Compare commits

..

3 Commits

Author SHA1 Message Date
724a4855fb Adapt some notebooks 2020-05-30 11:09:59 +02:00
a22ae81b54 Refactor split_data adding sample_weight 2020-05-29 18:52:23 +02:00
ed98054f0d First approach
Added max_depth, tol, weighted samples
2020-05-29 12:46:10 +02:00
12 changed files with 960 additions and 588 deletions

View File

@@ -2,7 +2,7 @@
# Stree # Stree
Oblique Tree classifier based on SVM nodes Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn LinearSVC models.Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.
![Stree](https://raw.github.com/doctorado-ml/stree/master/example.png) ![Stree](https://raw.github.com/doctorado-ml/stree/master/example.png)
@@ -18,15 +18,15 @@ pip install git+https://github.com/doctorado-ml/stree
##### Slow launch but better integration ##### Slow launch but better integration
* [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/test.ipynb) Test notebook * [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/notebooks/test.ipynb) Test notebook
##### Fast launch but have to run first commented out cell for setup ##### Fast launch but have to run first commented out cell for setup
* [![Test](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/test.ipynb) Test notebook * [![Test](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test.ipynb) Test notebook
* [![Test2](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/test2.ipynb) Another Test notebook * [![Test2](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test2.ipynb) Another Test notebook
* [![Test Graphics](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/test_graphs.ipynb) Test Graphics notebook * [![Test Graphics](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test_graphs.ipynb) Test Graphics notebook
### Command line ### Command line

1
data/.gitignore vendored
View File

@@ -1 +0,0 @@
*

190
notebooks/adaboost.ipynb Normal file
View File

@@ -0,0 +1,190 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
"from sklearn.datasets import load_iris\n",
"from stree import Stree"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.244% 196\nValid: 99.755% 80234\nX.shape (1196, 28) y.shape (1196,)\nFraud: 16.722% 200\nValid: 83.278% 996\n"
}
],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"data = load_creditcard(-1000) # Take all true samples + 1000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"# data = load_creditcard(0) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Score Train: 0.986857825567503\nScore Test: 0.9805013927576601\nTook 0.12 seconds\n"
}
],
"source": [
"now = time.time()\n",
"clf = Stree(max_depth=3, random_state=random_state)\n",
"clf.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf.score(Xtest, ytest))\n",
"print(f\"Took {time.time() - now:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Score Train: 0.997610513739546\nScore Test: 0.9721448467966574\nTook 7.80 seconds\n"
}
],
"source": [
"now = time.time()\n",
"clf2 = AdaBoostClassifier(Stree(max_depth=3, random_state=random_state), n_estimators=100, random_state=random_state)\n",
"clf2.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf2.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf2.score(Xtest, ytest))\n",
"print(f\"Took {time.time() - now:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Score Train: 0.9796893667861409\nScore Test: 0.9554317548746518\nTook 0.48 seconds\n"
}
],
"source": [
"now = time.time()\n",
"clf3 = AdaBoostClassifier(LinearSVC(random_state=random_state), n_estimators=100, random_state=random_state, algorithm='SAMME')\n",
"clf3.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf3.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf3.score(Xtest, ytest))\n",
"print(f\"Took {time.time() - now:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Score Train: 1.0\nScore Test: 0.9721448467966574\nTook 0.86 seconds\n"
}
],
"source": [
"now = time.time()\n",
"clf4 = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1, random_state=random_state), n_estimators=100, random_state=random_state)\n",
"clf4.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf4.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf4.score(Xtest, ytest))\n",
"print(f\"Took {time.time() - now:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39",
"display_name": "Python 3.7.6 64-bit ('general': venv)"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

