diff --git a/README.md b/README.md index 992764b..833348e 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,5 @@ +# STree + ![CI](https://github.com/Doctorado-ML/STree/workflows/CI/badge.svg) [![CodeQL](https://github.com/Doctorado-ML/STree/actions/workflows/codeql-analysis.yml/badge.svg)](https://github.com/Doctorado-ML/STree/actions/workflows/codeql-analysis.yml) [![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree) @@ -6,11 +8,10 @@ ![https://img.shields.io/badge/python-3.11%2B-blue](https://img.shields.io/badge/python-3.11%2B-brightgreen) [![DOI](https://zenodo.org/badge/262658230.svg)](https://zenodo.org/badge/latestdoi/262658230) -# STree +![Stree](https://raw.github.com/doctorado-ml/stree/master/example.png) Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc. -![Stree](https://raw.github.com/doctorado-ml/stree/master/example.png) ## Installation diff --git a/stree/Splitter.py b/stree/Splitter.py index 051aab9..8a03482 100644 --- a/stree/Splitter.py +++ b/stree/Splitter.py @@ -746,7 +746,7 @@ class Splitter: Train time - True / Test time - False """ # data contains the distances of every sample to every class hyperplane - # array of (m, nc) nc = # classes + # array of (m, nc) nc = k if ovr, nc = k*(k-1)/2 if ovo data = self._distances(node, samples) if data.shape[0] < self._min_samples_split: # there aren't enough samples to split