diff --git a/stree/Strees.py b/stree/Strees.py index 14d0406..3766bec 100644 --- a/stree/Strees.py +++ b/stree/Strees.py @@ -16,7 +16,6 @@ import numpy as np from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.svm import SVC, LinearSVC from sklearn.preprocessing import StandardScaler -from sklearn.utils import check_consistent_length from sklearn.utils.multiclass import check_classification_targets from sklearn.exceptions import ConvergenceWarning from sklearn.utils.validation import ( @@ -25,7 +24,6 @@ from sklearn.utils.validation import ( check_is_fitted, _check_sample_weight, ) -from sklearn.metrics._classification import _weighted_sum, _check_targets class Snode: @@ -832,36 +830,6 @@ class Stree(BaseEstimator, ClassifierMixin): ) return self.classes_[result] - def score( - self, X: np.array, y: np.array, sample_weight: np.array = None - ) -> float: - """Compute accuracy of the prediction - - Parameters - ---------- - X : np.array - dataset of samples to make predictions - y : np.array - samples labels - sample_weight : np.array, optional - weights of the samples. Rescale C per sample, by default None - - Returns - ------- - float - accuracy of the prediction - """ - # sklearn check - check_is_fitted(self) - check_classification_targets(y) - X, y = check_X_y(X, y) - y_pred = self.predict(X).reshape(y.shape) - # Compute accuracy for each possible representation - _, y_true, y_pred = _check_targets(y, y_pred) - check_consistent_length(y_true, y_pred, sample_weight) - score = y_true == y_pred - return _weighted_sum(score, sample_weight, normalize=True) - def nodes_leaves(self) -> tuple: """Compute the number of nodes and leaves in the built tree