diff --git a/README.md b/README.md index 45b7908..d13e1e7 100644 --- a/README.md +++ b/README.md @@ -8,7 +8,7 @@ Oblique Tree classifier based on SVM nodes ## Jupyter -[![badge](https://img.shields.io/badge/binder-test%20notebook-579ACA.svg?logo=)](https://notebooks.gesis.org/user/ricardo.montanana@alu.uclm.es/notebooks/test.ipynb) +[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?filepath=test.ipynb) ## Command line diff --git a/main.py b/main.py index 4f28db5..0982a02 100644 --- a/main.py +++ b/main.py @@ -1,6 +1,7 @@ -from trees.Stree import Stree from sklearn.datasets import make_classification +from trees.Stree import Stree + random_state = 1 X, y = make_classification(n_samples=1500, n_features=3, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2, diff --git a/test.ipynb b/test.ipynb index 6e53d93..4080ef6 100644 --- a/test.ipynb +++ b/test.ipynb @@ -6,13 +6,14 @@ "metadata": {}, "outputs": [], "source": [ + "import datetime, time\n", "import numpy as np\n", "import pandas as pd\n", - "from sklearn.svm import LinearSVC\n", - "from sklearn.tree import DecisionTreeClassifier\n", - "from sklearn.datasets import make_classification, load_iris, load_wine\n", - "from trees.Stree import Stree\n", - "import time" + "from sklearn.model_selection import train_test_split\n", + "from sklearn import tree\n", + "from sklearn.metrics import classification_report, confusion_matrix, f1_score\n", + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier\n", + "from trees.Stree import Stree" ] }, { @@ -35,66 +36,23 @@ { "output_type": "stream", "name": "stdout", - "text": "*Original Fraud: 0.173% 492\n*Original Valid: 99.827% 284315\nX.shape (284807, 28) y.shape (284807, 1)\n-Generated Fraud: 0.173% 492\n-Generated Valid: 99.827% 284315\n" + "text": "2020-05-17 16:15:24\n" } ], "source": [ - "def load_creditcard(n_examples=0):\n", - " df = pd.read_csv('data/creditcard.csv')\n", - " print(\"*Original Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n", - " print(\"*Original Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n", - " y = np.expand_dims(df.Class.values, axis=1)\n", - " X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n", - " #Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n", - " #return Xtrain, Xtest, ytrain, ytest\n", - " if n_examples > 0:\n", - " X = X[:n_examples, :]\n", - " y = y[:n_examples, :]\n", - " else:\n", - " if n_examples < 0:\n", - " Xt = X[(y == 1).ravel()]\n", - " yt = y[(y == 1).ravel()]\n", - " indices = random.sample(range(X.shape[0]), -1 * n_examples)\n", - " X = np.append(Xt, X[indices], axis=0)\n", - " y = np.append(yt, y[indices], axis=0)\n", - " print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n", - " print(\"-Generated Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n", - " print(\"-Generated Valid: {0:.3f}% {1}\".format(len(y[y == 0])*100/X.shape[0], len(y[y == 0])))\n", - " return X, y\n", - "\n", - "random_state = 1\n", - "\n", - "\n", - "# Datasets\n", - "\n", - "#X, y = make_classification(n_samples=1500, n_features=3, n_informative=3, \n", - "# n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,\n", - "# class_sep=1.5, flip_y=0,weights=[0.5,0.5], random_state=random_state)\n", - "\n", - "#X, y = load_wine(return_X_y=True)\n", - "#X, y = load_iris(return_X_y=True)\n", - "#y[y==2]=0\n", - "\n", - "X, y = load_creditcard()" + "print(datetime.date.today(), time.strftime(\"%H:%M:%S\"))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": "root\nroot - Down\nroot - Down - Down, - Leaf class=0 belief=0.999638 counts=(array([0, 1]), array([284242, 103]))\nroot - Down - Up\nroot - Down - Up - Down\nroot - Down - Up - Down - Down, - Leaf class=0 belief=0.857143 counts=(array([0, 1]), array([18, 3]))\nroot - Down - Up - Down - Up, - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Down - Up - Up\nroot - Down - Up - Up - Down, - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Down - Up - Up - Up, - Leaf class=1 belief=0.862069 counts=(array([0, 1]), array([ 16, 100]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down\nroot - Up - Down - Down - Down, - Leaf class=0 belief=0.920000 counts=(array([0, 1]), array([23, 2]))\nroot - Up - Down - Down - Up, - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Down - Up, - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Up - Up, - Leaf class=1 belief=0.948980 counts=(array([0, 1]), array([ 15, 279]))\n\n41.5053 secs\n" - } - ], + "outputs": [], "source": [ - "t = time.time()\n", - "clf = Stree(C=.01, random_state=random_state, use_predictions=False)\n", - "clf.fit(X, y)\n", - "print(clf)\n", - "print(f\"{time.time() - t:.4f} secs\")" + "# Load Dataset\n", + "df = pd.read_csv('data/creditcard.csv')\n", + "df.shape\n", + "random_state = 2020" ] }, { @@ -105,22 +63,24 @@ { "output_type": "stream", "name": "stdout", - "text": "Accuracy: 0.999512\n0.2389 secs\n" + "text": "Fraud: 0.173% 492\nValid: 99.827% 284,315\n" } ], "source": [ - "t = time.time()\n", - "clf.score(X, y)\n", - "print(f\"{time.time() - t:.4f} secs\")" + "print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n", + "print(\"Valid: {0:.3f}% {1:,}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 6, "metadata": {}, + "outputs": [], "source": [ - "# outcomes without optimization executing predict_proba. 