\n",
"\n",
"=========== Bagging model - Test 85,443 samples =============\n",
" precision recall f1-score support\n",
"\n",
" 0 0.999637 0.999953 0.999795 85295\n",
" 1 0.966942 0.790541 0.869888 148\n",
"\n",
" accuracy 0.999590 85443\n",
" macro avg 0.983289 0.895247 0.934842 85443\n",
"weighted avg 0.999580 0.999590 0.999570 85443\n",
"\n",
"Confusion Matrix in Train\n",
"[[199020 0]\n",
" [ 27 317]]\n",
"Confusion Matrix in Test\n",
"[[85291 4]\n",
" [ 31 117]]\n"
]
}
],
"source": [
"# Train & Test models\n",
"models = {\n",
" 'Linear Tree':linear_tree, 'Random Forest': random_forest, 'Stree (SVM Tree)': stree, \n",
" 'AdaBoost model': adaboost, 'Bagging model': bagging\n",
"}\n",
"\n",
"best_f1 = 0\n",
"outcomes = []\n",
"for name, model in models.items():\n",
" f1, time_spent = try_model(name, model)\n",
" outcomes.append((name, f1, time_spent))\n",
" if f1 > best_f1:\n",
" best_model = name\n",
" best_time = time_spent\n",
" best_f1 = f1"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"**************************************************************************************************************\n*The best f1 model is Random Forest, with a f1 score: 0.8815 in 181.07 seconds with 0.7 samples in train dataset\n**************************************************************************************************************\nModel: Linear Tree\t Time: 15.14 seconds\t f1: 0.7645\nModel: Random Forest\t Time: 181.07 seconds\t f1: 0.8815\nModel: Stree (SVM Tree)\t Time: 36.60 seconds\t f1: 0.8603\nModel: AdaBoost model\t Time: 46.14 seconds\t f1: 0.7509\nModel: Bagging model\t Time: 77.73 seconds\t f1: 0.8699\n"
]
}
],
"source": [
"print(\"*\"*110)\n",
"print(f\"*The best f1 model is {best_model}, with a f1 score: {best_f1:.4} in {best_time:.6} seconds with {train_size:,} samples in train dataset\")\n",
"print(\"*\"*110)\n",
"for name, f1, time_spent in outcomes:\n",
" print(f\"Model: {name}\\t Time: {time_spent:6.2f} seconds\\t f1: {f1:.4}\")"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"**************************************************************************************************************\n",
"*The best f1 model is Random Forest, with a f1 score: 0.8815 in 152.54 seconds with 0.7 samples in train dataset\n",
"**************************************************************************************************************\n",
"Model: Linear Tree\t Time: 13.52 seconds\t f1: 0.7645\n",
"Model: Random Forest\t Time: 152.54 seconds\t f1: 0.8815\n",
"Model: Stree (SVM Tree)\t Time: 32.55 seconds\t f1: 0.8603\n",
"Model: AdaBoost model\t Time: 47.34 seconds\t f1: 0.7509\n",
"Model: Gradient Boost.\t Time: 244.12 seconds\t f1: 0.5259"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"******************************************************************************************************************\n",
"*The best f1 model is Random Forest, with a f1 score: 0.8815 in 218.966 seconds with 0.7 samples in train dataset\n",
"******************************************************************************************************************\n",
"Model: Linear Tree Time: 23.05 seconds\t f1: 0.7645\n",
"Model: Random Forest\t Time: 218.97 seconds\t f1: 0.8815\n",
"Model: Stree (SVM Tree)\t Time: 49.45 seconds\t f1: 0.8603\n",
"Model: AdaBoost model\t Time: 73.83 seconds\t f1: 0.7509\n",
"Model: Neural Network\t Time: 25.47 seconds\t f1: 0.8328\n",
"Model: Bagging model\t Time: 77.93 seconds\t f1: 0.8699\n",
"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"{'C': 0.01,\n",
" 'criterion': 'entropy',\n",
" 'degree': 3,\n",
" 'gamma': 'scale',\n",
" 'kernel': 'linear',\n",
" 'max_depth': None,\n",
" 'max_features': None,\n",
" 'max_iter': 1000.0,\n",
" 'min_samples_split': 0,\n",
" 'random_state': 2020,\n",
" 'split_criteria': 'impurity',\n",
" 'splitter': 'random',\n",
" 'tol': 0.0001}"
]
},
"metadata": {},
"execution_count": 18
}
],
"source": [
"stree.get_params()"
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3.8.4 64-bit ('general': venv)",
"language": "python",
"name": "python38464bitgeneralvenv77203c0a6afd4428bd66253ef62753dc"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.4-final"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"position": {
"height": "392px",
"left": "1518px",
"right": "20px",
"top": "40px",
"width": "392px"
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": true
}
},
"nbformat": 4,
"nbformat_minor": 4
}

264
notebooks/ensemble.ipynb Normal file
View File

@@ -0,0 +1,264 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test Stree with AdaBoost and Bagging with different configurations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup\n",
"Uncomment the next cell if STree is not already installed"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier\n",
"from sklearn.model_selection import train_test_split\n",
"from stree import Stree"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Fraud: 0.173% 492\n",
"Valid: 99.827% 284315\n",
"X.shape (100492, 28) y.shape (100492,)\n",
"Fraud: 0.652% 655\n",
"Valid: 99.348% 99837\n"
]
}
],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"# data = load_creditcard(-1000) # Take all true samples + 1000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"# data = load_creditcard(0) # Take all the samples\n",
"data = load_creditcard(-100000)\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tests"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## STree alone with 100.000 samples and linear kernel"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Score Train: 0.9985073353804162\nScore Test: 0.9983746848878864\nTook 35.80 seconds\n"
]
}
],
"source": [
"now = time.time()\n",
"clf = Stree(max_depth=3, random_state=random_state, max_iter=1e3)\n",
"clf.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf.score(Xtest, ytest))\n",
"print(f\"Took {time.time() - now:.2f} seconds\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Adaboost"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"n_estimators = 10\n",
"C = 7\n",
"max_depth = 3"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Kernel: linear\tTime: 49.66 seconds\tScore Train: 0.9983225\tScore Test: 0.9983083\n",
"Kernel: rbf\tTime: 12.73 seconds\tScore Train: 0.9934891\tScore Test: 0.9934656\n",
"Kernel: poly\tTime: 76.24 seconds\tScore Train: 0.9972706\tScore Test: 0.9969152\n"
]
}
],
"source": [
"for kernel in ['linear', 'rbf', 'poly']:\n",
" now = time.time()\n",
" clf = AdaBoostClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state, max_iter=1e3), algorithm=\"SAMME\", n_estimators=n_estimators, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" score_train = clf.score(Xtrain, ytrain)\n",
" score_test = clf.score(Xtest, ytest)\n",
" print(f\"Kernel: {kernel}\\tTime: {time.time() - now:.2f} seconds\\tScore Train: {score_train:.7f}\\tScore Test: {score_test:.7f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Bagging"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"n_estimators = 10\n",
"C = 7\n",
"max_depth = 3"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Kernel: linear\tTime: 231.51 seconds\tScore Train: 0.9984931\tScore Test: 0.9983083\n",
"Kernel: rbf\tTime: 114.77 seconds\tScore Train: 0.9992323\tScore Test: 0.9983083\n",
"Kernel: poly\tTime: 67.87 seconds\tScore Train: 0.9993319\tScore Test: 0.9985074\n"
]
}
],
"source": [
"for kernel in ['linear', 'rbf', 'poly']:\n",
" now = time.time()\n",
" clf = BaggingClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state, max_iter=1e3), n_estimators=n_estimators, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" score_train = clf.score(Xtrain, ytrain)\n",
" score_test = clf.score(Xtest, ytest)\n",
" print(f\"Kernel: {kernel}\\tTime: {time.time() - now:.2f} seconds\\tScore Train: {score_train:.7f}\\tScore Test: {score_test:.7f}\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.4-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python38464bitgeneralf6de308d3831407c8bd68d4a5e328a38",
"display_name": "Python 3.8.4 64-bit ('general')"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

