Add test for getting 3 feature_sets in Splitter

Add ensemble notebook
This commit is contained in:
2020-06-28 02:45:08 +02:00
parent 5e3a8e3ec5
commit be552fdd6c
2 changed files with 61 additions and 15 deletions

View File

@@ -4,7 +4,7 @@ import random
import numpy as np
from sklearn.svm import SVC
from sklearn.datasets import load_wine
from sklearn.datasets import load_wine, load_iris
from stree import Splitter
@@ -176,6 +176,14 @@ class Splitter_test(unittest.TestCase):
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
def test_best_splitter_few_sets(self):
X, y = load_iris(return_X_y=True)
X = np.delete(X, 3, 1)
tcl = self.build(splitter_type="best", random_state=self._random_state)
dataset, computed = tcl.get_subspace(X, y, max_features=2)
self.assertListEqual([0, 2], list(computed))
self.assertListEqual(X[:, computed].tolist(), dataset.tolist())
def test_splitter_parameter(self):
expected_values = [
[2, 3, 5, 7], # best entropy min_distance