236
notebooks/gridsearch.ipynb Normal file

File diff suppressed because one or more lines are too long

227
notebooks/test2.ipynb Normal file
View File

@@ -0,0 +1,227 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.datasets import make_classification, load_iris, load_wine\n",
"from sklearn.model_selection import train_test_split\n",
"from stree import Stree\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.244% 196\nValid: 99.755% 80234\nX.shape (1196, 28) y.shape (1196,)\nFraud: 16.722% 200\nValid: 83.278% 996\n"
}
],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"# data = load_creditcard(-5000) # Take all true samples + 5000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"data = load_creditcard(-1000) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": [
"outputPrepend"
]
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9797\nClassifier's accuracy (test) : 0.9749\nroot\nroot - Down\nroot - Down - Down, <cgaf> - Leaf class=1.0 belief=0.984127 counts=(array([0., 1.]), array([ 2, 124]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up\nroot - Up - Down, <cgaf> - Leaf class=0.0 belief=0.750000 counts=(array([0., 1.]), array([3, 1]))\nroot - Up - Up\nroot - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.980029 counts=(array([0., 1.]), array([687, 14]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9809\nClassifier's accuracy (test) : 0.9749\nroot\nroot - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([124]))\nroot - Up, <cgaf> - Leaf class=0.0 belief=0.977560 counts=(array([0., 1.]), array([697, 16]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9869\nClassifier's accuracy (test) : 0.9749\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([129]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([2]))\nroot - Up, <cgaf> - Leaf class=0.0 belief=0.984419 counts=(array([0., 1.]), array([695, 11]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9869\nClassifier's accuracy (test) : 0.9777\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([129]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([2]))\nroot - Up, <cgaf> - Leaf class=0.0 belief=0.984419 counts=(array([0., 1.]), array([695, 11]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9916\nClassifier's accuracy (test) : 0.9833\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([131]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([8]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.989855 counts=(array([0., 1.]), array([683, 7]))\n\n**************************************************\n0.2235 secs\n"
}
],
"source": [
"t = time.time()\n",
"for C in (.001, .01, 1, 5, 17):\n",
" clf = Stree(C=C, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" print(f\"************** C={C} ****************************\")\n",
" print(f\"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}\")\n",
" print(f\"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}\")\n",
" print(clf)\n",
" print(f\"**************************************************\")\n",
"print(f\"{time.time() - t:.4f} secs\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.calibration import CalibratedClassifierCV\n",
"scaler = StandardScaler()\n",
"cclf = CalibratedClassifierCV(base_estimator=LinearSVC(), cv=5)\n",
"cclf.fit(Xtrain, ytrain)\n",
"res = cclf.predict_proba(Xtest)\n",
"#an array containing probabilities of belonging to the 1st class"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([131]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([8]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.989855 counts=(array([0., 1.]), array([683, 7]))\n"
}
],
"source": [
"#check iterator\n",
"for i in list(clf):\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([131]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([8]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.989855 counts=(array([0., 1.]), array([683, 7]))\n"
}
],
"source": [
"#check iterator again\n",
"for i in clf:\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# Check if the classifier is a sklearn estimator\n",
"from sklearn.utils.estimator_checks import check_estimator\n",