587
notebooks/features.ipynb Normal file
View File

@@ -0,0 +1,587 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test sample_weight, kernels, C, sklearn estimator"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup\n",
"Uncomment the next cell if STree is not already installed"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn.svm import SVC\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.utils.estimator_checks import check_estimator\n",
"from sklearn.datasets import make_classification, load_iris, load_wine\n",
"from sklearn.model_selection import train_test_split\n",
"from stree import Stree\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (5492, 28) y.shape (5492,)\nFraud: 9.141% 502\nValid: 90.859% 4990\n[0.09183143 0.09183143 0.09183143 0.09183143] [0.09041262 0.09041262 0.09041262 0.09041262]\n"
]
}
],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"data = load_creditcard(-5000) # Take all true samples with up to 5000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"# data = load_creditcard(-1000) # Take 1000 samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]\n",
"_, data = np.unique(ytrain, return_counts=True)\n",
"wtrain = (data[1] / np.sum(data), data[0] / np.sum(data))\n",
"_, data = np.unique(ytest, return_counts=True)\n",
"wtest = (data[1] / np.sum(data), data[0] / np.sum(data))\n",
"# Set weights inverse to its count class in dataset\n",
"weights = np.ones(Xtrain.shape[0],)\n",
"weights[ytrain==0] = wtrain[0]\n",
"weights[ytrain==1] = wtrain[1]\n",
"weights_test = np.ones(Xtest.shape[0],)\n",
"weights_test[ytest==0] = wtest[0]\n",
"weights_test[ytest==1] = wtest[1]\n",
"print(weights[:4], weights_test[:4])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tests"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test sample_weights\n",
"Compute accuracy with weights in samples. The weights are set based on the inverse of the number of samples of each class"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Accuracy of Train without weights 0.9851716961498439\n",
"Accuracy of Train with weights 0.986732570239334\n",
"Accuracy of Tests without weights 0.9866504854368932\n",
"Accuracy of Tests with weights 0.9781553398058253\n"
]
}
],
"source": [
"C = 23\n",
"print(\"Accuracy of Train without weights\", Stree(C=C, random_state=1).fit(Xtrain, ytrain).score(Xtrain, ytrain))\n",
"print(\"Accuracy of Train with weights\", Stree(C=C, random_state=1).fit(Xtrain, ytrain, sample_weight=weights).score(Xtrain, ytrain))\n",
"print(\"Accuracy of Tests without weights\", Stree(C=C, random_state=1).fit(Xtrain, ytrain).score(Xtest, ytest))\n",
"print(\"Accuracy of Tests with weights\", Stree(C=C, random_state=1).fit(Xtrain, ytrain, sample_weight=weights).score(Xtest, ytest))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test accuracy with different kernels\n",
"Compute accuracy on train and test set with default hyperparmeters of every kernel"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Time: 26.03s\tKernel: linear\tAccuracy_train: 0.9851716961498439\tAccuracy_test: 0.9866504854368932\n",
"Time: 0.54s\tKernel: rbf\tAccuracy_train: 0.9947970863683663\tAccuracy_test: 0.9878640776699029\n",
"Time: 0.43s\tKernel: poly\tAccuracy_train: 0.9960978147762747\tAccuracy_test: 0.9854368932038835\n"
]
}
],
"source": [
"random_state=1\n",
"for kernel in ['linear', 'rbf', 'poly']:\n",
" now = time.time()\n",
" clf = Stree(C=7, kernel=kernel, random_state=random_state).fit(Xtrain, ytrain)\n",
" accuracy_train = clf.score(Xtrain, ytrain)\n",
" accuracy_test = clf.score(Xtest, ytest)\n",
" time_spent = time.time() - now\n",
" print(f\"Time: {time_spent:.2f}s\\tKernel: {kernel}\\tAccuracy_train: {accuracy_train}\\tAccuracy_test: {accuracy_test}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test diferent values of C"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"************** C=0.001 ****************************\n",
"Classifier's accuracy (train): 0.9828\n",
"Classifier's accuracy (test) : 0.9848\n",
"root feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4426 counts=(array([0, 1]), array([3491, 353]))\n",
"root - Down, <cgaf> - Leaf class=0 belief= 0.981716 impurity=0.1317 counts=(array([0, 1]), array([3490, 65]))\n",
"root - Up, <cgaf> - Leaf class=1 belief= 0.996540 impurity=0.0333 counts=(array([0, 1]), array([ 1, 288]))\n",
"\n",
"**************************************************\n",
"************** C=0.01 ****************************\n",
"Classifier's accuracy (train): 0.9834\n",
"Classifier's accuracy (test) : 0.9854\n",
"root feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4426 counts=(array([0, 1]), array([3491, 353]))\n",
"root - Down, <cgaf> - Leaf class=0 belief= 0.982269 impurity=0.1285 counts=(array([0, 1]), array([3490, 63]))\n",
"root - Up, <cgaf> - Leaf class=1 belief= 0.996564 impurity=0.0331 counts=(array([0, 1]), array([ 1, 290]))\n",
"\n",
"**************************************************\n",
"************** C=1 ****************************\n",
"Classifier's accuracy (train): 0.9847\n",
"Classifier's accuracy (test) : 0.9867\n",
"root feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4426 counts=(array([0, 1]), array([3491, 353]))\n",
"root - Down, <cgaf> - Leaf class=0 belief= 0.983371 impurity=0.1221 counts=(array([0, 1]), array([3489, 59]))\n",
"root - Up feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0584 counts=(array([0, 1]), array([ 2, 294]))\n",
"root - Up - Down, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([2]))\n",
"root - Up - Up, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([294]))\n",
"\n",
"**************************************************\n",
"************** C=5 ****************************\n",
"Classifier's accuracy (train): 0.9852\n",
"Classifier's accuracy (test) : 0.9867\n",
"root feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4426 counts=(array([0, 1]), array([3491, 353]))\n",
"root - Down feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.1205 counts=(array([0, 1]), array([3488, 58]))\n",
"root - Down - Down, <cgaf> - Leaf class=0 belief= 0.983921 impurity=0.1188 counts=(array([0, 1]), array([3488, 57]))\n",
"root - Down - Up, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([1]))\n",
"root - Up feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0812 counts=(array([0, 1]), array([ 3, 295]))\n",
"root - Up - Down, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([3]))\n",
"root - Up - Up, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([295]))\n",
"\n",
"**************************************************\n",
"************** C=17 ****************************\n",
"Classifier's accuracy (train): 0.9852\n",
"Classifier's accuracy (test) : 0.9867\n",
"root feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4426 counts=(array([0, 1]), array([3491, 353]))\n",
"root - Down feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.1205 counts=(array([0, 1]), array([3488, 58]))\n",
"root - Down - Down, <cgaf> - Leaf class=0 belief= 0.983921 impurity=0.1188 counts=(array([0, 1]), array([3488, 57]))\n",
"root - Down - Up, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([1]))\n",
"root - Up feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0812 counts=(array([0, 1]), array([ 3, 295]))\n",
"root - Up - Down, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([3]))\n",
"root - Up - Up, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([295]))\n",
"\n",
"**************************************************\n",
"64.5792 secs\n"
]
}
],
"source": [
"t = time.time()\n",
"for C in (.001, .01, 1, 5, 17):\n",
" clf = Stree(C=C, kernel=\"linear\", random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" print(f\"************** C={C} ****************************\")\n",
" print(f\"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}\")\n",
" print(f\"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}\")\n",
" print(clf)\n",
" print(f\"**************************************************\")\n",
"print(f\"{time.time() - t:.4f} secs\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test iterator\n",
"Check different weays of using the iterator"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"root feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4426 counts=(array([0, 1]), array([3491, 353]))\nroot - Down feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.1205 counts=(array([0, 1]), array([3488, 58]))\nroot - Down - Down, <cgaf> - Leaf class=0 belief= 0.983921 impurity=0.1188 counts=(array([0, 1]), array([3488, 57]))\nroot - Down - Up, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([1]))\nroot - Up feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0812 counts=(array([0, 1]), array([ 3, 295]))\nroot - Up - Down, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([3]))\nroot - Up - Up, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([295]))\n"
]
}
],
"source": [
"#check iterator\n",
"for i in list(clf):\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"root feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4426 counts=(array([0, 1]), array([3491, 353]))\nroot - Down feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.1205 counts=(array([0, 1]), array([3488, 58]))\nroot - Down - Down, <cgaf> - Leaf class=0 belief= 0.983921 impurity=0.1188 counts=(array([0, 1]), array([3488, 57]))\nroot - Down - Up, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([1]))\nroot - Up feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0812 counts=(array([0, 1]), array([ 3, 295]))\nroot - Up - Down, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([3]))\nroot - Up - Up, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([295]))\n"
]
}
],
"source": [
"#check iterator again\n",
"for i in clf:\n",
" print(i)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test STree is a sklearn estimator"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"1 functools.partial(<function check_no_attributes_set_in_init at 0x125acaee0>, 'Stree')\n",
"2 functools.partial(<function check_estimators_dtypes at 0x125ac7040>, 'Stree')\n",
"3 functools.partial(<function check_fit_score_takes_y at 0x125ac2ee0>, 'Stree')\n",
"4 functools.partial(<function check_sample_weights_pandas_series at 0x125ac0820>, 'Stree')\n",
"5 functools.partial(<function check_sample_weights_not_an_array at 0x125ac0940>, 'Stree')\n",
"6 functools.partial(<function check_sample_weights_list at 0x125ac0a60>, 'Stree')\n",
"7 functools.partial(<function check_sample_weights_shape at 0x125ac0b80>, 'Stree')\n",
"8 functools.partial(<function check_sample_weights_invariance at 0x125ac0ca0>, 'Stree')\n",
"9 functools.partial(<function check_estimators_fit_returns_self at 0x125aca040>, 'Stree')\n",
"10 functools.partial(<function check_estimators_fit_returns_self at 0x125aca040>, 'Stree', readonly_memmap=True)\n",
"11 functools.partial(<function check_complex_data at 0x125ac0e50>, 'Stree')\n",
"12 functools.partial(<function check_dtype_object at 0x125ac0dc0>, 'Stree')\n",
"13 functools.partial(<function check_estimators_empty_data_messages at 0x125ac7160>, 'Stree')\n",
"14 functools.partial(<function check_pipeline_consistency at 0x125ac2dc0>, 'Stree')\n",
"15 functools.partial(<function check_estimators_nan_inf at 0x125ac7280>, 'Stree')\n",
"16 functools.partial(<function check_estimators_overwrite_params at 0x125acadc0>, 'Stree')\n",
"17 functools.partial(<function check_estimator_sparse_data at 0x125ac0700>, 'Stree')\n",
"18 functools.partial(<function check_estimators_pickle at 0x125ac74c0>, 'Stree')\n",
"19 functools.partial(<function check_classifier_data_not_an_array at 0x125acd160>, 'Stree')\n",
"20 functools.partial(<function check_classifiers_one_label at 0x125ac7b80>, 'Stree')\n",
"21 functools.partial(<function check_classifiers_classes at 0x125aca5e0>, 'Stree')\n",
"22 functools.partial(<function check_estimators_partial_fit_n_features at 0x125ac75e0>, 'Stree')\n",
"23 functools.partial(<function check_classifiers_train at 0x125ac7ca0>, 'Stree')\n",
"24 functools.partial(<function check_classifiers_train at 0x125ac7ca0>, 'Stree', readonly_memmap=True)\n",
"25 functools.partial(<function check_classifiers_train at 0x125ac7ca0>, 'Stree', readonly_memmap=True, X_dtype='float32')\n",
"26 functools.partial(<function check_classifiers_regression_target at 0x125acdc10>, 'Stree')\n",
"27 functools.partial(<function check_supervised_y_no_nan at 0x125aab790>, 'Stree')\n",
"28 functools.partial(<function check_supervised_y_2d at 0x125aca280>, 'Stree')\n",
"29 functools.partial(<function check_estimators_unfitted at 0x125aca160>, 'Stree')\n",
"30 functools.partial(<function check_non_transformer_estimators_n_iter at 0x125acd790>, 'Stree')\n",
"31 functools.partial(<function check_decision_proba_consistency at 0x125acdd30>, 'Stree')\n",
"32 functools.partial(<function check_fit2d_predict1d at 0x125ac23a0>, 'Stree')\n",
"33 functools.partial(<function check_methods_subset_invariance at 0x125ac2550>, 'Stree')\n",
"34 functools.partial(<function check_fit2d_1sample at 0x125ac2670>, 'Stree')\n",
"35 functools.partial(<function check_fit2d_1feature at 0x125ac2790>, 'Stree')\n",
"36 functools.partial(<function check_fit1d at 0x125ac28b0>, 'Stree')\n",
"37 functools.partial(<function check_get_params_invariance at 0x125acd9d0>, 'Stree')\n",
"38 functools.partial(<function check_set_params at 0x125acdaf0>, 'Stree')\n",
"39 functools.partial(<function check_dict_unchanged at 0x125ac0f70>, 'Stree')\n",
"40 functools.partial(<function check_dont_overwrite_parameters at 0x125ac2280>, 'Stree')\n",
"41 functools.partial(<function check_fit_idempotent at 0x125acdee0>, 'Stree')\n",
"42 functools.partial(<function check_n_features_in at 0x125acdf70>, 'Stree')\n",
"43 functools.partial(<function check_requires_y_none at 0x125ad1040>, 'Stree')\n"
]
}
],
"source": [
"# Make checks one by one\n",
"c = 0\n",
"checks = check_estimator(Stree(), generate_only=True)\n",
"for check in checks:\n",
" c += 1\n",
" print(c, check[1])\n",
" check[1](check[0])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Check if the classifier is a sklearn estimator\n",
"check_estimator(Stree())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compare to SVM"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"== Not Weighted ===\n",
"SVC train score ..: 0.9825702393340271\n",
"STree train score : 0.9841311134235172\n",
"SVC test score ...: 0.9830097087378641\n",
"STree test score .: 0.9848300970873787\n",
"==== Weighted =====\n",
"SVC train score ..: 0.9786680541103018\n",
"STree train score : 0.9802289281997919\n",
"SVC test score ...: 0.9805825242718447\n",
"STree test score .: 0.9817961165048543\n",
"*SVC test score ..: 0.9439939825655582\n",
"*STree test score : 0.9476832429673473\n"
]
}
],
"source": [
"svc = SVC(C=7, kernel='rbf', gamma=.001, random_state=random_state)\n",
"clf = Stree(C=17, kernel='rbf', gamma=.001, random_state=random_state)\n",
"svc.fit(Xtrain, ytrain)\n",
"clf.fit(Xtrain, ytrain)\n",
"print(\"== Not Weighted ===\")\n",
"print(\"SVC train score ..:\", svc.score(Xtrain, ytrain))\n",
"print(\"STree train score :\", clf.score(Xtrain, ytrain))\n",
"print(\"SVC test score ...:\", svc.score(Xtest, ytest))\n",
"print(\"STree test score .:\", clf.score(Xtest, ytest))\n",
"svc.fit(Xtrain, ytrain, weights)\n",
"clf.fit(Xtrain, ytrain, weights)\n",
"print(\"==== Weighted =====\")\n",
"print(\"SVC train score ..:\", svc.score(Xtrain, ytrain))\n",
"print(\"STree train score :\", clf.score(Xtrain, ytrain))\n",
"print(\"SVC test score ...:\", svc.score(Xtest, ytest))\n",
"print(\"STree test score .:\", clf.score(Xtest, ytest))\n",
"print(\"*SVC test score ..:\", svc.score(Xtest, ytest, weights_test))\n",
"print(\"*STree test score :\", clf.score(Xtest, ytest, weights_test))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"root feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4426 counts=(array([0, 1]), array([3491, 353]))\nroot - Down, <cgaf> - Leaf class=0 belief= 0.990520 impurity=0.0773 counts=(array([0, 1]), array([3448, 33]))\nroot - Up, <cgaf> - Leaf class=1 belief= 0.881543 impurity=0.5249 counts=(array([0, 1]), array([ 43, 320]))\n\n"
]
}
],
"source": [
"print(clf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test max_features"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"****************************************\n",
"max_features None = 28\n",
"Train score : 0.9846514047866806\n",
"Test score .: 0.9866504854368932\n",
"Took 10.18 seconds\n",
"****************************************\n",
"max_features auto = 5\n",
"Train score : 0.9836108220603538\n",
"Test score .: 0.9842233009708737\n",
"Took 5.22 seconds\n",
"****************************************\n",
"max_features log2 = 4\n",
"Train score : 0.9791883454734651\n",
"Test score .: 0.9793689320388349\n",
"Took 2.05 seconds\n",
"****************************************\n",
"max_features 7 = 7\n",
"Train score : 0.9737252861602498\n",
"Test score .: 0.9739077669902912\n",
"Took 2.86 seconds\n",
"****************************************\n",
"max_features 0.5 = 14\n",
"Train score : 0.981789802289282\n",
"Test score .: 0.9824029126213593\n",
"Took 48.35 seconds\n",
"****************************************\n",
"max_features 0.1 = 2\n",
"Train score : 0.9638397502601457\n",
"Test score .: 0.9648058252427184\n",
"Took 0.35 seconds\n",
"****************************************\n",
"max_features 0.7 = 19\n",
"Train score : 0.9841311134235172\n",
"Test score .: 0.9860436893203883\n",
"Took 20.89 seconds\n"
]
}
],
"source": [
"for max_features in [None, \"auto\", \"log2\", 7, .5, .1, .7]:\n",
" now = time.time()\n",
" print(\"*\"*40)\n",
" clf = Stree(random_state=random_state, max_features=max_features)\n",
" clf.fit(Xtrain, ytrain)\n",
" print(f\"max_features {max_features} = {clf.max_features_}\")\n",
" print(\"Train score :\", clf.score(Xtrain, ytrain))\n",
" print(\"Test score .:\", clf.score(Xtest, ytest))\n",
" print(f\"Took {time.time() - now:.2f} seconds\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.7.6 64-bit ('general': venv)",
"language": "python",
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.4-final"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