87 seconds\n", - "(284807, 2)\n", - "87.5212 secs" + "# Normalize Amount\n", + "from sklearn.preprocessing import RobustScaler\n", + "values = RobustScaler().fit_transform(df.Amount.values.reshape(-1, 1))\n", + "df['Amount_Scaled'] = values" ] }, { @@ -131,47 +91,214 @@ { "output_type": "stream", "name": "stdout", - "text": "0.9991397683343457\n13.6326 secs\n" + "text": "X shape: (284807, 29)\ny shape: (284807,)\n" } ], "source": [ - "t = time.time()\n", - "clf2 = LinearSVC(C=.01, random_state=random_state)\n", - "clf2.fit(X, y)\n", - "print(clf2.score(X, y))\n", - "print(f\"{time.time() - t:.4f} secs\")" + "# Remove unneeded features\n", + "y = df.Class.values\n", + "X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n", + "print(f\"X shape: {X.shape}\\ny shape: {y.shape}\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, + "outputs": [], + "source": [ + "# Divide dataset\n", + "train_size = .7\n", + "Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=train_size, shuffle=True, random_state=random_state, stratify=y)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Linear Tree\n", + "linear_tree = tree.DecisionTreeClassifier(random_state=random_state)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Random Forest\n", + "random_forest = RandomForestClassifier(random_state=random_state, n_jobs=-1, n_estimators=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Stree\n", + "stree = Stree(random_state=random_state, C=.01)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# AdaBoost\n", + "adaboost = AdaBoostClassifier(random_state=random_state)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Gradient Boosting\n", + "gradient = GradientBoostingClassifier(random_state=random_state)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def try_model(name, model):\n", + " print(f\"************************** {name} **********************\")\n", + " now = time.time()\n", + " model.fit(Xtrain, ytrain)\n", + " spent = time.time() - now\n", + " print(f\"Train Model {name} took: {spent:.4} seconds\")\n", + " predict = model.predict(Xtrain)\n", + " predictt = model.predict(Xtest)\n", + " print(f\"=========== {name} - Train {Xtrain.shape[0]:,} samples =============\",)\n", + " print(classification_report(ytrain, predict, digits=6))\n", + " print(f\"=========== {name} - Test {Xtest.shape[0]:,} samples =============\")\n", + " print(classification_report(ytest, predictt, digits=6))\n", + " print(\"Confusion Matrix in Train\")\n", + " print(confusion_matrix(ytrain, predict))\n", + " print(\"Confusion Matrix in Test\")\n", + " print(confusion_matrix(ytest, predictt))\n", + " return f1_score(ytest, predictt), spent" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", - "text": "1.0\n18.8308 secs\n" + "text": "************************** Linear Tree **********************\nTrain Model Linear Tree took: 14.13 seconds\n=========== Linear Tree - Train 199,364 samples =============\n precision recall f1-score support\n\n 0 1.000000 1.000000 1.000000 199020\n 1 1.000000 1.000000 1.000000 344\n\n accuracy 1.000000 199364\n macro avg 1.000000 1.000000 1.000000 199364\nweighted avg 1.000000 1.000000 1.000000 199364\n\n=========== Linear Tree - Test 85,443 samples =============\n precision recall f1-score support\n\n 0 0.999578 0.999613 0.999596 85295\n 1 0.772414 0.756757 0.764505 148\n\n accuracy 0.999192 85443\n macro avg 0.885996 0.878185 0.882050 85443\nweighted avg 0.999184 0.999192 0.999188 85443\n\nConfusion Matrix in Train\n[[199020 0]\n [ 0 344]]\nConfusion Matrix in Test\n[[85262 33]\n [ 36 112]]\n************************** Random Forest **********************\n" + }, + { + "output_type": "error", + "ename": "KeyboardInterrupt", + "evalue": "", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0moutcomes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mf1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtime_spent\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtry_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0moutcomes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtime_spent\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mf1\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0mbest_f1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mtry_model\u001b[0;34m(name, model)\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"************************** {name} **********************\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mnow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mXtrain\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mytrain\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mspent\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mnow\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Train Model {name} took: {spent:.4} seconds\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Code/pyblique/venv/lib/python3.7/site-packages/sklearn/ensemble/_forest.