Merge pull request #10 from Doctorado-ML/add_subspaces

#2 Add subspaces
This commit is contained in:
Ricardo Montañana Gómez
2020-06-15 11:30:53 +02:00
committed by GitHub
10 changed files with 625 additions and 248 deletions

72
main.py
View File

@@ -1,74 +1,26 @@
import time
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from stree import Stree
random_state = 1
X, y = load_iris(return_X_y=True)
def load_creditcard(n_examples=0):
import pandas as pd
import numpy as np
import random
df = pd.read_csv("data/creditcard.csv")
print(
"Fraud: {0:.3f}% {1}".format(
df.Class[df.Class == 1].count() * 100 / df.shape[0],
df.Class[df.Class == 1].count(),
)
)
print(
"Valid: {0:.3f}% {1}".format(
df.Class[df.Class == 0].count() * 100 / df.shape[0],
df.Class[df.Class == 0].count(),
)
)
y = np.expand_dims(df.Class.values, axis=1)
X = df.drop(["Class", "Time", "Amount"], axis=1).values
if n_examples > 0:
# Take first n_examples samples
X = X[:n_examples, :]
y = y[:n_examples, :]
else:
# Take all the positive samples with a number of random negatives
if n_examples < 0:
Xt = X[(y == 1).ravel()]
yt = y[(y == 1).ravel()]
indices = random.sample(range(X.shape[0]), -1 * n_examples)
X = np.append(Xt, X[indices], axis=0)
y = np.append(yt, y[indices], axis=0)
print("X.shape", X.shape, " y.shape", y.shape)
print(
"Fraud: {0:.3f}% {1}".format(
len(y[y == 1]) * 100 / X.shape[0], len(y[y == 1])
)
)
print(
"Valid: {0:.3f}% {1}".format(
len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])
)
)
Xtrain, Xtest, ytrain, ytest = train_test_split(
X,
y,
train_size=0.7,
shuffle=True,
random_state=random_state,
stratify=y,
X, y, test_size=0.2, random_state=random_state
)
return Xtrain, Xtest, ytrain, ytest
# data = load_creditcard(-5000) # Take all true samples + 5000 of the others
# data = load_creditcard(5000) # Take the first 5000 samples
data = load_creditcard() # Take all the samples
Xtrain = data[0]
Xtest = data[1]
ytrain = data[2]
ytest = data[3]
now = time.time()
print("Predicting with max_features=sqrt(n_features)")
clf = Stree(C=0.01, random_state=random_state, max_features="auto")
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")
print(clf)
print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")
print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")
print("=" * 40)
print("Predicting with max_features=n_features")
clf = Stree(C=0.01, random_state=random_state)
clf.fit(Xtrain, ytrain)
print(f"Took {time.time() - now:.2f} seconds to train")