446
notebooks/gridsearch.ipynb Normal file
View File

@@ -0,0 +1,446 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test Gridsearch\n",
"with different kernels and different configurations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup\n",
"Uncomment the next cell if STree is not already installed"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
]
},
{
"cell_type": "code",
"metadata": {
"id": "zIHKVxthDZEa",
"colab_type": "code",
"colab": {}
},
"source": [
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
"from stree import Stree"
],
"execution_count": 2,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "IEmq50QgDZEi",
"colab_type": "code",
"colab": {}
},
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
],
"execution_count": 3,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "z9Q-YUfBDZEq",
"colab_type": "code",
"colab": {},
"outputId": "afc822fb-f16a-4302-8a67-2b9e2880159b",
"tags": []
},
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"data = load_creditcard(-1000) # Take all true samples + 1000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"# data = load_creditcard(0) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 33.177% 495\nValid: 66.823% 997\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tests"
]
},
{
"cell_type": "code",
"metadata": {
"id": "HmX3kR4PDZEw",
"colab_type": "code",
"colab": {}
},
"source": [
"parameters = [{\n",
" 'base_estimator': [Stree()],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__kernel': ['linear']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree()],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__degree': [3, 5, 7],\n",
" 'base_estimator__kernel': ['poly']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree()],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__gamma': [.1, 1, 10],\n",
" 'base_estimator__kernel': ['rbf']\n",
"}]"
],
"execution_count": 5,
"outputs": []
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"{'C': 1.0,\n",
" 'criterion': 'entropy',\n",
" 'degree': 3,\n",
" 'gamma': 'scale',\n",
" 'kernel': 'linear',\n",
" 'max_depth': None,\n",
" 'max_features': None,\n",
" 'max_iter': 100000.0,\n",
" 'min_samples_split': 0,\n",
" 'random_state': None,\n",
" 'split_criteria': 'impurity',\n",
" 'splitter': 'random',\n",
" 'tol': 0.0001}"
]
},
"metadata": {},
"execution_count": 6
}
],
"source": [
"Stree().get_params()"
]
},
{
"cell_type": "code",
"metadata": {
"id": "CrcB8o6EDZE5",
"colab_type": "code",
"colab": {},
"outputId": "7703413a-d563-4289-a13b-532f38f82762",
"tags": []
},
"source": [
"random_state=2020\n",
"clf = AdaBoostClassifier(random_state=random_state, algorithm=\"SAMME\")\n",
"grid = GridSearchCV(clf, parameters, verbose=10, n_jobs=-1, return_train_score=True)\n",
"grid.fit(Xtrain, ytrain)"
],
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Fitting 5 folds for each of 1008 candidates, totalling 5040 fits\n",
"[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
"[Parallel(n_jobs=-1)]: Done 2 tasks | elapsed: 2.6s\n",
"[Parallel(n_jobs=-1)]: Done 9 tasks | elapsed: 3.2s\n",
"[Parallel(n_jobs=-1)]: Done 16 tasks | elapsed: 3.5s\n",
"[Parallel(n_jobs=-1)]: Done 25 tasks | elapsed: 4.0s\n",
"[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 4.5s\n",
"[Parallel(n_jobs=-1)]: Done 45 tasks | elapsed: 5.0s\n",
"[Parallel(n_jobs=-1)]: Done 56 tasks | elapsed: 5.5s\n",
"[Parallel(n_jobs=-1)]: Done 69 tasks | elapsed: 6.2s\n",
"[Parallel(n_jobs=-1)]: Done 82 tasks | elapsed: 7.1s\n",
"[Parallel(n_jobs=-1)]: Done 97 tasks | elapsed: 8.2s\n",
"[Parallel(n_jobs=-1)]: Done 112 tasks | elapsed: 9.6s\n",
"[Parallel(n_jobs=-1)]: Done 129 tasks | elapsed: 11.0s\n",
"[Parallel(n_jobs=-1)]: Done 146 tasks | elapsed: 12.5s\n",
"[Parallel(n_jobs=-1)]: Done 165 tasks | elapsed: 14.3s\n",
"[Parallel(n_jobs=-1)]: Done 184 tasks | elapsed: 16.0s\n",
"[Parallel(n_jobs=-1)]: Done 205 tasks | elapsed: 18.1s\n",
"[Parallel(n_jobs=-1)]: Done 226 tasks | elapsed: 20.1s\n",
"[Parallel(n_jobs=-1)]: Done 249 tasks | elapsed: 21.9s\n",
"[Parallel(n_jobs=-1)]: Done 272 tasks | elapsed: 23.4s\n",
"[Parallel(n_jobs=-1)]: Done 297 tasks | elapsed: 24.9s\n",
"[Parallel(n_jobs=-1)]: Done 322 tasks | elapsed: 26.6s\n",
"[Parallel(n_jobs=-1)]: Done 349 tasks | elapsed: 29.3s\n",
"[Parallel(n_jobs=-1)]: Done 376 tasks | elapsed: 31.9s\n",
"[Parallel(n_jobs=-1)]: Done 405 tasks | elapsed: 35.5s\n",
"[Parallel(n_jobs=-1)]: Done 434 tasks | elapsed: 38.7s\n",
"[Parallel(n_jobs=-1)]: Done 465 tasks | elapsed: 42.1s\n",
"[Parallel(n_jobs=-1)]: Done 496 tasks | elapsed: 46.1s\n",
"[Parallel(n_jobs=-1)]: Done 529 tasks | elapsed: 52.7s\n",
"[Parallel(n_jobs=-1)]: Done 562 tasks | elapsed: 58.1s\n",
"[Parallel(n_jobs=-1)]: Done 597 tasks | elapsed: 1.1min\n",
"[Parallel(n_jobs=-1)]: Done 632 tasks | elapsed: 1.3min\n",
"[Parallel(n_jobs=-1)]: Done 669 tasks | elapsed: 1.5min\n",
"[Parallel(n_jobs=-1)]: Done 706 tasks | elapsed: 1.6min\n",
"[Parallel(n_jobs=-1)]: Done 745 tasks | elapsed: 1.7min\n",
"[Parallel(n_jobs=-1)]: Done 784 tasks | elapsed: 1.8min\n",
"[Parallel(n_jobs=-1)]: Done 825 tasks | elapsed: 1.8min\n",
"[Parallel(n_jobs=-1)]: Done 866 tasks | elapsed: 1.8min\n",
"[Parallel(n_jobs=-1)]: Done 909 tasks | elapsed: 1.9min\n",
"[Parallel(n_jobs=-1)]: Done 952 tasks | elapsed: 1.9min\n",
"[Parallel(n_jobs=-1)]: Done 997 tasks | elapsed: 2.0min\n",
"[Parallel(n_jobs=-1)]: Done 1042 tasks | elapsed: 2.0min\n",
"[Parallel(n_jobs=-1)]: Done 1089 tasks | elapsed: 2.1min\n",
"[Parallel(n_jobs=-1)]: Done 1136 tasks | elapsed: 2.2min\n",
"[Parallel(n_jobs=-1)]: Done 1185 tasks | elapsed: 2.2min\n",
"[Parallel(n_jobs=-1)]: Done 1234 tasks | elapsed: 2.3min\n",
"[Parallel(n_jobs=-1)]: Done 1285 tasks | elapsed: 2.4min\n",
"[Parallel(n_jobs=-1)]: Done 1336 tasks | elapsed: 2.4min\n",
"[Parallel(n_jobs=-1)]: Done 1389 tasks | elapsed: 2.5min\n",
"[Parallel(n_jobs=-1)]: Done 1442 tasks | elapsed: 2.6min\n",
"[Parallel(n_jobs=-1)]: Done 1497 tasks | elapsed: 2.6min\n",
"[Parallel(n_jobs=-1)]: Done 1552 tasks | elapsed: 2.7min\n",
"[Parallel(n_jobs=-1)]: Done 1609 tasks | elapsed: 2.8min\n",
"[Parallel(n_jobs=-1)]: Done 1666 tasks | elapsed: 2.8min\n",
"[Parallel(n_jobs=-1)]: Done 1725 tasks | elapsed: 2.9min\n",
"[Parallel(n_jobs=-1)]: Done 1784 tasks | elapsed: 3.0min\n",
"[Parallel(n_jobs=-1)]: Done 1845 tasks | elapsed: 3.0min\n",
"[Parallel(n_jobs=-1)]: Done 1906 tasks | elapsed: 3.1min\n",
"[Parallel(n_jobs=-1)]: Done 1969 tasks | elapsed: 3.2min\n",
"[Parallel(n_jobs=-1)]: Done 2032 tasks | elapsed: 3.3min\n",
"[Parallel(n_jobs=-1)]: Done 2097 tasks | elapsed: 3.3min\n",
"[Parallel(n_jobs=-1)]: Done 2162 tasks | elapsed: 3.4min\n",
"[Parallel(n_jobs=-1)]: Done 2229 tasks | elapsed: 3.5min\n",
"[Parallel(n_jobs=-1)]: Done 2296 tasks | elapsed: 3.6min\n",
"[Parallel(n_jobs=-1)]: Done 2365 tasks | elapsed: 3.6min\n",
"[Parallel(n_jobs=-1)]: Done 2434 tasks | elapsed: 3.7min\n",
"[Parallel(n_jobs=-1)]: Done 2505 tasks | elapsed: 3.8min\n",
"[Parallel(n_jobs=-1)]: Done 2576 tasks | elapsed: 3.8min\n",
"[Parallel(n_jobs=-1)]: Done 2649 tasks | elapsed: 3.9min\n",
"[Parallel(n_jobs=-1)]: Done 2722 tasks | elapsed: 4.0min\n",
"[Parallel(n_jobs=-1)]: Done 2797 tasks | elapsed: 4.1min\n",
"[Parallel(n_jobs=-1)]: Done 2872 tasks | elapsed: 4.2min\n",
"[Parallel(n_jobs=-1)]: Done 2949 tasks | elapsed: 4.3min\n",
"[Parallel(n_jobs=-1)]: Done 3026 tasks | elapsed: 4.5min\n",
"[Parallel(n_jobs=-1)]: Done 3105 tasks | elapsed: 4.7min\n",
"[Parallel(n_jobs=-1)]: Done 3184 tasks | elapsed: 4.9min\n",
"[Parallel(n_jobs=-1)]: Done 3265 tasks | elapsed: 5.0min\n",
"[Parallel(n_jobs=-1)]: Done 3346 tasks | elapsed: 5.2min\n",
"[Parallel(n_jobs=-1)]: Done 3429 tasks | elapsed: 5.4min\n",
"[Parallel(n_jobs=-1)]: Done 3512 tasks | elapsed: 5.6min\n",
"[Parallel(n_jobs=-1)]: Done 3597 tasks | elapsed: 5.9min\n",
"[Parallel(n_jobs=-1)]: Done 3682 tasks | elapsed: 6.1min\n",
"[Parallel(n_jobs=-1)]: Done 3769 tasks | elapsed: 6.3min\n",
"[Parallel(n_jobs=-1)]: Done 3856 tasks | elapsed: 6.6min\n",
"[Parallel(n_jobs=-1)]: Done 3945 tasks | elapsed: 6.9min\n",
"[Parallel(n_jobs=-1)]: Done 4034 tasks | elapsed: 7.1min\n",
"[Parallel(n_jobs=-1)]: Done 4125 tasks | elapsed: 7.4min\n",
"[Parallel(n_jobs=-1)]: Done 4216 tasks | elapsed: 7.6min\n",
"[Parallel(n_jobs=-1)]: Done 4309 tasks | elapsed: 7.8min\n",
"[Parallel(n_jobs=-1)]: Done 4402 tasks | elapsed: 8.1min\n",
"[Parallel(n_jobs=-1)]: Done 4497 tasks | elapsed: 8.5min\n",
"[Parallel(n_jobs=-1)]: Done 4592 tasks | elapsed: 8.8min\n",
"[Parallel(n_jobs=-1)]: Done 4689 tasks | elapsed: 9.0min\n",
"[Parallel(n_jobs=-1)]: Done 4786 tasks | elapsed: 9.3min\n",
"[Parallel(n_jobs=-1)]: Done 4885 tasks | elapsed: 9.6min\n",
"[Parallel(n_jobs=-1)]: Done 4984 tasks | elapsed: 9.8min\n",
"[Parallel(n_jobs=-1)]: Done 5040 out of 5040 | elapsed: 10.0min finished\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=2020),\n",
" n_jobs=-1,\n",
" param_grid=[{'base_estimator': [Stree(C=7, max_depth=5,\n",
" split_criteria='max_samples',\n",
" tol=0.01)],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__kernel': ['linear'],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__split_criteria': ['max_samples',\n",
" 'impurity'],\n",
" 'base_e...\n",
" 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n",
" {'base_estimator': [Stree()],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__gamma': [0.1, 1, 10],\n",
" 'base_estimator__kernel': ['rbf'],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__split_criteria': ['max_samples',\n",
" 'impurity'],\n",
" 'base_estimator__tol': [0.1, 0.01],\n",
" 'learning_rate': [0.5, 1],\n",
" 'n_estimators': [10, 25]}],\n",
" return_train_score=True, verbose=10)"
]
},
"metadata": {},
"execution_count": 7
}
]
},
{
"source": [
"GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=2020),\n",
" n_jobs=-1,\n",
" param_grid={'base_estimator': [Stree(C=55, max_depth=3, tol=0.01)],\n",
" 'base_estimator__C': [7, 55],\n",
" 'base_estimator__kernel': ['linear', 'poly', 'rbf'],\n",
" 'base_estimator__max_depth': [3, 5],\n",
" 'base_estimator__tol': [0.1, 0.01],\n",
" 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n",
" return_train_score=True, verbose=10)"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"metadata": {
"id": "ZjX88NoYDZE8",
"colab_type": "code",
"colab": {},
"outputId": "285163c8-fa33-4915-8ae7-61c4f7844344",
"tags": []
},
"source": [
"print(\"Best estimator: \", grid.best_estimator_)\n",
"print(\"Best hyperparameters: \", grid.best_params_)\n",
"print(\"Best accuracy: \", grid.best_score_)"
],
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Best estimator: AdaBoostClassifier(algorithm='SAMME',\n base_estimator=Stree(C=7, max_depth=5,\n split_criteria='max_samples',\n tol=0.01),\n learning_rate=0.5, n_estimators=25, random_state=2020)\nBest hyperparameters: {'base_estimator': Stree(C=7, max_depth=5, split_criteria='max_samples', tol=0.01), 'base_estimator__C': 7, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 5, 'base_estimator__split_criteria': 'max_samples', 'base_estimator__tol': 0.01, 'learning_rate': 0.5, 'n_estimators': 25}\nBest accuracy: 0.9549825174825175\n"
]
}
]
},
{
"source": [
"Best estimator: AdaBoostClassifier(algorithm='SAMME',\n",
" base_estimator=Stree(C=55, max_depth=3, tol=0.01),\n",
" learning_rate=0.5, n_estimators=25, random_state=2020)\n",
"\n",
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=3, tol=0.01), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 3, 'base_estimator__tol': 0.01, 'learning_rate': 0.5, 'n_estimators': 25}\n",
"\n",
"Best accuracy: 0.9559440559440558"
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"0.9511547662863451"
],
"cell_type": "markdown",
"metadata": {}
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.4-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python38464bitgeneralvenv77203c0a6afd4428bd66253ef62753dc",
"display_name": "Python 3.8.4 64-bit ('general': venv)"
},
"colab": {
"name": "gridsearch.ipynb",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 0
}