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m 381\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mverbose\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclass_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclass_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 382\u001b[0m n_samples_bootstrap=n_samples_bootstrap)\n\u001b[0;32m--> 383\u001b[0;31m for i, t in enumerate(trees))\n\u001b[0m\u001b[1;32m 384\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 385\u001b[0m \u001b[0;31m# Collect newly grown trees\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Code/pyblique/venv/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 1015\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1016\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieval_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1017\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1018\u001b[0m \u001b[0;31m# Make sure that we get a last message telling us we are done\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1019\u001b[0m \u001b[0melapsed_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_start_time\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Code/pyblique/venv/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 907\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 908\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'supports_timeout'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 909\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 910\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 911\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/Cellar/python/3.7.6_1/Frameworks/Python.framework/Versions/3.7/lib/python3.7/multiprocessing/pool.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 649\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 650\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 651\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 652\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mready\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 653\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTimeoutError\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/Cellar/python/3.7.6_1/Frameworks/Python.framework/Versions/3.7/lib/python3.7/multiprocessing/pool.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 646\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 647\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 648\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_event\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 649\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 650\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/Cellar/python/3.7.6_1/Frameworks/Python.framework/Versions/3.7/lib/python3.7/threading.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 550\u001b[0m \u001b[0msignaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_flag\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 551\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0msignaled\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 552\u001b[0;31m \u001b[0msignaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cond\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 553\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0msignaled\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 554\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/Cellar/python/3.7.6_1/Frameworks/Python.framework/Versions/3.7/lib/python3.7/threading.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 294\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# restore state no matter what (e.g., KeyboardInterrupt)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 295\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 296\u001b[0;31m \u001b[0mwaiter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquire\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 297\u001b[0m \u001b[0mgotit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 298\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] } ], "source": [ - "t = time.time()\n", - "clf3 = DecisionTreeClassifier(random_state=random_state)\n", - "clf3.fit(X, y)\n", - "print(clf3.score(X, y))\n", - "print(f\"{time.time() - t:.4f} secs\")" + "# Train & Test models\n", + "models = {\n", + " 'Linear Tree':linear_tree, 'Random Forest': random_forest, 'Stree (SVM Tree)': stree, \n", + " 'AdaBoost model': adaboost, 'Gradient Boost.': gradient\n", + "}\n", + "\n", + "best_f1 = 0\n", + "outcomes = []\n", + "for name, model in models.items():\n", + " f1, time_spent = try_model(name, model)\n", + " outcomes.append((name, f1, time_spent))\n", + " if