Add pyproject.toml install information

Add __call__ method to support sklearn ensembles requirements for base estimators
Update tests
This commit is contained in:
2024-08-13 13:28:32 +02:00
parent 5f8ca8f3bb
commit b627bb7531
7 changed files with 83 additions and 65 deletions

1
MANIFEST.in Normal file
View File

@@ -0,0 +1 @@
include README.md LICENSE

View File

@@ -1,5 +1,68 @@
[build-system]
requires = ["setuptools", "scikit-learn>1.0", "numpy", "mufs"]
build-backend = "setuptools.build_meta"
[tool.setuptools]
packages = ["stree"]
license-files = ["LICENSE"]
[tool.setuptools.dynamic]
version = { attr = "stree.__version__" }
[project]
name = "STree"
dependencies = ["scikit-learn>1.0", "numpy", "mufs"]
license = { file = "LICENSE" }
description = "Oblique decision tree with svm nodes."
readme = "README.md"
authors = [
{ name = "Ricardo Montañana", email = "ricardo.montanana@alu.uclm.es" },
]
dynamic = ['version']
requires-python = ">=3.8"
keywords = [
"scikit-learn",
"oblique-classifier",
"oblique-decision-tree",
"decision-tree",
"svm",
"svc",
]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Science/Research",
"Intended Audience :: Developers",
"Topic :: Software Development",
"Topic :: Scientific/Engineering",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
]
[project.optional-dependencies]
dev = ["black", "flake8", "mypy", "coverage"]
[project.urls]
Code = "https://github.com/Doctorado-ML/STree"
Documentation = "https://stree.readthedocs.io/en/latest/index.html"
[tool.coverage.run]
branch = true
source = ["stree"]
command_line = "-m unittest discover -s stree.tests"
[tool.coverage.report]
show_missing = true
fail_under = 100
[tool.black] [tool.black]
line-length = 79 line-length = 79
target_version = ['py311']
include = '\.pyi?$' include = '\.pyi?$'
exclude = ''' exclude = '''
/( /(
@@ -13,4 +76,4 @@ exclude = '''
| build | build
| dist | dist
)/ )/
''' '''

View File

@@ -1,56 +0,0 @@
import setuptools
import os
def readme():
with open("README.md") as f:
return f.read()
def get_data(field, file_name="__init__.py"):
item = ""
with open(os.path.join("stree", file_name)) as f:
for line in f.readlines():
if line.startswith(f"__{field}__"):
delim = '"' if '"' in line else "'"
item = line.split(delim)[1]
break
else:
raise RuntimeError(f"Unable to find {field} string.")
return item
def get_requirements():
with open("requirements.txt") as f:
return f.read().splitlines()
setuptools.setup(
name="STree",
version=get_data("version", "_version.py"),
license=get_data("license"),
description="Oblique decision tree with svm nodes",
long_description=readme(),
long_description_content_type="text/markdown",
packages=setuptools.find_packages(),
url="https://github.com/Doctorado-ML/STree#stree",
project_urls={
"Code": "https://github.com/Doctorado-ML/STree",
"Documentation": "https://stree.readthedocs.io/en/latest/index.html",
},
author=get_data("author"),
author_email=get_data("author_email"),
keywords="scikit-learn oblique-classifier oblique-decision-tree decision-\
tree svm svc",
classifiers=[
"Development Status :: 5 - Production/Stable",
"License :: OSI Approved :: " + get_data("license"),
"Programming Language :: Python :: 3.8",
"Natural Language :: English",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Intended Audience :: Science/Research",
],
install_requires=get_requirements(),
test_suite="stree.tests",
zip_safe=False,
)

View File

@@ -174,6 +174,10 @@ class Stree(BaseEstimator, ClassifierMixin):
"""Return the version of the package.""" """Return the version of the package."""
return __version__ return __version__
def __call__(self) -> str:
"""Only added to comply with scikit-learn base estimator for ensemble"""
return self.version()
def _more_tags(self) -> dict: def _more_tags(self) -> dict:
"""Required by sklearn to supply features of the classifier """Required by sklearn to supply features of the classifier
make mandatory the labels array make mandatory the labels array