16
pyproject.toml Normal file
View File

@@ -0,0 +1,16 @@
[tool.black]
line-length = 79
include = '\.pyi?$'
exclude = '''
/(
\.git
| \.hg
| \.mypy_cache
| \.tox
| \.venv
| _build
| buck-out
| build
| dist
)/
'''

View File

@@ -1,5 +1,4 @@
numpy
scikit-learn
pandas
matplotlib
ipympl

View File

@@ -1,40 +1,36 @@
import setuptools
__version__ = "0.9rc1"
__version__ = "0.9rc6"
__author__ = "Ricardo Montañana Gómez"
def readme():
with open('README.md') as f:
with open("README.md") as f:
return f.read()
setuptools.setup(
name='STree',
name="STree",
version=__version__,
license='MIT License',
description='a python interface to oblique decision tree implementations',
license="MIT License",
description="Oblique decision tree with svm nodes",
long_description=readme(),
long_description_content_type='text/markdown',
long_description_content_type="text/markdown",
packages=setuptools.find_packages(),
url='https://github.com/doctorado-ml/stree',
url="https://github.com/doctorado-ml/stree",
author=__author__,
author_email='ricardo.montanana@alu.uclm.es',
keywords='scikit-learn oblique-classifier oblique-decision-tree decision-tree svm svc',
author_email="ricardo.montanana@alu.uclm.es",
keywords="scikit-learn oblique-classifier oblique-decision-tree decision-\
tree svm svc",
classifiers=[
'Development Status :: 4 - Beta',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.7',
'Natural Language :: English',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Intended Audience :: Science/Research'
"Development Status :: 4 - Beta",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.8",
"Natural Language :: English",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Intended Audience :: Science/Research",
],
install_requires=[
'scikit-learn>=0.23.0',
'numpy',
'matplotlib',
'ipympl'
],
data_files=[('data', ['data/.gitignore'])],
install_requires=["scikit-learn>=0.23.0", "numpy", "ipympl"],
test_suite="stree.tests",
zip_safe=False
zip_safe=False,
)