f1 > best_f1:\n", + " best_model = name\n", + " best_time = time_spent\n", + " best_f1 = f1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "************************************************************************************************************************************\n" + }, + { + "output_type": "error", + "ename": "NameError", + "evalue": "name 'best_model' is not defined", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"*\"\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m132\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"*The best f1 model is {best_model}, with a f1 score: {best_f1:.4} in {best_time:.6} seconds with {train_size:,} samples in train dataset\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"*\"\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m132\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtime_spent\u001b[0m \u001b[0;32min\u001b[0m \u001b[0moutcomes\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Model: {name}\\t Time: {time_spent:6.2f} seconds\\t f1: {f1:.4}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'best_model' is not defined" + ] + } + ], + "source": [ + "print(\"*\"*132)\n", + "print(f\"*The best f1 model is {best_model}, with a f1 score: {best_f1:.4} in {best_time:.6} seconds with {train_size:,} samples in train dataset\")\n", + "print(\"*\"*132)\n", + "for name, f1, time_spent in outcomes:\n", + " print(f\"Model: {name}\\t Time: {time_spent:6.2f} seconds\\t f1: {f1:.4}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "from sklearn.utils.estimator_checks import check_estimator\n", - "clf = Stree()\n", - "check_estimator(clf)" + "************************************************************************************************************************************\n", + "*The best f1 model is Random Forest, with a f1 score: 0.8815 in 218.966 seconds with 0.7 samples in train dataset\n", + "************************************************************************************************************************************\n", + "Model: Linear Tree\t Time: 23.05 seconds\t f1: 0.7645\n", + "Model: Random Forest\t Time: 218.97 seconds\t f1: 0.8815\n", + "Model: Stree (SVM Tree)\t Time: 49.45 seconds\t f1: 0.8467\n", + "Model: AdaBoost model\t Time: 73.83 seconds\t f1: 0.7509\n", + "Model: Gradient Boost.\t Time: 388.69 seconds\t f1: 0.5259\n", + "Model: Neural Network\t Time: 25.47 seconds\t f1: 0.8328" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "************************************************************************************************************************************\n", + "*The best f1 model is Random Forest, with a f1 score: 0.8791 in 1513.23 seconds with 0.7 samples in train dataset\n", + "************************************************************************************************************************************\n", + "Model: Linear Tree\t Time: 25.18 seconds\t f1: 0.7645\n", + "Model: Random Forest\t Time: 1513.23 seconds\t f1: 0.8791" ] } ], "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, "language_info": { "codemirror_mode": { "name": "ipython", @@ -184,12 +311,56 @@ "pygments_lexer": "ipython3", "version": "3.7.6-final" }, - "orig_nbformat": 2, - "kernelspec": { - "name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39", - "display_name": "Python 3.7.6 64-bit ('general': venv)" + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "position": { + "height": "392px", + "left": "1518px", + "right": "20px", + "top": "40px", + "width": "392px" + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": true } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } \ No newline at end of file diff --git a/test2.ipynb b/test2.ipynb new file mode 100644 index 0000000..6e53d93 --- /dev/null +++ b/test2.ipynb @@ -0,0 +1,195 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.svm import LinearSVC\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.datasets import make_classification, load_iris, load_wine\n", + "from trees.Stree import Stree\n", + "import time" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "if not os.path.isfile('data/creditcard.csv'):\n", + " !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n", + " !tar xzf creditcard.tgz" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "*Original Fraud: 0.173% 492\n*Original Valid: 99.827% 284315\nX.shape (284807, 28) y.shape (284807, 1)\n-Generated Fraud: 0.173% 492\n-Generated Valid: 99.827% 284315\n" + } + ], + "source": [ + "def load_creditcard(n_examples=0):\n", + " df = pd.read_csv('data/creditcard.csv')\n", + " print(\"*Original Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n", + " print(\"*Original Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n", + " y = np.expand_dims(df.Class.values, axis=1)\n", + " X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n", + " #Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n", + " #return Xtrain, Xtest, ytrain, ytest\n", + " if