View File

@@ -1,8 +1,9 @@
from .Strees import Stree, Siterator from .Strees import Stree, Siterator
from ._version import __version__
__author__ = "Ricardo Montañana Gómez" __author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020-2021, Ricardo Montañana Gómez" __copyright__ = "Copyright 2020-2021, Ricardo Montañana Gómez"
__license__ = "MIT License" __license__ = "MIT License"
__author_email__ = "ricardo.montanana@alu.uclm.es" __author_email__ = "ricardo.montanana@alu.uclm.es"
__all__ = ["Stree", "Siterator"] __all__ = ["__version__", "Stree", "Siterator"]

View File

@@ -1 +1 @@
__version__ = "1.3.2" __version__ = "1.4.0"

View File

@@ -289,12 +289,12 @@ class Stree_test(unittest.TestCase):
"impurity sigmoid": 0.824, "impurity sigmoid": 0.824,
}, },
"Iris": { "Iris": {
"max_samples liblinear": 0.9550561797752809, "max_samples liblinear": 0.9887640449438202,
"max_samples linear": 1.0, "max_samples linear": 1.0,
"max_samples rbf": 0.6685393258426966, "max_samples rbf": 0.6685393258426966,
"max_samples poly": 0.6853932584269663, "max_samples poly": 0.6853932584269663,
"max_samples sigmoid": 0.6404494382022472, "max_samples sigmoid": 0.6404494382022472,
"impurity liblinear": 0.9550561797752809, "impurity liblinear": 0.9887640449438202,
"impurity linear": 1.0, "impurity linear": 1.0,
"impurity rbf": 0.6685393258426966, "impurity rbf": 0.6685393258426966,
"impurity poly": 0.6853932584269663, "impurity poly": 0.6853932584269663,
@@ -440,10 +440,10 @@ class Stree_test(unittest.TestCase):
clf.fit(X, y) clf.fit(X, y)
score = clf.score(X, y) score = clf.score(X, y)
# Check accuracy of the whole model # Check accuracy of the whole model
self.assertAlmostEquals(0.98, score, 5) self.assertAlmostEqual(0.98, score, 5)
svm = LinearSVC(random_state=0) svm = LinearSVC(random_state=0)
svm.fit(X, y) svm.fit(X, y)
self.assertAlmostEquals(0.9666666666666667, svm.score(X, y), 5) self.assertAlmostEqual(0.9666666666666667, svm.score(X, y), 5)
data = svm.decision_function(X) data = svm.decision_function(X)
expected = [ expected = [
0.4444444444444444, 0.4444444444444444,
@@ -455,7 +455,7 @@ class Stree_test(unittest.TestCase):
ty[data > 0] = 1 ty[data > 0] = 1
ty = ty.astype(int) ty = ty.astype(int)
for i in range(3): for i in range(3):
self.assertAlmostEquals( self.assertAlmostEqual(
expected[i], expected[i],
clf.splitter_._gini(ty[:, i]), clf.splitter_._gini(ty[:, i]),
) )
@@ -593,7 +593,7 @@ class Stree_test(unittest.TestCase):
) )
self.assertEqual(0.9526666666666667, clf2.fit(X, y).score(X, y)) self.assertEqual(0.9526666666666667, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True) X, y = load_wine(return_X_y=True)
self.assertEqual(0.9831460674157303, clf.fit(X, y).score(X, y)) self.assertEqual(0.9887640449438202, clf.fit(X, y).score(X, y))
self.assertEqual(1.0, clf2.fit(X, y).score(X, y)) self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_zero_all_sample_weights(self): def test_zero_all_sample_weights(self):
@@ -725,6 +725,11 @@ class Stree_test(unittest.TestCase):
clf = Stree() clf = Stree()
self.assertEqual(__version__, clf.version()) self.assertEqual(__version__, clf.version())
def test_call(self) -> None:
"""Check call method."""
clf = Stree()
self.assertEqual(__version__, clf())
def test_graph(self): def test_graph(self):
"""Check graphviz representation of the tree.""" """Check graphviz representation of the tree."""
X, y = load_wine(return_X_y=True) X, y = load_wine(return_X_y=True)