View File

@@ -1,37 +1,80 @@
'''
"""
__author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
__license__ = "MIT"
__version__ = "0.9"
Build an oblique tree classifier based on SVM Trees
Uses LinearSVC
'''
"""
import typing
import os
import numbers
import random
import warnings
from math import log
from itertools import combinations
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.svm import LinearSVC
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
from sklearn.svm import SVC, LinearSVC
from sklearn.utils import check_consistent_length
from sklearn.utils.multiclass import check_classification_targets
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils.validation import (
check_X_y,
check_array,
check_is_fitted,
_check_sample_weight,
)
from sklearn.metrics._classification import _weighted_sum, _check_targets
class Snode:
def __init__(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray, title: str):
"""Nodes of the tree that keeps the svm classifier and if testing the
dataset assigned to it
"""
def __init__(
self,
clf: SVC,
X: np.ndarray,
y: np.ndarray,
features: np.array,
impurity: float,
title: str,
weight: np.ndarray = None,
):
self._clf = clf
self._vector = None if clf is None else clf.coef_
self._interceptor = 0. if clf is None else clf.intercept_
self._title = title
self._belief = 0. # belief of the prediction in a leaf node based on samples
self._belief = 0.0
# Only store dataset in Testing
self._X = X if os.environ.get('TESTING', 'NS') != 'NS' else None
self._X = X if os.environ.get("TESTING", "NS") != "NS" else None
self._y = y
self._down = None
self._up = None
self._class = None
self._feature = None
self._sample_weight = (
weight if os.environ.get("TESTING", "NS") != "NS" else None
)
self._features = features
self._impurity = impurity
self._partition_column: int = -1
@classmethod
def copy(cls, node: 'Snode') -> 'Snode':
return cls(node._clf, node._X, node._y, node._title)
def copy(cls, node: "Snode") -> "Snode":
return cls(
node._clf,
node._X,
node._y,
node._features,
node._impurity,
node._title,
)
def set_partition_column(self, col: int):
self._partition_column = col
def get_partition_column(self) -> int:
return self._partition_column
def set_down(self, son):
self._down = son
@@ -42,49 +85,53 @@ class Snode:
def is_leaf(self) -> bool:
return self._up is None and self._down is None
def get_down(self) -> 'Snode':
def get_down(self) -> "Snode":
return self._down
def get_up(self) -> 'Snode':
def get_up(self) -> "Snode":
return self._up
def make_predictor(self):
"""Compute the class of the predictor and its belief based on the subdataset of the node
only if it is a leaf
"""Compute the class of the predictor and its belief based on the
subdataset of the node only if it is a leaf
"""
if not self.is_leaf():
return
classes, card = np.unique(self._y, return_counts=True)
if len(classes) > 1:
max_card = max(card)
min_card = min(card)
try:
self._belief = max_card / (max_card + min_card)
except:
self._belief = 0.
self._class = classes[card == max_card][0]
self._belief = max_card / np.sum(card)
else:
self._belief = 1
try:
self._class = classes[0]
except IndexError:
self._class = None
def __str__(self) -> str:
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf():
return f"{self._title} - Leaf class={self._class} belief={self._belief:.6f} counts={np.unique(self._y, return_counts=True)}"
return (
f"{self._title} - Leaf class={self._class} belief="
f"{self._belief: .6f} impurity={self._impurity:.4f} "
f"counts={count_values}"
)
else:
return f"{self._title}"
return (
f"{self._title} feaures={self._features} impurity="
f"{self._impurity:.4f} "
f"counts={count_values}"
)
class Siterator:
"""Stree preorder iterator
"""
"""Stree preorder iterator"""
def __init__(self, tree: Snode):
self._stack = []
self._push(tree)
def __iter__(self):
return self
def _push(self, node: Snode):
if node is not None:
self._stack.append(node)
@@ -97,66 +144,418 @@ class Siterator:
self._push(node.get_down())
return node
class Stree(BaseEstimator, ClassifierMixin):
"""
"""
def __init__(self, C: float = 1.0, max_iter: int = 1000, random_state: int = 0, use_predictions: bool = False):
self._max_iter = max_iter
self._C = C
class Splitter:
def __init__(
self,
clf: SVC = None,
criterion: str = None,
splitter_type: str = None,
criteria: str = None,
min_samples_split: int = None,
random_state=None,
):
self._clf = clf
self._random_state = random_state
self._tree = None
self.__folder = 'data/'
self.__use_predictions = use_predictions
self.__trained = False
self.__proba = False
if random_state is not None:
random.seed(random_state)
self._criterion = criterion
self._min_samples_split = min_samples_split
self._criteria = criteria
self._splitter_type = splitter_type
def get_params(self, deep=True):
"""Get dict with hyperparameters and its values to accomplish sklearn rules
"""
return {"C": self._C, "random_state": self._random_state, 'max_iter': self._max_iter}
if clf is None:
raise ValueError(f"clf has to be a sklearn estimator, got({clf})")
def set_params(self, **parameters):
"""Set hyperparmeters as specified by sklearn, needed in Gridsearchs
"""
for parameter, value in parameters.items():
setattr(self, parameter, value)
return self
if criterion not in ["gini", "entropy"]:
raise ValueError(
f"criterion must be gini or entropy got({criterion})"
)
def _linear_function(self, data: np.array, node: Snode) -> np.array:
coef = node._vector[0, :].reshape(-1, data.shape[1])
return data.dot(coef.T) + node._interceptor[0]
if criteria not in [
"max_samples",
"impurity",
]:
raise ValueError(
f"criteria has to be max_samples or impurity; got ({criteria})"
)
def _split_data(self, node: Snode, data: np.ndarray, indices: np.ndarray) -> list:
if self.__use_predictions:
yp = node._clf.predict(data)
down = (yp == 1).reshape(-1, 1)
res = np.expand_dims(node._clf.decision_function(data), 1)
if splitter_type not in ["random", "best"]:
raise ValueError(
f"splitter must be either random or best, got({splitter_type})"
)
self.criterion_function = getattr(self, f"_{self._criterion}")
self.decision_criteria = getattr(self, f"_{self._criteria}")
def partition_impurity(self, y: np.array) -> np.array:
return self.criterion_function(y)
@staticmethod
def _gini(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
return 1 - np.sum(np.square(count / np.sum(count)))
@staticmethod
def _entropy(y: np.array) -> float:
n_labels = len(y)
if n_labels <= 1:
return 0
counts = np.bincount(y)
proportions = counts / n_labels
n_classes = np.count_nonzero(proportions)
if n_classes <= 1:
return 0
entropy = 0.0
# Compute standard entropy.
for prop in proportions:
if prop != 0.0:
entropy -= prop * log(prop, n_classes)
return entropy
def information_gain(
self, labels: np.array, labels_up: np.array, labels_dn: np.array
) -> float:
imp_prev = self.criterion_function(labels)
card_up = card_dn = imp_up = imp_dn = 0
if labels_up is not None:
card_up = labels_up.shape[0]
imp_up = self.criterion_function(labels_up)
if labels_dn is not None:
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_dn = self.criterion_function(labels_dn)
samples = card_up + card_dn
if samples == 0:
return 0.0
else:
# doesn't work with multiclass as each sample has to do inner product with its own coeficients
# computes positition of every sample is w.r.t. the hyperplane
res = self._linear_function(data, node)
down = res > 0
up = ~down
data_down = data[down[:, 0]] if any(down) else None
indices_down = indices[down[:, 0]] if any(down) else None
res_down = res[down[:, 0]] if any(down) else None
data_up = data[up[:, 0]] if any(up) else None
indices_up = indices[up[:, 0]] if any(up) else None
res_up = res[up[:, 0]] if any(up) else None
return [data_up, indices_up, data_down, indices_down, res_up, res_down]
result = (
imp_prev
- (card_up / samples) * imp_up
- (card_dn / samples) * imp_dn
)
return result
def fit(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> 'Stree':
X, y = check_X_y(X, y.ravel())
def _select_best_set(
self, dataset: np.array, labels: np.array, features_sets: list
) -> list:
max_gain = 0
selected = None
warnings.filterwarnings("ignore", category=ConvergenceWarning)
for feature_set in features_sets:
self._clf.fit(dataset[:, feature_set], labels)
node = Snode(
self._clf, dataset, labels, feature_set, 0.0, "subset"
)
self.partition(dataset, node, train=True)
y1, y2 = self.part(labels)
gain = self.information_gain(labels, y1, y2)
if gain > max_gain:
max_gain = gain
selected = feature_set
return selected if selected is not None else feature_set
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
) -> np.array:
features = range(dataset.shape[1])
features_sets = list(combinations(features, max_features))
if len(features_sets) > 1:
if self._splitter_type == "random":
index = random.randint(0, len(features_sets) - 1)
return features_sets[index]
else:
# get only 3 sets at most
if len(features_sets) > 3:
features_sets = random.sample(features_sets, 3)
return self._select_best_set(dataset, labels, features_sets)
else:
return features_sets[0]
def get_subspace(
self, dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the best/random subspace to make a split"""
indices = self._get_subspaces_set(dataset, labels, max_features)
return dataset[:, indices], indices
def _impurity(self, data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
:param data: distances to hyper plane of every class
:type data: np.array (m, n_classes)
:param y: vector of labels (classes)
:type y: np.array (m,)
:return: vector with the class assigned to each sample values
(can be 0, 1, ...) -1 if none produces information gain
:rtype: np.array shape (m,)
"""
max_gain = 0
selected = -1
for col in range(data.shape[1]):
tup = y[data[:, col] > 0]
tdn = y[data[:, col] <= 0]
info_gain = self.information_gain(y, tup, tdn)
if info_gain > max_gain:
selected = col
max_gain = info_gain
return selected
@staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
:param data: distances to hyper plane of every class
:type data: np.array (m, n_classes)
:param y: vector of labels (classes)
:type y: np.array (m,)
:return: vector with distances to hyperplane (can be positive or neg.)
:rtype: np.array shape (m,)
"""
# select the class with max number of samples
_, samples = np.unique(y, return_counts=True)
return np.argmax(samples)
def partition(self, samples: np.array, node: Snode, train: bool):
"""Set the criteria to split arrays. Compute the indices of the samples
that should go to one side of the tree (down)
"""
# data contains the distances of every sample to every class hyperplane
# array of (m, nc) nc = # classes
data = self._distances(node, samples)
if data.shape[0] < self._min_samples_split:
# there aren't enough samples to split
self._up = np.ones((data.shape[0]), dtype=bool)
return
if data.ndim > 1:
# split criteria for multiclass
# Convert data to a (m, 1) array selecting values for samples
if train:
# in train time we have to compute the column to take into
# account to split the dataset
col = self.decision_criteria(data, node._y)
node.set_partition_column(col)
else:
# in predcit time just use the column computed in train time
# is taking the classifier of class <col>
col = node.get_partition_column()
if col == -1:
# No partition is producing information gain
data = np.ones(data.shape)
data = data[:, col]
self._up = data > 0
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (down) and its complement
partition has to be called first to establish down indices
:param origin: dataset to split
:type origin: np.array
:param down: indices to use to split array
:type down: np.array
:return: list with two splits of the array
:rtype: list
"""
down = ~self._up
return [
origin[self._up] if any(self._up) else None,
origin[down] if any(down) else None,
]
@staticmethod
def _distances(node: Snode, data: np.ndarray) -> np.array:
"""Compute distances of the samples to the hyperplane of the node
:param node: node containing the svm classifier
:type node: Snode
:param data: samples to find out distance to hyperplane
:type data: np.ndarray
:return: array of shape (m, nc) with the distances of every sample to
the hyperplane of every class. nc = # of classes
:rtype: np.array
"""
return node._clf.decision_function(data[:, node._features])
class Stree(BaseEstimator, ClassifierMixin):
"""Estimator that is based on binary trees of svm nodes
can deal with sample_weights in predict, used in boosting sklearn methods
inheriting from BaseEstimator implements get_params and set_params methods
inheriting from ClassifierMixin implement the attribute _estimator_type
with "classifier" as value
"""
def __init__(
self,
C: float = 1.0,
kernel: str = "linear",
max_iter: int = 1e5,
random_state: int = None,
max_depth: int = None,
tol: float = 1e-4,
degree: int = 3,
gamma="scale",
split_criteria: str = "impurity",
criterion: str = "entropy",
min_samples_split: int = 0,
max_features=None,
splitter: str = "random",
):
self.max_iter = max_iter
self.C = C
self.kernel = kernel
self.random_state = random_state
self.max_depth = max_depth
self.tol = tol
self.gamma = gamma
self.degree = degree
self.min_samples_split = min_samples_split
self.split_criteria = split_criteria
self.max_features = max_features
self.criterion = criterion
self.splitter = splitter
def _more_tags(self) -> dict:
"""Required by sklearn to supply features of the classifier
:return: the tag required
:rtype: dict
"""
return {"requires_y": True}
def fit(
self, X: np.ndarray, y: np.ndarray, sample_weight: np.array = None
) -> "Stree":
"""Build the tree based on the dataset of samples and its labels
:param X: dataset of samples to make predictions
:type X: np.array
:param y: samples labels
:type y: np.array
:param sample_weight: weights of the samples. Rescale C per sample.
Hi' weights force the classifier to put more emphasis on these points
:type sample_weight: np.array optional
:raises ValueError: if parameters C or max_depth are out of bounds
:return: itself to be able to chain actions: fit().predict() ...
:rtype: Stree
"""
# Check parameters are Ok.
if self.C < 0:
raise ValueError(
f"Penalty term must be positive... got (C={self.C:f})"
)
self.__max_depth = (
np.iinfo(np.int32).max
if self.max_depth is None
else self.max_depth
)
if self.__max_depth < 1:
raise ValueError(
f"Maximum depth has to be greater than 1... got (max_depth=\
{self.max_depth})"
)
check_classification_targets(y)
X, y = check_X_y(X, y)
sample_weight = _check_sample_weight(
sample_weight, X, dtype=np.float64
)
check_classification_targets(y)
# Initialize computed parameters
self.splitter_ = Splitter(
clf=self._build_clf(),
criterion=self.criterion,
splitter_type=self.splitter,
criteria=self.split_criteria,
random_state=self.random_state,
min_samples_split=self.min_samples_split,
)
if self.random_state is not None:
random.seed(self.random_state)
self.classes_, y = np.unique(y, return_inverse=True)
self.n_classes_ = self.classes_.shape[0]
self.n_iter_ = self.max_iter
self.depth_ = 0
self.n_features_ = X.shape[1]
self.n_features_in_ = X.shape[1]
self._tree = self.train(X, y.ravel(), title)
self.max_features_ = self._initialize_max_features()
self.tree_ = self.train(X, y, sample_weight, 1, "root")
self._build_predictor()
self.__trained = True
return self
def train(
self,
X: np.ndarray,
y: np.ndarray,
sample_weight: np.ndarray,
depth: int,
title: str,
) -> Snode:
"""Recursive function to split the original dataset into predictor
nodes (leaves)
:param X: samples dataset
:type X: np.ndarray
:param y: samples labels
:type y: np.ndarray
:param sample_weight: weight of samples. Rescale C per sample.
Hi weights force the classifier to put more emphasis on these points.
:type sample_weight: np.ndarray
:param depth: actual depth in the tree
:type depth: int
:param title: description of the node
:type title: str
:return: binary tree
:rtype: Snode
"""
if depth > self.__max_depth:
return None
if np.unique(y).shape[0] == 1:
# only 1 class => pure dataset
return Snode(
clf=None,
X=X,
y=y,
features=X.shape[1],
impurity=0.0,
title=title + ", <pure>",
weight=sample_weight,
)
# Train the model
clf = self._build_clf()
Xs, features = self.splitter_.get_subspace(X, y, self.max_features_)
# solve WARNING: class label 0 specified in weight is not found
# in bagging
if any(sample_weight == 0):
indices = sample_weight == 0
y_next = y[~indices]
# touch weights if removing any class
if np.unique(y_next).shape[0] != self.n_classes_:
sample_weight += 1e-5
clf.fit(Xs, y, sample_weight=sample_weight)
impurity = self.splitter_.partition_impurity(y)
node = Snode(clf, X, y, features, impurity, title, sample_weight)
self.depth_ = max(depth, self.depth_)
self.splitter_.partition(X, node, True)
X_U, X_D = self.splitter_.part(X)
y_u, y_d = self.splitter_.part(y)
sw_u, sw_d = self.splitter_.part(sample_weight)
if X_U is None or X_D is None:
# didn't part anything
return Snode(
clf,
X,
y,
features=X.shape[1],
impurity=impurity,
title=title + ", <cgaf>",
weight=sample_weight,
)
node.set_up(self.train(X_U, y_u, sw_u, depth + 1, title + " - Up"))
node.set_down(self.train(X_D, y_d, sw_d, depth + 1, title + " - Down"))
return node
def _build_predictor(self):
"""Process the leaves to make them predictors
"""
"""Process the leaves to make them predictors"""
def run_tree(node: Snode):
if node.is_leaf():
@@ -165,147 +564,166 @@ class Stree(BaseEstimator, ClassifierMixin):
run_tree(node.get_down())
run_tree(node.get_up())
run_tree(self._tree)
run_tree(self.tree_)
def train(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> Snode:
if np.unique(y).shape[0] == 1:
# only 1 class => pure dataset
return Snode(None, X, y, title + ', <pure>')
# Train the model
clf = LinearSVC(max_iter=self._max_iter, C=self._C,
random_state=self._random_state)
clf.fit(X, y)
tree = Snode(clf, X, y, title)
X_U, y_u, X_D, y_d, _, _ = self._split_data(tree, X, y)
if X_U is None or X_D is None:
# didn't part anything
return Snode(clf, X, y, title + ', <cgaf>')
tree.set_up(self.train(X_U, y_u, title + ' - Up'))
tree.set_down(self.train(X_D, y_d, title + ' - Down'))
return tree
def _build_clf(self):
"""Build the correct classifier for the node"""
return (
LinearSVC(
max_iter=self.max_iter,
random_state=self.random_state,
C=self.C,
tol=self.tol,
)
if self.kernel == "linear"
else SVC(
kernel=self.kernel,
max_iter=self.max_iter,
tol=self.tol,
C=self.C,
gamma=self.gamma,
degree=self.degree,
)
)
def _reorder_results(self, y: np.array, indices: np.array) -> np.array:
y_ordered = np.zeros(y.shape, dtype=int if y.ndim == 1 else float)
@staticmethod
def _reorder_results(y: np.array, indices: np.array) -> np.array:
"""Reorder an array based on the array of indices passed
:param y: data untidy
:type y: np.array
:param indices: indices used to set order
:type indices: np.array
:return: array y ordered
:rtype: np.array
"""
# return array of same type given in y
y_ordered = y.copy()
indices = indices.astype(int)
for i, index in enumerate(indices):
y_ordered[index] = y[i]
return y_ordered
def predict(self, X: np.array) -> np.array:
def predict_class(xp: np.array, indices: np.array, node: Snode) -> np.array:
"""Predict labels for each sample in dataset passed
:param X: dataset of samples
:type X: np.array
:return: array of labels
:rtype: np.array
"""
def predict_class(
xp: np.array, indices: np.array, node: Snode
) -> np.array:
if xp is None:
return [], []
if node.is_leaf():
# set a class for every sample in dataset
prediction = np.full((xp.shape[0], 1), node._class)
return prediction, indices
u, i_u, d, i_d, _, _ = self._split_data(node, xp, indices)
k, l = predict_class(d, i_d, node.get_down())
m, n = predict_class(u, i_u, node.get_up())
return np.append(k, m), np.append(l, n)
self.splitter_.partition(xp, node, train=False)
x_u, x_d = self.splitter_.part(xp)
i_u, i_d = self.splitter_.part(indices)
prx_u, prin_u = predict_class(x_u, i_u, node.get_up())
prx_d, prin_d = predict_class(x_d, i_d, node.get_down())
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
# sklearn check
check_is_fitted(self)
check_is_fitted(self, ["tree_"])
# Input validation
X = check_array(X)
if X.shape[1] != self.n_features_:
raise ValueError(
f"Expected {self.n_features_} features but got "
f"({X.shape[1]})"
)
# setup prediction & make it happen
indices = np.arange(X.shape[0])
return self._reorder_results(*predict_class(X, indices, self._tree))
result = (
self._reorder_results(*predict_class(X, indices, self.tree_))
.astype(int)
.ravel()
)
return self.classes_[result]
def predict_proba(self, X: np.array) -> np.array:
"""Computes an approximation of the probability of samples belonging to class 1
(nothing more, nothing less)
def score(
self, X: np.array, y: np.array, sample_weight: np.array = None
) -> float:
"""Compute accuracy of the prediction
:param X: dataset
:param X: dataset of samples to make predictions
:type X: np.array
:param y_true: samples labels
:type y_true: np.array
:param sample_weight: weights of the samples. Rescale C per sample.
Hi' weights force the classifier to put more emphasis on these points
:type sample_weight: np.array optional
:return: accuracy of the prediction
:rtype: float
"""
def predict_class(xp: np.array, indices: np.array, dist: np.array, node: Snode) -> np.array:
"""Run the tree to compute predictions
:param xp: subdataset of samples
:type xp: np.array
:param indices: indices of subdataset samples to rebuild original order
:type indices: np.array
:param dist: distances of every sample to the hyperplane or the father node
:type dist: np.array
:param node: node of the leaf with the class
:type node: Snode
:return: array of labels and distances, array of indices
:rtype: np.array
"""
if xp is None:
return [], []
if node.is_leaf():
# set a class for every sample in dataset
prediction = np.full((xp.shape[0], 1), node._class)
prediction_proba = dist
return np.append(prediction, prediction_proba, axis=1), indices
u, i_u, d, i_d, r_u, r_d = self._split_data(node, xp, indices)
k, l = predict_class(d, i_d, r_d, node.get_down())
m, n = predict_class(u, i_u, r_u, node.get_up())
return np.append(k, m), np.append(l, n)
# sklearn check
check_is_fitted(self)
# Input validation
X = check_array(X)
# setup prediction & make it happen
indices = np.arange(X.shape[0])
result, indices = predict_class(X, indices, [], self._tree)
result = result.reshape(X.shape[0], 2)
# Turn distances to hyperplane into probabilities based on fitting distances
# of samples to its hyperplane that classified them, to the sigmoid function
result[:, 1] = 1 / (1 + np.exp(-result[:, 1]))
return self._reorder_results(result, indices)
check_classification_targets(y)
X, y = check_X_y(X, y)
y_pred = self.predict(X).reshape(y.shape)
# Compute accuracy for each possible representation
_, y_true, y_pred = _check_targets(y, y_pred)
check_consistent_length(y_true, y_pred, sample_weight)
score = y_true == y_pred
return _weighted_sum(score, sample_weight, normalize=True)
def score(self, X: np.array, y: np.array) -> float:
"""Return accuracy
def __iter__(self) -> Siterator:
"""Create an iterator to be able to visit the nodes of the tree in
preorder, can make a list with all the nodes in preorder
:return: an iterator, can for i in... and list(...)
:rtype: Siterator
"""
if not self.__trained:
self.fit(X, y)
yp = self.predict(X).reshape(y.shape)
right = (yp == y).astype(int)
return np.sum(right) / len(y)
def __iter__(self):
return Siterator(self._tree)
try:
tree = self.tree_
except AttributeError:
tree = None
return Siterator(tree)
def __str__(self) -> str:
output = ''
"""String representation of the tree
:return: description of nodes in the tree in preorder
:rtype: str
"""
output = ""
for i in self:
output += str(i) + '\n'
output += str(i) + "\n"
return output
def _save_datasets(self, tree: Snode, catalog: typing.TextIO, number: int):
"""Save the dataset of the node in a csv file
:param tree: node with data to save
:type tree: Snode
:param catalog: catalog file handler
:type catalog: typing.TextIO
:param number: sequential number for the generated file name
:type number: int
"""
data = np.append(tree._X, tree._y.reshape(-1, 1), axis=1)
name = f"{self.__folder}dataset{number}.csv"
np.savetxt(name, data, delimiter=",")
catalog.write(f"{name}, - {str(tree)}")
if tree.is_leaf():
return
self._save_datasets(tree.get_down(), catalog, number + 1)
self._save_datasets(tree.get_up(), catalog, number + 2)
def get_catalog_name(self):
return self.__folder + "catalog.txt"
def save_sub_datasets(self):
"""Save the every dataset stored in the tree to check with manual classifier
"""
if not os.path.isdir(self.__folder):
os.mkdir(self.__folder)
with open(self.get_catalog_name(), 'w', encoding='utf-8') as catalog:
self._save_datasets(self._tree, catalog, 1)
def _initialize_max_features(self) -> int:
if isinstance(self.max_features, str):
if self.max_features == "auto":
max_features = max(1, int(np.sqrt(self.n_features_)))
elif self.max_features == "sqrt":
max_features = max(1, int(np.sqrt(self.n_features_)))
elif self.max_features == "log2":
max_features = max(1, int(np.log2(self.n_features_)))
else:
raise ValueError(
"Invalid value for max_features. "
"Allowed string values are 'auto', "
"'sqrt' or 'log2'."
)
elif self.max_features is None:
max_features = self.n_features_
elif isinstance(self.max_features, numbers.Integral):
max_features = self.max_features
else: # float
if self.max_features > 0.0:
max_features = max(
1, int(self.max_features * self.n_features_)
)
else:
raise ValueError(
"Invalid value for max_features."
"Allowed float must be in range (0, 1] "
f"got ({self.max_features})"
)
return max_features