"check_estimator(Stree())"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "1 functools.partial(<function check_no_attributes_set_in_init at 0x12aabb320>, 'Stree')\n2 functools.partial(<function check_estimators_dtypes at 0x12aab0440>, 'Stree')\n3 functools.partial(<function check_fit_score_takes_y at 0x12aab0320>, 'Stree')\n4 functools.partial(<function check_sample_weights_pandas_series at 0x12aaaac20>, 'Stree')\n5 functools.partial(<function check_sample_weights_not_an_array at 0x12aaaad40>, 'Stree')\n6 functools.partial(<function check_sample_weights_list at 0x12aaaae60>, 'Stree')\n7 functools.partial(<function check_sample_weights_shape at 0x12aaaaf80>, 'Stree')\n8 functools.partial(<function check_sample_weights_invariance at 0x12aaac0e0>, 'Stree')\n9 functools.partial(<function check_estimators_fit_returns_self at 0x12aab6440>, 'Stree')\n10 functools.partial(<function check_estimators_fit_returns_self at 0x12aab6440>, 'Stree', readonly_memmap=True)\n11 functools.partial(<function check_complex_data at 0x12aaac290>, 'Stree')\n12 functools.partial(<function check_dtype_object at 0x12aaac200>, 'Stree')\n13 functools.partial(<function check_estimators_empty_data_messages at 0x12aab0560>, 'Stree')\n14 functools.partial(<function check_pipeline_consistency at 0x12aab0200>, 'Stree')\n15 functools.partial(<function check_estimators_nan_inf at 0x12aab0680>, 'Stree')\n16 functools.partial(<function check_estimators_overwrite_params at 0x12aabb200>, 'Stree')\n17 functools.partial(<function check_estimator_sparse_data at 0x12aaaab00>, 'Stree')\n18 functools.partial(<function check_estimators_pickle at 0x12aab08c0>, 'Stree')\n19 functools.partial(<function check_classifier_data_not_an_array at 0x12aabb560>, 'Stree')\n20 functools.partial(<function check_classifiers_one_label at 0x12aab0f80>, 'Stree')\n21 functools.partial(<function check_classifiers_classes at 0x12aab69e0>, 'Stree')\n22 functools.partial(<function check_estimators_partial_fit_n_features at 0x12aab09e0>, 'Stree')\n23 functools.partial(<function check_classifiers_train at 0x12aab60e0>, 'Stree')\n24 functools.partial(<function check_classifiers_train at 0x12aab60e0>, 'Stree', readonly_memmap=True)\n25 functools.partial(<function check_classifiers_train at 0x12aab60e0>, 'Stree', readonly_memmap=True, X_dtype='float32')\n26 functools.partial(<function check_classifiers_regression_target at 0x12aabf050>, 'Stree')\n27 functools.partial(<function check_supervised_y_no_nan at 0x12aaa0c20>, 'Stree')\n28 functools.partial(<function check_supervised_y_2d at 0x12aab6680>, 'Stree')\n29 functools.partial(<function check_estimators_unfitted at 0x12aab6560>, 'Stree')\n30 functools.partial(<function check_non_transformer_estimators_n_iter at 0x12aabbb90>, 'Stree')\n31 functools.partial(<function check_decision_proba_consistency at 0x12aabf170>, 'Stree')\n32 functools.partial(<function check_fit2d_predict1d at 0x12aaac7a0>, 'Stree')\n33 functools.partial(<function check_methods_subset_invariance at 0x12aaac950>, 'Stree')\n34 functools.partial(<function check_fit2d_1sample at 0x12aaaca70>, 'Stree')\n35 functools.partial(<function check_fit2d_1feature at 0x12aaacb90>, 'Stree')\n36 functools.partial(<function check_fit1d at 0x12aaaccb0>, 'Stree')\n37 functools.partial(<function check_get_params_invariance at 0x12aabbdd0>, 'Stree')\n38 functools.partial(<function check_set_params at 0x12aabbef0>, 'Stree')\n39 functools.partial(<function check_dict_unchanged at 0x12aaac3b0>, 'Stree')\n40 functools.partial(<function check_dont_overwrite_parameters at 0x12aaac680>, 'Stree')\n41 functools.partial(<function check_fit_idempotent at 0x12aabf320>, 'Stree')\n42 functools.partial(<function check_n_features_in at 0x12aabf3b0>, 'Stree')\n"
}
],
"source": [
"# Make checks one by one\n",
"c = 0\n",
"checks = check_estimator(Stree(), generate_only=True)\n",
"for check in checks:\n",
" c += 1\n",
" print(c, check[1])\n",
" check[1](check[0])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.7.6 64-bit ('general': venv)",
"language": "python",
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

