diff --git a/codecov.yml b/codecov.yml index 222249f..56cbfc8 100644 --- a/codecov.yml +++ b/codecov.yml @@ -6,7 +6,7 @@ overage: comment: layout: "reach, diff, flags, files" behavior: default - require_changes: false + require_changes: false require_base: yes - require_head: yes - branches: null \ No newline at end of file + require_head: yes + branches: null diff --git a/main.py b/main.py deleted file mode 100644 index cd22040..0000000 --- a/main.py +++ /dev/null @@ -1,29 +0,0 @@ -import time -from sklearn.model_selection import train_test_split -from sklearn.datasets import load_iris -from stree import Stree - -random_state = 1 - -X, y = load_iris(return_X_y=True) - -Xtrain, Xtest, ytrain, ytest = train_test_split( - X, y, test_size=0.3, random_state=random_state -) - -now = time.time() -print("Predicting with max_features=sqrt(n_features)") -clf = Stree(C=0.01, random_state=random_state, max_features="auto") -clf.fit(Xtrain, ytrain) -print(f"Took {time.time() - now:.2f} seconds to train") -print(clf) -print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}") -print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}") -print("=" * 40) -print("Predicting with max_features=n_features") -clf = Stree(C=0.01, random_state=random_state) -clf.fit(Xtrain, ytrain) -print(f"Took {time.time() - now:.2f} seconds to train") -print(clf) -print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}") -print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}") diff --git a/stree/Strees.py b/stree/Strees.py index 3766bec..1554e7d 100644 --- a/stree/Strees.py +++ b/stree/Strees.py @@ -144,12 +144,11 @@ class Snode: f"{self._belief: .6f} impurity={self._impurity:.4f} " f"counts={count_values}" ) - else: - return ( - f"{self._title} feaures={self._features} impurity=" - f"{self._impurity:.4f} " - f"counts={count_values}" - ) + return ( + f"{self._title} feaures={self._features} impurity=" + f"{self._impurity:.4f} " + f"counts={count_values}" + ) class Siterator: @@ -384,10 +383,8 @@ class Splitter: if self._splitter_type == "random": index = random.randint(0, len(features_sets) - 1) return features_sets[index] - else: - return self._select_best_set(dataset, labels, features_sets) - else: - return features_sets[0] + return self._select_best_set(dataset, labels, features_sets) + return features_sets[0] def get_subspace( self, dataset: np.array, labels: np.array, max_features: int diff --git a/stree/tests/Stree_test.py b/stree/tests/Stree_test.py index c954126..379082b 100644 --- a/stree/tests/Stree_test.py +++ b/stree/tests/Stree_test.py @@ -484,13 +484,13 @@ class Stree_test(unittest.TestCase): clf.fit(X, y) nodes, leaves = clf.nodes_leaves() self.assertEqual(25, nodes) - self.assertEquals(13, leaves) + self.assertEqual(13, leaves) X, y = load_wine(return_X_y=True) clf = Stree(random_state=self._random_state) clf.fit(X, y) nodes, leaves = clf.nodes_leaves() self.assertEqual(9, nodes) - self.assertEquals(5, leaves) + self.assertEqual(5, leaves) def test_nodes_leaves_artificial(self): n1 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test1")