View File

@@ -1,182 +0,0 @@
'''
__author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
__license__ = "MIT"
__version__ = "0.9"
Plot 3D views of nodes in Stree
'''
import os
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import PCA
from mpl_toolkits.mplot3d import Axes3D
from .Strees import Stree, Snode, Siterator
class Snode_graph(Snode):
def __init__(self, node: Stree):
self._plot_size = (8, 8)
self._xlimits = (None, None)
self._ylimits = (None, None)
self._zlimits = (None, None)
n = Snode.copy(node)
super().__init__(n._clf, n._X, n._y, n._title)
def set_plot_size(self, size: tuple):
self._plot_size = size
def _is_pure(self) -> bool:
"""is considered pure a leaf node with one label
"""
if self.is_leaf():
return self._belief == 1.
return False
def set_axis_limits(self, limits: tuple):
self._xlimits = limits[0]
self._ylimits = limits[1]
self._zlimits = limits[2]
def _set_graphics_axis(self, ax: Axes3D):
ax.set_xlim(self._xlimits)
ax.set_ylim(self._ylimits)
ax.set_zlim(self._zlimits)
def save_hyperplane(self, save_folder: str = './', save_prefix: str = '', save_seq: int = 1):
_, fig = self.plot_hyperplane()
name = f"{save_folder}{save_prefix}STnode{save_seq}.png"
fig.savefig(name, bbox_inches='tight')
plt.close(fig)
def _get_cmap(self):
cmap = 'jet'
if self._is_pure():
if self._class == 1:
cmap = 'jet_r'
return cmap
def _graph_title(self):
n_class, card = np.unique(self._y, return_counts=True)
return f"{self._title} {n_class} {card}"
def plot_hyperplane(self, plot_distribution: bool = True):
fig = plt.figure(figsize=self._plot_size)
ax = fig.add_subplot(1, 1, 1, projection='3d')
if not self._is_pure():
# Can't plot hyperplane of leaves with one label because it hasn't classiffier
# get the splitting hyperplane
def hyperplane(x, y): return (-self._interceptor - self._vector[0][0] * x
- self._vector[0][1] * y) / self._vector[0][2]
tmpx = np.linspace(self._X[:, 0].min(), self._X[:, 0].max())
tmpy = np.linspace(self._X[:, 1].min(), self._X[:, 1].max())
xx, yy = np.meshgrid(tmpx, tmpy)
ax.plot_surface(xx, yy, hyperplane(xx, yy), alpha=.5, antialiased=True,
rstride=1, cstride=1, cmap='seismic')
self._set_graphics_axis(ax)
if plot_distribution:
self.plot_distribution(ax)
else:
plt.title(self._graph_title())
plt.show()
return ax, fig
def plot_distribution(self, ax: Axes3D = None):
if ax is None:
fig = plt.figure(figsize=self._plot_size)
ax = fig.add_subplot(1, 1, 1, projection='3d')
plt.title(self._graph_title())
cmap = self._get_cmap()
ax.scatter(self._X[:, 0], self._X[:, 1],
self._X[:, 2], c=self._y, cmap=cmap)
ax.set_xlabel('X0')
ax.set_ylabel('X1')
ax.set_zlabel('X2')
plt.show()
class Stree_grapher(Stree):
"""Build 3d graphs of any dataset, if it's more than 3 features PCA shall
make its magic
"""
def __init__(self, params: dict):
self._plot_size = (8, 8)
self._tree_gr = None
# make Snode store X's
os.environ['TESTING'] = '1'
self._fitted = False
self._pca = None
super().__init__(**params)
def __del__(self):
try:
os.environ.pop('TESTING')
except:
pass
plt.close('all')
def _copy_tree(self, node: Snode) -> Snode_graph:
mirror = Snode_graph(node)
# clone node
mirror._class = node._class
mirror._belief = node._belief
if node.get_down() is not None:
mirror.set_down(self._copy_tree(node.get_down()))
if node.get_up() is not None:
mirror.set_up(self._copy_tree(node.get_up()))
return mirror
def fit(self, X: np.array, y: np.array) -> Stree:
"""Fit the Stree and copy the tree in a Snode_graph tree
:param X: Dataset
:type X: np.array
:param y: Labels
:type y: np.array
:return: Stree model
:rtype: Stree
"""
if X.shape[1] != 3:
self._pca = PCA(n_components=3)
X = self._pca.fit_transform(X)
res = super().fit(X, y)
self._tree_gr = self._copy_tree(self._tree)
self._fitted = True
return res
def score(self, X: np.array, y: np.array) -> float:
self._check_fitted()
if X.shape[1] != 3:
X = self._pca.transform(X)
return super().score(X, y)
def _check_fitted(self):
if not self._fitted:
raise Exception('Have to fit the grapher first!')
def save_all(self, save_folder: str = './', save_prefix: str = ''):
"""Save all the node plots in png format, each with a sequence number
:param save_folder: folder where the plots are saved, defaults to './'
:type save_folder: str, optional
"""
self._check_fitted()
seq = 1
for node in self:
node.save_hyperplane(save_folder=save_folder,
save_prefix=save_prefix, save_seq=seq)
seq += 1
def plot_all(self):
"""Plots all the nodes
"""
self._check_fitted()
for node in self:
node.plot_hyperplane()
def __iter__(self):
return Siterator(self._tree_gr)

View File

@@ -1,2 +1,3 @@
from .Strees import Stree, Snode, Siterator
from .Strees_grapher import Stree_grapher, Snode_graph
from .Strees import Stree, Snode, Siterator, Splitter
__all__ = ["Stree", "Snode", "Siterator", "Splitter"]

96
stree/tests/Snode_test.py Normal file
View File

@@ -0,0 +1,96 @@
import os
import unittest
import numpy as np
from stree import Stree, Snode
from .utils import load_dataset
class Snode_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
self._clf = Stree(random_state=self._random_state)
self._clf.fit(*load_dataset(self._random_state))
super().__init__(*args, **kwargs)
@classmethod
def setUp(cls):
os.environ["TESTING"] = "1"
def test_attributes_in_leaves(self):
"""Check if the attributes in leaves have correct values so they form a
predictor
"""
def check_leave(node: Snode):
if not node.is_leaf():
check_leave(node.get_down())
check_leave(node.get_up())
return
# Check Belief in leave
classes, card = np.unique(node._y, return_counts=True)
max_card = max(card)
min_card = min(card)
if len(classes) > 1:
belief = max_card / (max_card + min_card)
else:
belief = 1
self.assertEqual(belief, node._belief)
# Check Class
class_computed = classes[card == max_card]
self.assertEqual(class_computed, node._class)
# Check Partition column
self.assertEqual(node._partition_column, -1)
check_leave(self._clf.tree_)
def test_nodes_coefs(self):
"""Check if the nodes of the tree have the right attributes filled"""
def run_tree(node: Snode):
if node._belief < 1:
# only exclude pure leaves
self.assertIsNotNone(node._clf)
self.assertIsNotNone(node._clf.coef_)
if node.is_leaf():
return
run_tree(node.get_up())
run_tree(node.get_down())
model = Stree(self._random_state)
model.fit(*load_dataset(self._random_state, 3, 4))
run_tree(model.tree_)
def test_make_predictor_on_leaf(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
test.make_predictor()
self.assertEqual(1, test._class)
self.assertEqual(0.75, test._belief)
self.assertEqual(-1, test._partition_column)
def test_make_predictor_on_not_leaf(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
test.set_up(Snode(None, [1], [1], [], 0.0, "another_test"))
test.make_predictor()
self.assertIsNone(test._class)
self.assertEqual(0, test._belief)
self.assertEqual(-1, test._partition_column)
self.assertEqual(-1, test.get_up()._partition_column)
def test_make_predictor_on_leaf_bogus_data(self):
test = Snode(None, [1, 2, 3, 4], [], [], 0.0, "test")
test.make_predictor()
self.assertIsNone(test._class)
self.assertEqual(-1, test._partition_column)
def test_copy_node(self):
px = [1, 2, 3, 4]
py = [1]
test = Snode(Stree(), px, py, [], 0.0, "test")
computed = Snode.copy(test)
self.assertListEqual(computed._X, px)
self.assertListEqual(computed._y, py)
self.assertEqual("test", computed._title)
self.assertIsInstance(computed._clf, Stree)
self.assertEqual(test._partition_column, computed._partition_column)

View File

@@ -0,0 +1,216 @@
import os
import unittest
import random
import numpy as np
from sklearn.svm import SVC
from sklearn.datasets import load_wine, load_iris
from stree import Splitter
class Splitter_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
super().__init__(*args, **kwargs)
@staticmethod
def build(
clf=SVC,
min_samples_split=0,
splitter_type="random",
criterion="gini",
criteria="max_samples",
random_state=None,
):
return Splitter(
clf=clf(random_state=random_state, kernel="rbf"),
min_samples_split=min_samples_split,
splitter_type=splitter_type,
criterion=criterion,
criteria=criteria,
random_state=random_state,
)
@classmethod
def setUp(cls):
os.environ["TESTING"] = "1"
def test_init(self):
with self.assertRaises(ValueError):
self.build(criterion="duck")
with self.assertRaises(ValueError):
self.build(splitter_type="duck")
with self.assertRaises(ValueError):
self.build(criteria="duck")
with self.assertRaises(ValueError):
_ = Splitter(clf=None)
for splitter_type in ["best", "random"]:
for criterion in ["gini", "entropy"]:
for criteria in ["max_samples", "impurity"]:
tcl = self.build(
splitter_type=splitter_type,
criterion=criterion,
criteria=criteria,
)
self.assertEqual(splitter_type, tcl._splitter_type)
self.assertEqual(criterion, tcl._criterion)
self.assertEqual(criteria, tcl._criteria)
def test_gini(self):
expected_values = [
([0, 1, 1, 1, 1, 1, 0, 0, 0, 1], 0.48),
([0, 1, 1, 2, 2, 3, 4, 5, 3, 2, 1, 1], 0.7777777777777778),
([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2], 0.520408163265306),
([0, 0, 1, 1, 1, 1, 0, 0], 0.5),
([0, 0, 1, 1, 2, 2, 3, 3], 0.75),
([0, 0, 1, 1, 1, 1, 1, 1], 0.375),
([0], 0),
([1, 1, 1, 1], 0),
]
for labels, expected in expected_values:
self.assertAlmostEqual(expected, Splitter._gini(labels))
tcl = self.build(criterion="gini")
self.assertAlmostEqual(expected, tcl.criterion_function(labels))
def test_entropy(self):
expected_values = [
([0, 1, 1, 1, 1, 1, 0, 0, 0, 1], 0.9709505944546686),
([0, 1, 1, 2, 2, 3, 4, 5, 3, 2, 1, 1], 0.9111886696810589),
([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2], 0.8120406807940999),
([0, 0, 1, 1, 1, 1, 0, 0], 1),
([0, 0, 1, 1, 2, 2, 3, 3], 1),
([0, 0, 1, 1, 1, 1, 1, 1], 0.8112781244591328),
([1], 0),
([0, 0, 0, 0], 0),
]
for labels, expected in expected_values:
self.assertAlmostEqual(expected, Splitter._entropy(labels))
tcl = self.build(criterion="entropy")
self.assertAlmostEqual(expected, tcl.criterion_function(labels))
def test_information_gain(self):
expected_values = [
(
[0, 1, 1, 1, 1, 1],
[0, 0, 0, 1],
0.16333333333333333,
0.25642589168200297,
),
(
[0, 1, 1, 2, 2, 3, 4, 5, 3, 2, 1, 1],
[5, 3, 2, 1, 1],
0.007381776239907684,
-0.03328610916207225,
),
([], [], 0.0, 0.0),
([1], [], 0.0, 0.0),
([], [1], 0.0, 0.0),
([0, 0, 0, 0], [0, 0], 0.0, 0.0),
([], [1, 1, 1, 2], 0.0, 0.0),
(None, [1, 2, 3], 0.0, 0.0),
([1, 2, 3], None, 0.0, 0.0),
]
for yu, yd, expected_gini, expected_entropy in expected_values:
yu = np.array(yu, dtype=np.int32) if yu is not None else None
yd = np.array(yd, dtype=np.int32) if yd is not None else None
if yu is not None and yd is not None:
complete = np.append(yu, yd)
elif yd is not None:
complete = yd
else:
complete = yu
tcl = self.build(criterion="gini")
computed = tcl.information_gain(complete, yu, yd)
self.assertAlmostEqual(expected_gini, computed)
tcl = self.build(criterion="entropy")
computed = tcl.information_gain(complete, yu, yd)
self.assertAlmostEqual(expected_entropy, computed)
def test_max_samples(self):
tcl = self.build(criteria="max_samples")
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
]
)
expected = data[:, 0]
y = [1, 2, 1, 0, 0, 0]
computed = tcl._max_samples(data, y)
self.assertEqual(0, computed)
computed_data = data[:, computed]
self.assertEqual((6,), computed_data.shape)
self.assertListEqual(expected.tolist(), computed_data.tolist())
def test_impurity(self):
tcl = self.build(criteria="impurity")
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
[-0.1, 0.2, 0.3],
]
)
expected = data[:, 2]
y = np.array([1, 2, 1, 0, 0, 0])
computed = tcl._impurity(data, y)
self.assertEqual(2, computed)
computed_data = data[:, computed]
self.assertEqual((6,), computed_data.shape)
self.assertListEqual(expected.tolist(), computed_data.tolist())
def test_best_splitter_few_sets(self):
X, y = load_iris(return_X_y=True)
X = np.delete(X, 3, 1)
tcl = self.build(splitter_type="best", random_state=self._random_state)
dataset, computed = tcl.get_subspace(X, y, max_features=2)
self.assertListEqual([0, 2], list(computed))
self.assertListEqual(X[:, computed].tolist(), dataset.tolist())
def test_splitter_parameter(self):
expected_values = [
[0, 1, 7, 9], # best entropy max_samples
[3, 8, 10, 11], # best entropy impurity
[0, 2, 8, 12], # best gini max_samples
[1, 2, 5, 12], # best gini impurity
[1, 2, 5, 10], # random entropy max_samples
[4, 8, 9, 12], # random entropy impurity
[3, 9, 11, 12], # random gini max_samples
[1, 5, 6, 9], # random gini impurity
]
X, y = load_wine(return_X_y=True)
rn = 0
for splitter_type in ["best", "random"]:
for criterion in ["entropy", "gini"]:
for criteria in [
"max_samples",
"impurity",
]:
tcl = self.build(
splitter_type=splitter_type,
criterion=criterion,
criteria=criteria,
)
expected = expected_values.pop(0)
random.seed(rn)
rn += 1
dataset, computed = tcl.get_subspace(X, y, max_features=4)
# print(
# "{}, # {:7s}{:8s}{:15s}".format(
# list(computed),
# splitter_type,
# criterion,
# criteria,
# )
# )
self.assertListEqual(expected, list(computed))
self.assertListEqual(
X[:, computed].tolist(), dataset.tolist()
)