n_examples > 0:\n", + " X = X[:n_examples, :]\n", + " y = y[:n_examples, :]\n", + " else:\n", + " if n_examples < 0:\n", + " Xt = X[(y == 1).ravel()]\n", + " yt = y[(y == 1).ravel()]\n", + " indices = random.sample(range(X.shape[0]), -1 * n_examples)\n", + " X = np.append(Xt, X[indices], axis=0)\n", + " y = np.append(yt, y[indices], axis=0)\n", + " print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n", + " print(\"-Generated Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n", + " print(\"-Generated Valid: {0:.3f}% {1}\".format(len(y[y == 0])*100/X.shape[0], len(y[y == 0])))\n", + " return X, y\n", + "\n", + "random_state = 1\n", + "\n", + "\n", + "# Datasets\n", + "\n", + "#X, y = make_classification(n_samples=1500, n_features=3, n_informative=3, \n", + "# n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,\n", + "# class_sep=1.5, flip_y=0,weights=[0.5,0.5], random_state=random_state)\n", + "\n", + "#X, y = load_wine(return_X_y=True)\n", + "#X, y = load_iris(return_X_y=True)\n", + "#y[y==2]=0\n", + "\n", + "X, y = load_creditcard()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "root\nroot - Down\nroot - Down - Down, - Leaf class=0 belief=0.999638 counts=(array([0, 1]), array([284242, 103]))\nroot - Down - Up\nroot - Down - Up - Down\nroot - Down - Up - Down - Down, - Leaf class=0 belief=0.857143 counts=(array([0, 1]), array([18, 3]))\nroot - Down - Up - Down - Up, - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Down - Up - Up\nroot - Down - Up - Up - Down, - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Down - Up - Up - Up, - Leaf class=1 belief=0.862069 counts=(array([0, 1]), array([ 16, 100]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down\nroot - Up - Down - Down - Down, - Leaf class=0 belief=0.920000 counts=(array([0, 1]), array([23, 2]))\nroot - Up - Down - Down - Up, - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Down - Up, - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Up - Up, - Leaf class=1 belief=0.948980 counts=(array([0, 1]), array([ 15, 279]))\n\n41.5053 secs\n" + } + ], + "source": [ + "t = time.time()\n", + "clf = Stree(C=.01, random_state=random_state, use_predictions=False)\n", + "clf.fit(X, y)\n", + "print(clf)\n", + "print(f\"{time.time() - t:.4f} secs\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "Accuracy: 0.999512\n0.2389 secs\n" + } + ], + "source": [ + "t = time.time()\n", + "clf.score(X, y)\n", + "print(f\"{time.time() - t:.4f} secs\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# outcomes without optimization executing predict_proba. 87 seconds\n", + "(284807, 2)\n", + "87.5212 secs" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "0.9991397683343457\n13.6326 secs\n" + } + ], + "source": [ + "t = time.time()\n", + "clf2 = LinearSVC(C=.01, random_state=random_state)\n", + "clf2.fit(X, y)\n", + "print(clf2.score(X, y))\n", + "print(f\"{time.time() - t:.4f} secs\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "1.0\n18.8308 secs\n" + } + ], + "source": [ + "t = time.time()\n", + "clf3 = DecisionTreeClassifier(random_state=random_state)\n", + "clf3.fit(X, y)\n", + "print(clf3.score(X, y))\n", + "print(f\"{time.time() - t:.4f} secs\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "from sklearn.utils.estimator_checks import check_estimator\n", + "clf = Stree()\n", + "check_estimator(clf)" + ] + } + ], + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39", + "display_name": "Python 3.7.6 64-bit ('general': venv)" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/tests/Snode_test.py b/tests/Snode_test.py index 9b40325..ce217ca 100644 --- a/tests/Snode_test.py +++ b/tests/Snode_test.py @@ -1,9 +1,8 @@ +import os import unittest -from sklearn.datasets import make_classification -import os import numpy as np -import csv +from sklearn.datasets import make_classification from trees.Stree import Stree, Snode diff --git a/tests/Stree_test.py b/tests/Stree_test.py index c89d7f5..432ea6c 100644 --- a/tests/Stree_test.py +++ b/tests/Stree_test.py @@ -1,9 +1,9 @@ +import csv +import os import unittest -from sklearn.datasets import make_classification -import os import numpy as np -import csv +from sklearn.datasets import make_classification from trees.Stree import Stree, Snode diff --git a/trees/Snode.py b/trees/Snode.py index c3d8473..0aa3361 100644 --- a/trees/Snode.py +++ b/trees/Snode.py @@ -7,6 +7,7 @@ Node of the Stree (binary tree) ''' import os + import numpy as np from sklearn.svm import LinearSVC diff --git a/trees/Stree.py b/trees/Stree.py index 081b714..d0c9573 100644 --- a/trees/Stree.py +++ b/trees/Stree.py @@ -8,10 +8,11 @@ Build an oblique tree classifier based on SVM Trees Uses LinearSVC ''' -import numpy as np import typing -from sklearn.svm import LinearSVC + +import numpy as np from sklearn.base import BaseEstimator, ClassifierMixin +from sklearn.svm import LinearSVC from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from trees.Snode import Snode