mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-17 16:36:01 +00:00
Working tree with samples and first test
This commit is contained in:
70
trees/Stree.py
Normal file
70
trees/Stree.py
Normal file
@@ -0,0 +1,70 @@
|
||||
'''
|
||||
__author__ = "Ricardo Montañana Gómez"
|
||||
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
||||
__license__ = "MIT"
|
||||
__version__ = "1.0"
|
||||
Create a oblique tree classifier based on SVM Trees
|
||||
Uses LinearSVC
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
from sklearn.svm import LinearSVC
|
||||
|
||||
from trees.Snode import Snode
|
||||
|
||||
class Stree:
|
||||
"""
|
||||
"""
|
||||
def __init__(self, max_iter: int=1000, random_state: int=0):
|
||||
self._max_iter = max_iter
|
||||
self._random_state = random_state
|
||||
self._outcomes = None
|
||||
self._tree = None
|
||||
|
||||
def _split_data(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray) -> list:
|
||||
# doesn't work with multiclass as each sample has to do inner product with its own coeficients
|
||||
# computes positition of every sample is w.r.t. the hyperplane
|
||||
coef = clf.coef_[0, :].reshape(-1, X.shape[1])
|
||||
intercept = clf.intercept_[0]
|
||||
res = X.dot(coef.T) + intercept
|
||||
down = res > 0
|
||||
up = ~down
|
||||
X_down = X[down[:, 0]] if any(down) else None
|
||||
y_down = y[down[:, 0]] if any(down) else None
|
||||
X_up = X[up[:, 0]] if any(up) else None
|
||||
y_up = y[up[:, 0]] if any(up) else None
|
||||
return X_up, y_up, X_down, y_down
|
||||
|
||||
def fit(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> list:
|
||||
self._tree = self.train(X, y, title)
|
||||
return self
|
||||
|
||||
def train(self: Snode, X: np.ndarray, y: np.ndarray, title: str='') -> list:
|
||||
if np.unique(y).shape[0] == 1:
|
||||
# onlyt 1 class => pure dataset
|
||||
return Snode(np.array([]), 0, X, y, title + f', <pure> class={np.unique(y)} items={y.shape[0]}')
|
||||
# Train the model
|
||||
clf = LinearSVC(max_iter=self._max_iter, random_state=self._random_state)
|
||||
clf.fit(X, y)
|
||||
tree = Snode(clf.coef_, clf.intercept_, X, y, title)
|
||||
#plot_hyperplane(clf, X, y, title)
|
||||
X_T, y_t, X_O, y_o = self._split_data(clf, X, y)
|
||||
if X_T is None or X_O is None:
|
||||
# didn't part anything
|
||||
return Snode(clf.coef_, clf.intercept_, X, y, title + f', <couldn\'t go any further> classes={np.unique(y)} items<0>={y[y==0].shape[0]} items<1>={y[y==1].shape[0]}')
|
||||
tree.set_up( self.train(X_T, y_t, title + ' - Up'))
|
||||
tree.set_down(self.train(X_O, y_o, title + ' - Down'))
|
||||
return tree
|
||||
|
||||
def _print_tree(self, tree: Snode):
|
||||
print(tree)
|
||||
if tree.is_leaf():
|
||||
return
|
||||
self._print_tree(tree.get_down())
|
||||
self._print_tree(tree.get_up())
|
||||
|
||||
def show_outcomes(self):
|
||||
pointer = self._tree
|
||||
self._print_tree(pointer)
|
||||
|
||||
|
Reference in New Issue
Block a user