444
stree/tests/Stree_test.py Normal file
View File

@@ -0,0 +1,444 @@
import os
import unittest
import warnings
import numpy as np
from sklearn.datasets import load_iris, load_wine
from sklearn.exceptions import ConvergenceWarning
from sklearn.svm import LinearSVC
from stree import Stree, Snode
from .utils import load_dataset
class Stree_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
self._kernels = ["linear", "rbf", "poly"]
super().__init__(*args, **kwargs)
@classmethod
def setUp(cls):
os.environ["TESTING"] = "1"
def _check_tree(self, node: Snode):
"""Check recursively that the nodes that are not leaves have the
correct number of labels and its sons have the right number of elements
in their dataset
Arguments:
node {Snode} -- node to check
"""
if node.is_leaf():
return
y_prediction = node._clf.predict(node._X)
y_down = node.get_down()._y
y_up = node.get_up()._y
# Is a correct partition in terms of cadinality?
# i.e. The partition algorithm didn't forget any sample
self.assertEqual(node._y.shape[0], y_down.shape[0] + y_up.shape[0])
unique_y, count_y = np.unique(node._y, return_counts=True)
_, count_d = np.unique(y_down, return_counts=True)
_, count_u = np.unique(y_up, return_counts=True)
#
for i in unique_y:
number_up = count_u[i]
try:
number_down = count_d[i]
except IndexError:
number_down = 0
self.assertEqual(count_y[i], number_down + number_up)
# Is the partition made the same as the prediction?
# as the node is not a leaf...
_, count_yp = np.unique(y_prediction, return_counts=True)
self.assertEqual(count_yp[1], y_up.shape[0])
self.assertEqual(count_yp[0], y_down.shape[0])
self._check_tree(node.get_down())
self._check_tree(node.get_up())
def test_build_tree(self):
"""Check if the tree is built the same way as predictions of models"""
warnings.filterwarnings("ignore")
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
clf.fit(*load_dataset(self._random_state))
self._check_tree(clf.tree_)
def test_single_prediction(self):
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
yp = clf.fit(X, y).predict((X[0, :].reshape(-1, X.shape[1])))
self.assertEqual(yp[0], y[0])
def test_multiple_prediction(self):
# First 27 elements the predictions are the same as the truth
num = 27
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
yp = clf.fit(X, y).predict(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp.tolist())
def test_single_vs_multiple_prediction(self):
"""Check if predicting sample by sample gives the same result as
predicting all samples at once
"""
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
clf.fit(X, y)
# Compute prediction line by line
yp_line = np.array([], dtype=int)
for xp in X:
yp_line = np.append(
yp_line, clf.predict(xp.reshape(-1, X.shape[1]))
)
# Compute prediction at once
yp_once = clf.predict(X)
self.assertListEqual(yp_line.tolist(), yp_once.tolist())
def test_iterator_and_str(self):
"""Check preorder iterator"""
expected = [
"root feaures=(0, 1, 2) impurity=1.0000 counts=(array([0, 1]), arr"
"ay([750, 750]))",
"root - Down, <cgaf> - Leaf class=0 belief= 0.928297 impurity=0.37"
"22 counts=(array([0, 1]), array([725, 56]))",
"root - Up feaures=(0, 1, 2) impurity=0.2178 counts=(array([0, 1])"
", array([ 25, 694]))",
"root - Up - Down feaures=(0, 1, 2) impurity=0.8454 counts=(array("
"[0, 1]), array([8, 3]))",
"root - Up - Down - Down, <pure> - Leaf class=0 belief= 1.000000 i"
"mpurity=0.0000 counts=(array([0]), array([7]))",
"root - Up - Down - Up, <cgaf> - Leaf class=1 belief= 0.750000 imp"
"urity=0.8113 counts=(array([0, 1]), array([1, 3]))",
"root - Up - Up, <cgaf> - Leaf class=1 belief= 0.975989 impurity=0"
".1634 counts=(array([0, 1]), array([ 17, 691]))",
]
computed = []
expected_string = ""
clf = Stree(kernel="linear", random_state=self._random_state)
clf.fit(*load_dataset(self._random_state))
for node in clf:
computed.append(str(node))
expected_string += str(node) + "\n"
self.assertListEqual(expected, computed)
self.assertEqual(expected_string, str(clf))
@staticmethod
def test_is_a_sklearn_classifier():
warnings.filterwarnings("ignore", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
from sklearn.utils.estimator_checks import check_estimator
check_estimator(Stree())
def test_exception_if_C_is_negative(self):
tclf = Stree(C=-1)
with self.assertRaises(ValueError):
tclf.fit(*load_dataset(self._random_state))
def test_exception_if_bogus_split_criteria(self):
tclf = Stree(split_criteria="duck")
with self.assertRaises(ValueError):
tclf.fit(*load_dataset(self._random_state))
def test_check_max_depth_is_positive_or_None(self):
tcl = Stree()
self.assertIsNone(tcl.max_depth)
tcl = Stree(max_depth=1)
self.assertGreaterEqual(1, tcl.max_depth)
with self.assertRaises(ValueError):
tcl = Stree(max_depth=-1)
tcl.fit(*load_dataset(self._random_state))
def test_check_max_depth(self):
depths = (3, 4)
for depth in depths:
tcl = Stree(random_state=self._random_state, max_depth=depth)
tcl.fit(*load_dataset(self._random_state))
self.assertEqual(depth, tcl.depth_)
def test_unfitted_tree_is_iterable(self):
tcl = Stree()
self.assertEqual(0, len(list(tcl)))
def test_min_samples_split(self):
dataset = [[1], [2], [3]], [1, 1, 0]
tcl_split = Stree(min_samples_split=3).fit(*dataset)
self.assertIsNotNone(tcl_split.tree_.get_down())
self.assertIsNotNone(tcl_split.tree_.get_up())
tcl_nosplit = Stree(min_samples_split=4).fit(*dataset)
self.assertIsNone(tcl_nosplit.tree_.get_down())
self.assertIsNone(tcl_nosplit.tree_.get_up())
def test_simple_muticlass_dataset(self):
for kernel in self._kernels:
clf = Stree(
kernel=kernel,
split_criteria="max_samples",
random_state=self._random_state,
)
px = [[1, 2], [5, 6], [9, 10]]
py = [0, 1, 2]
clf.fit(px, py)
self.assertEqual(1.0, clf.score(px, py))
self.assertListEqual(py, clf.predict(px).tolist())
self.assertListEqual(py, clf.classes_.tolist())
def test_muticlass_dataset(self):
datasets = {
"Synt": load_dataset(random_state=self._random_state, n_classes=3),
"Iris": load_wine(return_X_y=True),
}
outcomes = {
"Synt": {
"max_samples linear": 0.9606666666666667,
"max_samples rbf": 0.7133333333333334,
"max_samples poly": 0.49066666666666664,
"impurity linear": 0.9606666666666667,
"impurity rbf": 0.7133333333333334,
"impurity poly": 0.49066666666666664,
},
"Iris": {
"max_samples linear": 1.0,
"max_samples rbf": 0.6910112359550562,
"max_samples poly": 0.6966292134831461,
"impurity linear": 1,
"impurity rbf": 0.6910112359550562,
"impurity poly": 0.6966292134831461,
},
}
for name, dataset in datasets.items():
px, py = dataset
for criteria in ["max_samples", "impurity"]:
for kernel in self._kernels:
clf = Stree(
C=55,
max_iter=1e5,
kernel=kernel,
random_state=self._random_state,
)
clf.fit(px, py)
outcome = outcomes[name][f"{criteria} {kernel}"]
# print(
# f"{name} {criteria} {kernel} {outcome} {clf.score(px"
# ", py)}"
# )
self.assertAlmostEqual(outcome, clf.score(px, py))
def test_max_features(self):
n_features = 16
expected_values = [
("auto", 4),
("log2", 4),
("sqrt", 4),
(0.5, 8),
(3, 3),
(None, 16),
]
clf = Stree()
clf.n_features_ = n_features
for max_features, expected in expected_values:
clf.set_params(**dict(max_features=max_features))
computed = clf._initialize_max_features()
self.assertEqual(expected, computed)
# Check bogus max_features
values = ["duck", -0.1, 0.0]
for max_features in values:
clf.set_params(**dict(max_features=max_features))
with self.assertRaises(ValueError):
_ = clf._initialize_max_features()
def test_get_subspaces(self):
dataset = np.random.random((10, 16))
y = np.random.randint(0, 2, 10)
expected_values = [
("auto", 4),
("log2", 4),
("sqrt", 4),
(0.5, 8),
(3, 3),
(None, 16),
]
clf = Stree()
for max_features, expected in expected_values:
clf.set_params(**dict(max_features=max_features))
clf.fit(dataset, y)
computed, indices = clf.splitter_.get_subspace(
dataset, y, clf.max_features_
)
self.assertListEqual(
dataset[:, indices].tolist(), computed.tolist()
)
self.assertEqual(expected, len(indices))
def test_bogus_criterion(self):
clf = Stree(criterion="duck")
with self.assertRaises(ValueError):
clf.fit(*load_dataset())
def test_predict_feature_dimensions(self):
X = np.random.rand(10, 5)
y = np.random.randint(0, 2, 10)
clf = Stree()
clf.fit(X, y)
with self.assertRaises(ValueError):
clf.predict(X[:, :3])
# Tests of score
def test_score_binary(self):
X, y = load_dataset(self._random_state)
accuracies = [
0.9506666666666667,
0.9606666666666667,
0.9433333333333334,
]
for kernel, accuracy_expected in zip(self._kernels, accuracies):
clf = Stree(
random_state=self._random_state,
kernel=kernel,
)
clf.fit(X, y)
accuracy_score = clf.score(X, y)
yp = clf.predict(X)
accuracy_computed = np.mean(yp == y)
self.assertEqual(accuracy_score, accuracy_computed)
self.assertAlmostEqual(accuracy_expected, accuracy_score)
def test_score_max_features(self):
X, y = load_dataset(self._random_state)
clf = Stree(random_state=self._random_state, max_features=2)
clf.fit(X, y)
self.assertAlmostEqual(0.944, clf.score(X, y))
def test_bogus_splitter_parameter(self):
clf = Stree(splitter="duck")
with self.assertRaises(ValueError):
clf.fit(*load_dataset())
def test_weights_removing_class(self):
# This patch solves an stderr message from sklearn svm lib
# "WARNING: class label x specified in weight is not found"
X = np.array(
[
[0.1, 0.1],
[0.1, 0.2],
[0.2, 0.1],
[5, 6],
[8, 9],
[6, 7],
[0.2, 0.2],
]
)
y = np.array([0, 0, 0, 1, 1, 1, 0])
epsilon = 1e-5
weights = [1, 1, 1, 0, 0, 0, 1]
weights = np.array(weights, dtype="float64")
weights_epsilon = [x + epsilon for x in weights]
weights_no_zero = np.array([1, 1, 1, 0, 0, 2, 1])
original = weights_no_zero.copy()
clf = Stree()
clf.fit(X, y)
node = clf.train(
X,
y,
weights,
1,
"test",
)
# if a class is lost with zero weights the patch adds epsilon
self.assertListEqual(weights.tolist(), weights_epsilon)
self.assertListEqual(node._sample_weight.tolist(), weights_epsilon)
# zero weights are ok when they don't erase a class
_ = clf.train(X, y, weights_no_zero, 1, "test")
self.assertListEqual(weights_no_zero.tolist(), original.tolist())
def test_multiclass_classifier_integrity(self):
"""Checks if the multiclass operation is done right"""
X, y = load_iris(return_X_y=True)
clf = Stree(random_state=0)
clf.fit(X, y)
score = clf.score(X, y)
# Check accuracy of the whole model
self.assertAlmostEquals(0.98, score, 5)
svm = LinearSVC(random_state=0)
svm.fit(X, y)
self.assertAlmostEquals(0.9666666666666667, svm.score(X, y), 5)
data = svm.decision_function(X)
expected = [
0.4444444444444444,
0.35777777777777775,
0.4569777777777778,
]
ty = data.copy()
ty[data <= 0] = 0
ty[data > 0] = 1
ty = ty.astype(int)
for i in range(3):
self.assertAlmostEquals(
expected[i],
clf.splitter_._gini(ty[:, i]),
)
# 1st Branch
# up has to have 50 samples of class 0
# down should have 100 [50, 50]
up = data[:, 2] > 0
resup = np.unique(y[up], return_counts=True)
resdn = np.unique(y[~up], return_counts=True)
self.assertListEqual([1, 2], resup[0].tolist())
self.assertListEqual([3, 50], resup[1].tolist())
self.assertListEqual([0, 1], resdn[0].tolist())
self.assertListEqual([50, 47], resdn[1].tolist())
# 2nd Branch
# up should have 53 samples of classes [1, 2] [3, 50]
# down shoud have 47 samples of class 1
node_up = clf.tree_.get_down().get_up()
node_dn = clf.tree_.get_down().get_down()
resup = np.unique(node_up._y, return_counts=True)
resdn = np.unique(node_dn._y, return_counts=True)
self.assertListEqual([1, 2], resup[0].tolist())
self.assertListEqual([3, 50], resup[1].tolist())
self.assertListEqual([1], resdn[0].tolist())
self.assertListEqual([47], resdn[1].tolist())
def test_score_multiclass_rbf(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(kernel="rbf", random_state=self._random_state)
self.assertEqual(0.824, clf.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.6741573033707865, clf.fit(X, y).score(X, y))
def test_score_multiclass_poly(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(
kernel="poly", random_state=self._random_state, C=10, degree=5
)
self.assertEqual(0.786, clf.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.702247191011236, clf.fit(X, y).score(X, y))
def test_score_multiclass_linear(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=1500,
)
clf = Stree(kernel="linear", random_state=self._random_state)
self.assertEqual(0.9533333333333334, clf.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.9550561797752809, clf.fit(X, y).score(X, y))