197
notebooks/test_graphs.ipynb Normal file
View File

@@ -0,0 +1,197 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "ModuleNotFoundError",
"evalue": "No module named 'stree'",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-12-36af63297651>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdatasets\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmake_blobs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msvm\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLinearSVC\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mstree\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mStree\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mStree_grapher\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'stree'"
]
}
],
"source": [
"import time\n",
"import random\n",
"import numpy as np\n",
"from sklearn.datasets import make_blobs\n",
"from sklearn.svm import LinearSVC\n",
"from stree import Stree, Stree_grapher"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def build_data(random_state):\n",
" random.seed(random_state)\n",
" X, y = make_blobs(centers=10, n_features=3, n_samples=500, random_state=random_state)\n",
" def make_binary(y):\n",
" for i in range(2, 10):\n",
" y[y==i] = random.randint(0, 1)\n",
" return y\n",
" y = make_binary(y)\n",
" #print(X.shape, np.unique(y), y[y==0].shape, y[y==1].shape)\n",
" return X, y"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'Stree_grapher' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-4-b909470cb406>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuild_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mgr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mStree_grapher\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mC\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m.01\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmax_iter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#gr.save_all(save_folder='data/', save_prefix='7')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'Stree_grapher' is not defined"
]
}
],
"source": [
"X, y = build_data(10)\n",
"gr = Stree_grapher(dict(C=.01, max_iter=200))\n",
"gr.fit(X, y)\n",
"#gr.save_all(save_folder='data/', save_prefix='7')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'gr' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-5-efa3db892bfd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
]
}
],
"source": [
"print(gr)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'gr' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-6-0e62f081c9aa>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Agg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_folder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'data/'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
]
}
],
"source": [
"import matplotlib\n",
"matplotlib.use('Agg')\n",
"gr.save_all(save_folder='data/')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'gr' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-7-b0484cfe9d26>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m#%matplotlib inline\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'matplotlib'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'widget'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_tree_gr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_hyperplane\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
]
}
],
"source": [
"#Uncomment one of the following lines to display graphics: static(inline), dynamic(widget)\n",
"#%matplotlib inline\n",
"%matplotlib widget\n",
"gr._tree_gr.plot_hyperplane()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'gr' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-8-4277c1aacbe2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'matplotlib'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'inline'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m#%matplotlib widget\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
]
}
],
"source": [
"#Uncomment one of the following lines to display graphics: static(inline), dynamic(widget)\n",
"%matplotlib inline\n",
"#%matplotlib widget\n",
"gr.plot_all()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -13,7 +13,8 @@ import os
import numpy as np import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.svm import LinearSVC from sklearn.svm import LinearSVC
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted, _check_sample_weight, check_random_state
class Snode: class Snode:
@@ -102,25 +103,29 @@ class Siterator:
class Stree(BaseEstimator, ClassifierMixin): class Stree(BaseEstimator, ClassifierMixin):
""" """
""" """
__folder = 'data/'
def __init__(self, C: float = 1.0, max_iter: int = 1000, random_state: int = 0, use_predictions: bool = False): def __init__(self, C: float = 1.0, max_iter: int = 1000, random_state: int = None,
max_depth: int=None, tol: float=1e-4, use_predictions: bool = False):
self.max_iter = max_iter self.max_iter = max_iter
self.C = C self.C = C
self.random_state = random_state self.random_state = random_state
self.use_predictions = use_predictions self.use_predictions = use_predictions
self.max_depth = max_depth
self.tol = tol
def get_params(self, deep=True): def get_params(self, deep: bool=True) -> dict:
"""Get dict with hyperparameters and its values to accomplish sklearn rules """Get dict with hyperparameters and its values to accomplish sklearn rules
""" """
return { return {
'C': self.C, 'C': self.C,
'random_state': self.random_state, 'random_state': self.random_state,
'max_iter': self.max_iter, 'max_iter': self.max_iter,
'use_predictions': self.use_predictions 'use_predictions': self.use_predictions,
'max_depth': self.max_depth,
'tol': self.tol
} }
def set_params(self, **parameters): def set_params(self, **parameters: dict):
"""Set hyperparmeters as specified by sklearn, needed in Gridsearchs """Set hyperparmeters as specified by sklearn, needed in Gridsearchs
""" """
for parameter, value in parameters.items(): for parameter, value in parameters.items():
@@ -128,42 +133,49 @@ class Stree(BaseEstimator, ClassifierMixin):
return self return self
# Added binary_only tag as required by sklearn check_estimator # Added binary_only tag as required by sklearn check_estimator
def _more_tags(self): def _more_tags(self) -> dict:
return {'binary_only': True} return {'binary_only': True}
def _linear_function(self, data: np.array, node: Snode) -> np.array: def _linear_function(self, data: np.array, node: Snode) -> np.array:
coef = node._vector[0, :].reshape(-1, data.shape[1]) coef = node._vector[0, :].reshape(-1, data.shape[1])
return data.dot(coef.T) + node._interceptor[0] return data.dot(coef.T) + node._interceptor[0]
def _split_data(self, node: Snode, data: np.ndarray, indices: np.ndarray) -> list: def _split_array(self, origin: np.array, down: np.array) -> list:
up = ~down
return origin[up[:, 0]] if any(up) else None, \
origin[down[:, 0]] if any(down) else None
def _distances(self, node: Snode, data: np.ndarray) -> np.array:
if self.use_predictions: if self.use_predictions:
yp = node._clf.predict(data)
down = (yp == 1).reshape(-1, 1)
res = np.expand_dims(node._clf.decision_function(data), 1) res = np.expand_dims(node._clf.decision_function(data), 1)
else: else:
# doesn't work with multiclass as each sample has to do inner product with its own coeficients # doesn't work with multiclass as each sample has to do inner product with its own coeficients
# computes positition of every sample is w.r.t. the hyperplane # computes positition of every sample is w.r.t. the hyperplane
res = self._linear_function(data, node) res = self._linear_function(data, node)
down = res > 0 return res
up = ~down
data_down = data[down[:, 0]] if any(down) else None
indices_down = indices[down[:, 0]] if any(down) else None
res_down = res[down[:, 0]] if any(down) else None
data_up = data[up[:, 0]] if any(up) else None
indices_up = indices[up[:, 0]] if any(up) else None
res_up = res[up[:, 0]] if any(up) else None
return [data_up, indices_up, data_down, indices_down, res_up, res_down]
def fit(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> 'Stree': def _split_criteria(self, data: np.array) -> np.array:
from sklearn.utils.multiclass import check_classification_targets return data > 0
def fit(self, X: np.ndarray, y: np.ndarray, sample_weight: np.array = None) -> 'Stree':
# Check parameters are Ok.
if type(y).__name__ == 'np.ndarray': if type(y).__name__ == 'np.ndarray':
y = y.ravel() y = y.ravel()
if self.C < 0:
raise ValueError(f"Penalty term must be positive... got (C={self.C:f})")
self.__max_depth = np.iinfo(np.int32).max if self.max_depth is None else self.max_depth
if self.__max_depth < 1:
raise ValueError(f"Maximum depth has to be greater than 1... got (max_depth={self.max_depth})")
check_classification_targets(y)
X, y = check_X_y(X, y) X, y = check_X_y(X, y)
sample_weight = _check_sample_weight(sample_weight, X)
check_classification_targets(y)
# Initialize computed parameters
self.classes_ = np.unique(y) self.classes_ = np.unique(y)
self.n_iter_ = self.max_iter self.n_iter_ = self.max_iter
check_classification_targets(y) self.depth_ = 0
self.n_features_in_ = X.shape[1] self.n_features_in_ = X.shape[1]
self.tree_ = self.train(X, y.ravel(), title) self.tree_ = self.train(X, y, sample_weight, 1, 'root')
self._build_predictor() self._build_predictor()
return self return self
@@ -180,25 +192,32 @@ class Stree(BaseEstimator, ClassifierMixin):
run_tree(self.tree_) run_tree(self.tree_)
def train(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> Snode: def train(self, X: np.ndarray, y: np.ndarray, sample_weight: np.ndarray, depth: int, title: str) -> Snode:
if np.unique(y).shape[0] == 1:
if depth > self.__max_depth:
return None
if np.unique(y).shape[0] == 1 :
# only 1 class => pure dataset # only 1 class => pure dataset
return Snode(None, X, y, title + ', <pure>') return Snode(None, X, y, title + ', <pure>')
# Train the model # Train the model
clf = LinearSVC(max_iter=self.max_iter, C=self.C, clf = LinearSVC(max_iter=self.max_iter, random_state=self.random_state,
random_state=self.random_state) C=self.C) #, sample_weight=sample_weight)
clf.fit(X, y) clf.fit(X, y, sample_weight=sample_weight)
tree = Snode(clf, X, y, title) tree = Snode(clf, X, y, title)
X_U, y_u, X_D, y_d, _, _ = self._split_data(tree, X, y) self.depth_ = max(depth, self.depth_)
down = self._split_criteria(self._distances(tree, X))
X_U, X_D = self._split_array(X, down)
y_u, y_d = self._split_array(y, down)
sw_u, sw_d = self._split_array(sample_weight, down)
if X_U is None or X_D is None: if X_U is None or X_D is None:
