mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-15 15:36:00 +00:00
* Add first doc info to sources * Update doc to separate classes in api * Refactor build_predictor * Fix random_sate issue in non linear kernels * Refactor score method using base class implementation * Some quality refactoring * Fix codecov config. * Add sigmoid kernel * Refactor setup and add Makefile
This commit is contained in:
committed by
GitHub
parent
02de394c96
commit
e19d10f6a7
11
README.md
11
README.md
@@ -14,6 +14,10 @@ Oblique Tree classifier based on SVM nodes. The nodes are built and splitted wit
|
||||
pip install git+https://github.com/doctorado-ml/stree
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
||||
Can be found in
|
||||
|
||||
## Examples
|
||||
|
||||
### Jupyter notebooks
|
||||
@@ -33,7 +37,7 @@ pip install git+https://github.com/doctorado-ml/stree
|
||||
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
|
||||
| --- | ------------------ | ------------------------------------------------------ | ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
|
||||
| \* | kernel | {"linear", "poly", "rbf"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’ or ‘rbf’. |
|
||||
| \* | kernel | {"linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’ or ‘rbf’. |
|
||||
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
|
||||
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
|
||||
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
|
||||
@@ -45,6 +49,7 @@ pip install git+https://github.com/doctorado-ml/stree
|
||||
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
|
||||
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
|
||||
| | splitter | {"best", "random"} | random | The strategy used to choose the feature set at each node (only used if max_features != num_features). <br>Supported strategies are “best” to choose the best feature set and “random” to choose a random combination. <br>The algorithm generates 5 candidates at most to choose from in both strategies. |
|
||||
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
|
||||
|
||||
\* Hyperparameter used by the support vector classifier of every node
|
||||
|
||||
@@ -61,3 +66,7 @@ Once we have the column to take into account for the split, the algorithm splits
|
||||
```bash
|
||||
python -m unittest -v stree.tests
|
||||
```
|
||||
|
||||
## License
|
||||
|
||||
STree is [MIT](https://github.com/doctorado-ml/stree/blob/master/LICENSE) licensed
|
||||
|
Reference in New Issue
Block a user