View File

@@ -1,313 +0,0 @@
import csv
import os
import unittest
import numpy as np
from sklearn.datasets import make_classification
from stree import Stree, Snode
class Stree_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
os.environ['TESTING'] = '1'
self._random_state = 1
self._clf = Stree(random_state=self._random_state,
use_predictions=False)
self._clf.fit(*self._get_Xy())
super().__init__(*args, **kwargs)
@classmethod
def tearDownClass(cls):
try:
os.environ.pop('TESTING')
except:
pass
def _get_Xy(self):
X, y = make_classification(n_samples=1500, n_features=3, n_informative=3,
n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,
class_sep=1.5, flip_y=0, weights=[0.5, 0.5], random_state=self._random_state)
return X, y
def _check_tree(self, node: Snode):
"""Check recursively that the nodes that are not leaves have the correct
number of labels and its sons have the right number of elements in their dataset
Arguments:
node {Snode} -- node to check
"""
if node.is_leaf():
return
y_prediction = node._clf.predict(node._X)
y_down = node.get_down()._y
y_up = node.get_up()._y
# Is a correct partition in terms of cadinality?
# i.e. The partition algorithm didn't forget any sample
self.assertEqual(node._y.shape[0], y_down.shape[0] + y_up.shape[0])
unique_y, count_y = np.unique(node._y, return_counts=True)
_, count_d = np.unique(y_down, return_counts=True)
_, count_u = np.unique(y_up, return_counts=True)
#
for i in unique_y:
try:
number_down = count_d[i]
except:
number_down = 0
try:
number_up = count_u[i]
except:
number_up = 0
self.assertEqual(count_y[i], number_down + number_up)
# Is the partition made the same as the prediction?
# as the node is not a leaf...
_, count_yp = np.unique(y_prediction, return_counts=True)
self.assertEqual(count_yp[0], y_up.shape[0])
self.assertEqual(count_yp[1], y_down.shape[0])
self._check_tree(node.get_down())
self._check_tree(node.get_up())
def test_build_tree(self):
"""Check if the tree is built the same way as predictions of models
"""
self._check_tree(self._clf._tree)
def _get_file_data(self, file_name: str) -> tuple:
"""Return X, y from data, y is the last column in array
Arguments:
file_name {str} -- the file name
Returns:
tuple -- tuple with samples, categories
"""
data = np.genfromtxt(file_name, delimiter=',')
data = np.array(data)
column_y = data.shape[1] - 1
fy = data[:, column_y]
fx = np.delete(data, column_y, axis=1)
return fx, fy
def _find_out(self, px: np.array, x_original: np.array, y_original) -> list:
"""Find the original values of y for a given array of samples
Arguments:
px {np.array} -- array of samples to search for
x_original {np.array} -- original dataset
y_original {[type]} -- original classes
Returns:
np.array -- classes of the given samples
"""
res = []
for needle in px:
for row in range(x_original.shape[0]):
if all(x_original[row, :] == needle):
res.append(y_original[row])
return res
def test_subdatasets(self):
"""Check if the subdatasets files have the same labels as the original dataset
"""
self._clf.save_sub_datasets()
with open(self._clf.get_catalog_name()) as cat_file:
catalog = csv.reader(cat_file, delimiter=',')
for row in catalog:
X, y = self._get_Xy()
x_file, y_file = self._get_file_data(row[0])
y_original = np.array(self._find_out(x_file, X, y), dtype=int)
self.assertTrue(np.array_equal(y_file, y_original))
def test_single_prediction(self):
X, y = self._get_Xy()
yp = self._clf.predict((X[0, :].reshape(-1, X.shape[1])))
self.assertEqual(yp[0], y[0])
def test_multiple_prediction(self):
# First 27 elements the predictions are the same as the truth
num = 27
X, y = self._get_Xy()
yp = self._clf.predict(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp.tolist())
def test_score(self):
X, y = self._get_Xy()
accuracy_score = self._clf.score(X, y)
yp = self._clf.predict(X)
right = (yp == y).astype(int)
accuracy_computed = sum(right) / len(y)
self.assertEqual(accuracy_score, accuracy_computed)
self.assertGreater(accuracy_score, 0.8)
def test_single_predict_proba(self):
"""Check that element 28 has a prediction different that the current label
"""
# Element 28 has a different prediction than the truth
decimals = 5
X, y = self._get_Xy()
yp = self._clf.predict_proba(X[28, :].reshape(-1, X.shape[1]))
self.assertEqual(0, yp[0:, 0])
self.assertEqual(1, y[28])
self.assertAlmostEqual(
round(0.29026400766, decimals),
round(yp[0, 1], decimals),
decimals
)
def test_multiple_predict_proba(self):
# First 27 elements the predictions are the same as the truth
num = 27
decimals = 5
X, y = self._get_Xy()
yp = self._clf.predict_proba(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp[:, 0].tolist())
expected_proba = [0.88395641, 0.36746962, 0.84158767, 0.34106833, 0.14269291, 0.85193236,
0.29876058, 0.7282164, 0.85958616, 0.89517877, 0.99745224, 0.18860349,
0.30756427, 0.8318412, 0.18981198, 0.15564624, 0.25740655, 0.22923355,
0.87365959, 0.49928689, 0.95574351, 0.28761257, 0.28906333, 0.32643692,
0.29788483, 0.01657364, 0.81149083]
expected = np.round(expected_proba, decimals=decimals).tolist()
computed = np.round(yp[:, 1], decimals=decimals).tolist()
for i in range(len(expected)):
self.assertAlmostEqual(expected[i], computed[i], decimals)
def build_models(self):
"""Build and train two models, model_clf will use the sklearn classifier to
compute predictions and split data. model_computed will use vector of
coefficients to compute both predictions and splitted data
"""
model_clf = Stree(random_state=self._random_state,
use_predictions=True)
model_computed = Stree(random_state=self._random_state,
use_predictions=False)
X, y = self._get_Xy()
model_clf.fit(X, y)
model_computed.fit(X, y)
return model_clf, model_computed, X, y
def test_use_model_predict(self):
"""Check that we get the same results wether we use the estimator in nodes
to compute labels or we use the hyperplane and the position of samples wrt to it
"""
use_clf, use_math, X, _ = self.build_models()
self.assertListEqual(
use_clf.predict(X).tolist(),
use_math.predict(X).tolist()
)
def test_use_model_score(self):
use_clf, use_math, X, y = self.build_models()
b = use_math.score(X, y)
self.assertEqual(
use_clf.score(X, y),
b
)
self.assertGreater(b, .95)
def test_use_model_predict_proba(self):
use_clf, use_math, X, _ = self.build_models()
self.assertListEqual(
use_clf.predict_proba(X).tolist(),
use_math.predict_proba(X).tolist()
)
def test_single_vs_multiple_prediction(self):
"""Check if predicting sample by sample gives the same result as predicting
all samples at once
"""
X, _ = self._get_Xy()
# Compute prediction line by line
yp_line = np.array([], dtype=int)
for xp in X:
yp_line = np.append(yp_line, self._clf.predict(xp.reshape(-1, X.shape[1])))
# Compute prediction at once
yp_once = self._clf.predict(X)
#
self.assertListEqual(yp_line.tolist(), yp_once.tolist())
def test_iterator(self):
"""Check preorder iterator
"""
expected = [
'root',
'root - Down',
'root - Down - Down, <cgaf> - Leaf class=1 belief=0.975989 counts=(array([0, 1]), array([ 17, 691]))',
'root - Down - Up',
'root - Down - Up - Down, <cgaf> - Leaf class=1 belief=0.750000 counts=(array([0, 1]), array([1, 3]))',
'root - Down - Up - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([7]))',
'root - Up, <cgaf> - Leaf class=0 belief=0.928297 counts=(array([0, 1]), array([725, 56]))',
]
computed = []
for node in self._clf:
computed.append(str(node))
self.assertListEqual(expected, computed)
class Snode_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
os.environ['TESTING'] = '1'
self._random_state = 1
self._clf = Stree(random_state=self._random_state,
use_predictions=True)
self._clf.fit(*self._get_Xy())
super().__init__(*args, **kwargs)
@classmethod
def tearDownClass(cls):
try:
os.environ.pop('TESTING')
except:
pass
def _get_Xy(self):
X, y = make_classification(n_samples=1500, n_features=3, n_informative=3,
n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,
class_sep=1.5, flip_y=0, weights=[0.5, 0.5], random_state=self._random_state)
return X, y
def test_attributes_in_leaves(self):
"""Check if the attributes in leaves have correct values so they form a predictor
"""
def check_leave(node: Snode):
if not node.is_leaf():
check_leave(node.get_down())
check_leave(node.get_up())
return
# Check Belief in leave
classes, card = np.unique(node._y, return_counts=True)
max_card = max(card)
min_card = min(card)
if len(classes) > 1:
try:
belief = max_card / (max_card + min_card)
except:
belief = 0.
else:
belief = 1
self.assertEqual(belief, node._belief)
# Check Class
class_computed = classes[card == max_card]
self.assertEqual(class_computed, node._class)
check_leave(self._clf._tree)
def test_nodes_coefs(self):
"""Check if the nodes of the tree have the right attributes filled
"""
def run_tree(node: Snode):
if node._belief < 1:
# only exclude pure leaves
self.assertIsNotNone(node._clf)
self.assertIsNotNone(node._clf.coef_)
self.assertIsNotNone(node._vector)
self.assertIsNotNone(node._interceptor)
if node.is_leaf():
return
run_tree(node.get_down())
run_tree(node.get_up())
run_tree(self._clf._tree)

View File

@@ -1 +1,5 @@
from .Strees_test import Stree_test, Snode_test
from .Stree_test import Stree_test
from .Snode_test import Snode_test
from .Splitter_test import Splitter_test
__all__ = ["Stree_test", "Snode_test", "Splitter_test"]

17
stree/tests/utils.py Normal file
View File

@@ -0,0 +1,17 @@
from sklearn.datasets import make_classification
def load_dataset(random_state=0, n_classes=2, n_features=3, n_samples=1500):
X, y = make_classification(
n_samples=n_samples,
n_features=n_features,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=n_classes,
n_clusters_per_class=2,
class_sep=1.5,
flip_y=0,
random_state=random_state,
)
return X, y

File diff suppressed because one or more lines are too long

View File

@@ -1,194 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#import os\n",
"#os.chdir(\"/content\")\n",
"#!git clone https://github.com/Doctorado-ML/STree.git\n",
"#os.chdir(\"/content/STree\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.datasets import make_classification, load_iris, load_wine\n",
"from sklearn.model_selection import train_test_split\n",
"from stree import Stree\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 33.110% 494\nValid: 66.890% 998\n"
}
],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"# data = load_creditcard(-5000) # Take all true samples + 5000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"data = load_creditcard(-1000) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9521\nClassifier's accuracy (test) : 0.9598\nroot\nroot - Down, <cgaf> - Leaf class=1 belief=0.980519 counts=(array([0, 1]), array([ 6, 302]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.940217 counts=(array([0, 1]), array([692, 44]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9521\nClassifier's accuracy (test) : 0.9643\nroot\nroot - Down\nroot - Down - Down, <cgaf> - Leaf class=1 belief=0.986842 counts=(array([0, 1]), array([ 4, 300]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.937754 counts=(array([0, 1]), array([693, 46]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9636\nClassifier's accuracy (test) : 0.9688\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([308]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([8]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.947802 counts=(array([0, 1]), array([690, 38]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9665\nClassifier's accuracy (test) : 0.9621\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([308]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([11]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.951456 counts=(array([0, 1]), array([686, 35]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9741\nClassifier's accuracy (test) : 0.9576\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([306]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([3]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([7]))\nroot - Up - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([4]))\nroot - Up - Up - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.961538 counts=(array([0, 1]), array([675, 27]))\n\n**************************************************\n0.7816 secs\n"
}
],
"source": [
"t = time.time()\n",
"for C in (.001, .01, 1, 5, 17):\n",
" clf = Stree(C=C, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" print(f\"************** C={C} ****************************\")\n",
" print(f\"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}\")\n",
" print(f\"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}\")\n",
" print(clf)\n",
" print(f\"**************************************************\")\n",
"print(f\"{time.time() - t:.4f} secs\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.calibration import CalibratedClassifierCV\n",
"scaler = StandardScaler()\n",
"cclf = CalibratedClassifierCV(base_estimator=LinearSVC(), cv=5)\n",
"cclf.fit(Xtrain, ytrain)\n",
"res = cclf.predict_proba(Xtest)\n",
"#an array containing probabilities of belonging to the 1st class"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([306]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([3]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([7]))\nroot - Up - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([4]))\nroot - Up - Up - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.961538 counts=(array([0, 1]), array([675, 27]))\n"
}
],
"source": [
"#check iterator\n",
"for i in list(clf):\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([306]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([3]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([7]))\nroot - Up - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([4]))\nroot - Up - Up - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.961538 counts=(array([0, 1]), array([675, 27]))\n"
}
],
"source": [
"#check iterator again\n",
"for i in clf:\n",
" print(i)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because one or more lines are too long