# didn't part anything # didn't part anything
return Snode(clf, X, y, title + ', <cgaf>') return Snode(clf, X, y, title + ', <cgaf>')
tree.set_up(self.train(X_U, y_u, title + ' - Up')) tree.set_up(self.train(X_U, y_u, sw_u, depth + 1, title + ' - Up'))
tree.set_down(self.train(X_D, y_d, title + ' - Down')) tree.set_down(self.train(X_D, y_d, sw_d, depth + 1, title + ' - Down'))
return tree return tree
def _reorder_results(self, y: np.array, indices: np.array, proba=False) -> np.array: def _reorder_results(self, y: np.array, indices: np.array) -> np.array:
if proba: if y.ndim > 1 and y.shape[1] > 1:
# if predict_proba return np.array of floats # if predict_proba return np.array of floats
y_ordered = np.zeros(y.shape, dtype=float) y_ordered = np.zeros(y.shape, dtype=float)
else: else:
@@ -217,10 +236,12 @@ class Stree(BaseEstimator, ClassifierMixin):
# set a class for every sample in dataset # set a class for every sample in dataset
prediction = np.full((xp.shape[0], 1), node._class) prediction = np.full((xp.shape[0], 1), node._class)
return prediction, indices return prediction, indices
u, i_u, d, i_d, _, _ = self._split_data(node, xp, indices) down = self._split_criteria(self._distances(node, xp))
k, l = predict_class(d, i_d, node.get_down()) X_U, X_D = self._split_array(xp, down)
m, n = predict_class(u, i_u, node.get_up()) i_u, i_d = self._split_array(indices, down)
return np.append(k, m), np.append(l, n) prx_u, prin_u = predict_class(X_U, i_u, node.get_up())
prx_d, prin_d = predict_class(X_D, i_d, node.get_down())
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
# sklearn check # sklearn check
check_is_fitted(self, ['tree_']) check_is_fitted(self, ['tree_'])
@@ -257,10 +278,15 @@ class Stree(BaseEstimator, ClassifierMixin):
prediction = np.full((xp.shape[0], 1), node._class) prediction = np.full((xp.shape[0], 1), node._class)
prediction_proba = dist prediction_proba = dist
return np.append(prediction, prediction_proba, axis=1), indices return np.append(prediction, prediction_proba, axis=1), indices
u, i_u, d, i_d, r_u, r_d = self._split_data(node, xp, indices) distances = self._distances(node, xp)
k, l = predict_class(d, i_d, r_d, node.get_down()) down = self._split_criteria(distances)
m, n = predict_class(u, i_u, r_u, node.get_up())
return np.append(k, m), np.append(l, n) X_U, X_D = self._split_array(xp, down)
i_u, i_d = self._split_array(indices, down)
di_u, di_d = self._split_array(distances, down)
prx_u, prin_u = predict_class(X_U, i_u, di_u, node.get_up())
prx_d, prin_d = predict_class(X_D, i_d, di_d, node.get_down())
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
# sklearn check # sklearn check
check_is_fitted(self, ['tree_']) check_is_fitted(self, ['tree_'])
@@ -273,9 +299,10 @@ class Stree(BaseEstimator, ClassifierMixin):
result = result.reshape(X.shape[0], 2) result = result.reshape(X.shape[0], 2)
# Turn distances to hyperplane into probabilities based on fitting distances # Turn distances to hyperplane into probabilities based on fitting distances
# of samples to its hyperplane that classified them, to the sigmoid function # of samples to its hyperplane that classified them, to the sigmoid function
result[:, 1] = 1 / (1 + np.exp(-result[:, 1])) # Probability of being 1 # Probability of being 1
result[:, 1] = 1 / (1 + np.exp(-result[:, 1]))
result[:, 0] = 1 - result[:, 1] # Probability of being 0 result[:, 0] = 1 - result[:, 1] # Probability of being 0
return self._reorder_results(result, indices, proba=True) return self._reorder_results(result, indices)
def score(self, X: np.array, y: np.array) -> float: def score(self, X: np.array, y: np.array) -> float:
"""Return accuracy """Return accuracy
@@ -283,11 +310,14 @@ class Stree(BaseEstimator, ClassifierMixin):
# sklearn check # sklearn check
check_is_fitted(self) check_is_fitted(self)
yp = self.predict(X).reshape(y.shape) yp = self.predict(X).reshape(y.shape)
right = (yp == y).astype(int) return np.mean(yp == y)
return np.sum(right) / len(y)
def __iter__(self): def __iter__(self) -> Siterator:
return Siterator(self.tree_) try:
tree = self.tree_
except:
tree = None
return Siterator(tree)
def __str__(self) -> str: def __str__(self) -> str:
output = '' output = ''
@@ -295,33 +325,3 @@ class Stree(BaseEstimator, ClassifierMixin):
output += str(i) + '\n' output += str(i) + '\n'
return output return output
def _save_datasets(self, tree: Snode, catalog: typing.TextIO, number: int):
"""Save the dataset of the node in a csv file
:param tree: node with data to save
:type tree: Snode
:param catalog: catalog file handler
:type catalog: typing.TextIO
:param number: sequential number for the generated file name
:type number: int
"""
data = np.append(tree._X, tree._y.reshape(-1, 1), axis=1)
name = f"{self.__folder}dataset{number}.csv"
np.savetxt(name, data, delimiter=",")
catalog.write(f"{name}, - {str(tree)}")
if tree.is_leaf():
return
self._save_datasets(tree.get_down(), catalog, number + 1)
self._save_datasets(tree.get_up(), catalog, number + 2)
def get_catalog_name(self):
return self.__folder + "catalog.txt"
def save_sub_datasets(self):
"""Save the every dataset stored in the tree to check with manual classifier
"""
if not os.path.isdir(self.__folder):
os.mkdir(self.__folder)
with open(self.get_catalog_name(), 'w', encoding='utf-8') as catalog:
self._save_datasets(self.tree_, catalog, 1)

View File

@@ -107,18 +107,6 @@ class Stree_test(unittest.TestCase):
res.append(y_original[row]) res.append(y_original[row])
return res return res
def test_subdatasets(self):
"""Check if the subdatasets files have the same labels as the original dataset
"""
self._clf.save_sub_datasets()
with open(self._clf.get_catalog_name()) as cat_file:
catalog = csv.reader(cat_file, delimiter=',')
for row in catalog:
X, y = self._get_Xy()
x_file, y_file = self._get_file_data(row[0])
y_original = np.array(self._find_out(x_file, X, y), dtype=int)
self.assertTrue(np.array_equal(y_file, y_original))
def test_single_prediction(self): def test_single_prediction(self):
X, y = self._get_Xy() X, y = self._get_Xy()
yp = self._clf.predict((X[0, :].reshape(-1, X.shape[1]))) yp = self._clf.predict((X[0, :].reshape(-1, X.shape[1])))
@@ -135,10 +123,9 @@ class Stree_test(unittest.TestCase):
X, y = self._get_Xy() X, y = self._get_Xy()
accuracy_score = self._clf.score(X, y) accuracy_score = self._clf.score(X, y)
yp = self._clf.predict(X) yp = self._clf.predict(X)
right = (yp == y).astype(int) accuracy_computed = np.mean(yp == y)
accuracy_computed = sum(right) / len(y)
self.assertEqual(accuracy_score, accuracy_computed) self.assertEqual(accuracy_score, accuracy_computed)
self.assertGreater(accuracy_score, 0.8) self.assertGreater(accuracy_score, 0.9)
def test_single_predict_proba(self): def test_single_predict_proba(self):
"""Check that element 28 has a prediction different that the current label """Check that element 28 has a prediction different that the current label
@@ -253,6 +240,30 @@ class Stree_test(unittest.TestCase):
from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.estimator_checks import check_estimator
check_estimator(Stree()) check_estimator(Stree())
def test_exception_if_C_is_negative(self):
tclf = Stree(C=-1)
with self.assertRaises(ValueError):
tclf.fit(*self._get_Xy())
def test_check_max_depth_is_positive_or_None(self):
tcl = Stree()
self.assertIsNone(tcl.max_depth)
tcl = Stree(max_depth=1)
self.assertGreaterEqual(1, tcl.max_depth)
with self.assertRaises(ValueError):
tcl = Stree(max_depth=-1)
tcl.fit(*self._get_Xy())
def test_check_max_depth(self):
depth = 3
tcl = Stree(random_state=self._random_state, max_depth=depth)
tcl.fit(*self._get_Xy())
self.assertEqual(depth, tcl.depth_)
def test_unfitted_tree_is_iterable(self):
tcl = Stree()
self.assertEqual(0, len(list(tcl)))
class Snode_test(unittest.TestCase): class Snode_test(unittest.TestCase):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):

View File

@@ -1,227 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.datasets import make_classification, load_iris, load_wine\n",
"from sklearn.model_selection import train_test_split\n",
"from stree import Stree\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 32.976% 492\nValid: 67.024% 1000\n"
}
],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" import pandas as pd\n",
" import numpy as np\n",
" import random\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"# data = load_creditcard(-5000) # Take all true samples + 5000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"data = load_creditcard(-1000) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": [
"outputPrepend"
]
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9579\nClassifier's accuracy (test) : 0.9509\nroot\nroot - Down, <cgaf> - Leaf class=1 belief=0.987013 counts=(array([0, 1]), array([ 4, 304]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.945652 counts=(array([0, 1]), array([696, 40]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9579\nClassifier's accuracy (test) : 0.9509\nroot\nroot - Down, <cgaf> - Leaf class=1 belief=0.990196 counts=(array([0, 1]), array([ 3, 303]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.944444 counts=(array([0, 1]), array([697, 41]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9693\nClassifier's accuracy (test) : 0.9576\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([311]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([6]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up, <cgaf> - Leaf class=0 belief=0.955923 counts=(array([0, 1]), array([694, 32]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9713\nClassifier's accuracy (test) : 0.9576\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([314]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([6]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.958564 counts=(array([0, 1]), array([694, 30]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9780\nClassifier's accuracy (test) : 0.9420\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([301]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([13]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([17]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([3]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.967376 counts=(array([0, 1]), array([682, 23]))\n\n**************************************************\n0.4537 secs\n"
}
],
"source": [
"t = time.time()\n",
"for C in (.001, .01, 1, 5, 17):\n",
" clf = Stree(C=C, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" print(f\"************** C={C} ****************************\")\n",
" print(f\"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}\")\n",
" print(f\"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}\")\n",
" print(clf)\n",
" print(f\"**************************************************\")\n",
"print(f\"{time.time() - t:.4f} secs\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.calibration import CalibratedClassifierCV\n",
"scaler = StandardScaler()\n",
"cclf = CalibratedClassifierCV(base_estimator=LinearSVC(), cv=5)\n",
"cclf.fit(Xtrain, ytrain)\n",
"res = cclf.predict_proba(Xtest)\n",
"#an array containing probabilities of belonging to the 1st class"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([301]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([13]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([17]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([3]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.967376 counts=(array([0, 1]), array([682, 23]))\n"
}
],
"source": [
"#check iterator\n",
"for i in list(clf):\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([301]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([13]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([17]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([3]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.967376 counts=(array([0, 1]), array([682, 23]))\n"
}
],
"source": [
"#check iterator again\n",
"for i in clf:\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# Check if the classifier is a sklearn estimator\n",
"from sklearn.utils.estimator_checks import check_estimator\n",
"check_estimator(Stree())"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "1 functools.partial(<function check_no_attributes_set_in_init at 0x12d18e0e0>, 'Stree')\n2 functools.partial(<function check_estimators_dtypes at 0x12d185200>, 'Stree')\n3 functools.partial(<function check_fit_score_takes_y at 0x12d1850e0>, 'Stree')\n4 functools.partial(<function check_sample_weights_pandas_series at 0x12d17eb00>, 'Stree')\n5 functools.partial(<function check_sample_weights_not_an_array at 0x12d17ec20>, 'Stree')\n6 functools.partial(<function check_sample_weights_list at 0x12d17ed40>, 'Stree')\n7 functools.partial(<function check_sample_weights_invariance at 0x12d17ee60>, 'Stree')\n8 functools.partial(<function check_estimators_fit_returns_self at 0x12d189200>, 'Stree')\n9 functools.partial(<function check_estimators_fit_returns_self at 0x12d189200>, 'Stree', readonly_memmap=True)\n10 functools.partial(<function check_complex_data at 0x12d181050>, 'Stree')\n11 functools.partial(<function check_dtype_object at 0x12d17ef80>, 'Stree')\n12 functools.partial(<function check_estimators_empty_data_messages at 0x12d185320>, 'Stree')\n13 functools.partial(<function check_pipeline_consistency at 0x12d181f80>, 'Stree')\n14 functools.partial(<function check_estimators_nan_inf at 0x12d185440>, 'Stree')\n15 functools.partial(<function check_estimators_overwrite_params at 0x12d189f80>, 'Stree')\n16 functools.partial(<function check_estimator_sparse_data at 0x12d17e9e0>, 'Stree')\n17 functools.partial(<function check_estimators_pickle at 0x12d185680>, 'Stree')\n18 functools.partial(<function check_classifier_data_not_an_array at 0x12d18e320>, 'Stree')\n19 functools.partial(<function check_classifiers_one_label at 0x12d185d40>, 'Stree')\n20 functools.partial(<function check_classifiers_classes at 0x12d1897a0>, 'Stree')\n21 functools.partial(<function check_estimators_partial_fit_n_features at 0x12d1857a0>, 'Stree')\n22 functools.partial(<function check_classifiers_train at 0x12d185e60>, 'Stree')\n23 functools.partial(<function check_classifiers_train at 0x12d185e60>, 'Stree', readonly_memmap=True)\n24 functools.partial(<function check_classifiers_regression_target at 0x12d18ed40>, 'Stree')\n25 functools.partial(<function check_supervised_y_no_nan at 0x12d17cb00>, 'Stree')\n26 functools.partial(<function check_supervised_y_2d at 0x12d189440>, 'Stree')\n27 functools.partial(<function check_estimators_unfitted at 0x12d189320>, 'Stree')\n28 functools.partial(<function check_non_transformer_estimators_n_iter at 0x12d18e8c0>, 'Stree')\n29 functools.partial(<function check_decision_proba_consistency at 0x12d18ee60>, 'Stree')\n30 functools.partial(<function check_fit2d_predict1d at 0x12d181560>, 'Stree')\n31 functools.partial(<function check_methods_subset_invariance at 0x12d181710>, 'Stree')\n32 functools.partial(<function check_fit2d_1sample at 0x12d181830>, 'Stree')\n33 functools.partial(<function check_fit2d_1feature at 0x12d181950>, 'Stree')\n34 functools.partial(<function check_fit1d at 0x12d181a70>, 'Stree')\n35 functools.partial(<function check_get_params_invariance at 0x12d18eb00>, 'Stree')\n36 functools.partial(<function check_set_params at 0x12d18ec20>, 'Stree')\n37 functools.partial(<function check_dict_unchanged at 0x12d181170>, 'Stree')\n38 functools.partial(<function check_dont_overwrite_parameters at 0x12d181440>, 'Stree')\n39 functools.partial(<function check_fit_idempotent at 0x12d192050>, 'Stree')\n"
}
],
"source": [
"# Make checks one by one\n",
"c = 0\n",
"checks = check_estimator(Stree(), generate_only=True)\n",
"for check in checks:\n",
" c += 1\n",
" print(c, check[1])\n",
" check[1](check[0])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because one or more lines are too long