File diff suppressed because one or more lines are too long

View File

@@ -64,7 +64,7 @@
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 33.110% 494\nValid: 66.890% 998\n"
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 33.244% 496\nValid: 66.756% 996\n"
}
],
"source": [
@@ -135,7 +135,7 @@
{
"output_type": "stream",
"name": "stdout",
"text": "Accuracy of Train without weights 0.9789272030651341\nAccuracy of Train with weights 0.9952107279693486\nAccuracy of Tests without weights 0.9598214285714286\nAccuracy of Tests with weights 0.9508928571428571\n"
"text": "Accuracy of Train without weights 0.9808429118773946\nAccuracy of Train with weights 0.9904214559386973\nAccuracy of Tests without weights 0.9441964285714286\nAccuracy of Tests with weights 0.9375\n"
}
],
"source": [
@@ -162,7 +162,7 @@
{
"output_type": "stream",
"name": "stdout",
"text": "Time: 0.27s\tKernel: linear\tAccuracy_train: 0.9683908045977011\tAccuracy_test: 0.953125\nTime: 0.09s\tKernel: rbf\tAccuracy_train: 0.9875478927203065\tAccuracy_test: 0.9598214285714286\nTime: 0.06s\tKernel: poly\tAccuracy_train: 0.9885057471264368\tAccuracy_test: 0.9464285714285714\n"
"text": "Time: 0.13s\tKernel: linear\tAccuracy_train: 0.9693486590038314\tAccuracy_test: 0.9598214285714286\nTime: 0.09s\tKernel: rbf\tAccuracy_train: 0.9923371647509579\tAccuracy_test: 0.953125\nTime: 0.09s\tKernel: poly\tAccuracy_train: 0.9913793103448276\tAccuracy_test: 0.9375\n"
}
],
"source": [
@@ -195,7 +195,7 @@
{
"output_type": "stream",
"name": "stdout",
"text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9531\nClassifier's accuracy (test) : 0.9621\nroot\nroot - Down, <cgaf> - Leaf class=1 belief= 0.983713 counts=(array([0, 1]), array([ 5, 302]))\nroot - Up, <cgaf> - Leaf class=0 belief= 0.940299 counts=(array([0, 1]), array([693, 44]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9569\nClassifier's accuracy (test) : 0.9621\nroot\nroot - Down, <cgaf> - Leaf class=1 belief= 0.990228 counts=(array([0, 1]), array([ 3, 304]))\nroot - Up, <cgaf> - Leaf class=0 belief= 0.943012 counts=(array([0, 1]), array([695, 42]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9655\nClassifier's accuracy (test) : 0.9643\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([310]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([5]))\nroot - Up, <cgaf> - Leaf class=0 belief= 0.950617 counts=(array([0, 1]), array([693, 36]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9684\nClassifier's accuracy (test) : 0.9598\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([311]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([8]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([1]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([2]))\nroot - Up - Up\nroot - Up - Up - Down, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief= 0.954039 counts=(array([0, 1]), array([685, 33]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9751\nClassifier's accuracy (test) : 0.9464\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([304]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([8]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([4]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([3]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([4]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([3]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([3]))\nroot - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([3]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([2]))\nroot - Up - Up - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief= 0.963225 counts=(array([0, 1]), array([681, 26]))\n\n**************************************************\n0.6869 secs\n"
"text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9588\nClassifier's accuracy (test) : 0.9487\nroot feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4438\nroot - Down feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0374\nroot - Down - Down, <cgaf> - Leaf class=1 belief= 0.984076 impurity=0.0313 counts=(array([0, 1]), array([ 5, 309]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([1]))\nroot - Up, <cgaf> - Leaf class=0 belief= 0.947874 impurity=0.0988 counts=(array([0, 1]), array([691, 38]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9588\nClassifier's accuracy (test) : 0.9531\nroot feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4438\nroot - Down feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0192\nroot - Down - Down, <cgaf> - Leaf class=1 belief= 0.993506 impurity=0.0129 counts=(array([0, 1]), array([ 2, 306]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([1]))\nroot - Up, <cgaf> - Leaf class=0 belief= 0.944218 impurity=0.1053 counts=(array([0, 1]), array([694, 41]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9665\nClassifier's accuracy (test) : 0.9643\nroot feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4438\nroot - Down feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0189\nroot - Down - Down, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([312]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([3]))\nroot - Up, <cgaf> - Leaf class=0 belief= 0.951989 impurity=0.0914 counts=(array([0, 1]), array([694, 35]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9665\nClassifier's accuracy (test) : 0.9621\nroot feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4438\nroot - Down feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0250\nroot - Down - Down, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([312]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([4]))\nroot - Up, <cgaf> - Leaf class=0 belief= 0.951923 impurity=0.0915 counts=(array([0, 1]), array([693, 35]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9703\nClassifier's accuracy (test) : 0.9665\nroot feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4438\nroot - Down feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0367\nroot - Down - Down, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([315]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([6]))\nroot - Up feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0846\nroot - Up - Down, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([1]))\nroot - Up - Up, <cgaf> - Leaf class=0 belief= 0.957064 impurity=0.0822 counts=(array([0, 1]), array([691, 31]))\n\n**************************************************\n0.4375 secs\n"
}
],
"source": [
@@ -227,7 +227,7 @@
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([304]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([8]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([4]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([3]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([4]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([3]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([3]))\nroot - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([3]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([2]))\nroot - Up - Up - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief= 0.963225 counts=(array([0, 1]), array([681, 26]))\n"
"text": "root feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4438\nroot - Down feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0367\nroot - Down - Down, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([315]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([6]))\nroot - Up feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0846\nroot - Up - Down, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([1]))\nroot - Up - Up, <cgaf> - Leaf class=0 belief= 0.957064 impurity=0.0822 counts=(array([0, 1]), array([691, 31]))\n"
}
],
"source": [
@@ -244,7 +244,7 @@
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([304]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([8]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([4]))\nroot - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([3]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([4]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down\nroot - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([3]))\nroot - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([3]))\nroot - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([3]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down, <pure> - Leaf class=1 belief= 1.000000 counts=(array([1]), array([2]))\nroot - Up - Up - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief= 0.963225 counts=(array([0, 1]), array([681, 26]))\n"
"text": "root feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4438\nroot - Down feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0367\nroot - Down - Down, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([315]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 impurity=0.0000 counts=(array([0]), array([6]))\nroot - Up feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.0846\nroot - Up - Down, <pure> - Leaf class=1 belief= 1.000000 impurity=0.0000 counts=(array([1]), array([1]))\nroot - Up - Up, <cgaf> - Leaf class=0 belief= 0.957064 impurity=0.0822 counts=(array([0, 1]), array([691, 31]))\n"
}
],
"source": [
@@ -268,7 +268,7 @@
{
"output_type": "stream",
"name": "stdout",
"text": "1 functools.partial(<function check_no_attributes_set_in_init at 0x1254f13b0>, 'Stree')\n2 functools.partial(<function check_estimators_dtypes at 0x1254e84d0>, 'Stree')\n3 functools.partial(<function check_fit_score_takes_y at 0x1254e83b0>, 'Stree')\n4 functools.partial(<function check_sample_weights_pandas_series at 0x1254e0cb0>, 'Stree')\n5 functools.partial(<function check_sample_weights_not_an_array at 0x1254e0dd0>, 'Stree')\n6 functools.partial(<function check_sample_weights_list at 0x1254e0ef0>, 'Stree')\n7 functools.partial(<function check_sample_weights_shape at 0x1254e2050>, 'Stree')\n8 functools.partial(<function check_sample_weights_invariance at 0x1254e2170>, 'Stree')\n9 functools.partial(<function check_estimators_fit_returns_self at 0x1254eb4d0>, 'Stree')\n10 functools.partial(<function check_estimators_fit_returns_self at 0x1254eb4d0>, 'Stree', readonly_memmap=True)\n11 functools.partial(<function check_complex_data at 0x1254e2320>, 'Stree')\n12 functools.partial(<function check_dtype_object at 0x1254e2290>, 'Stree')\n13 functools.partial(<function check_estimators_empty_data_messages at 0x1254e85f0>, 'Stree')\n14 functools.partial(<function check_pipeline_consistency at 0x1254e8290>, 'Stree')\n15 functools.partial(<function check_estimators_nan_inf at 0x1254e8710>, 'Stree')\n16 functools.partial(<function check_estimators_overwrite_params at 0x1254f1290>, 'Stree')\n17 functools.partial(<function check_estimator_sparse_data at 0x1254e0b90>, 'Stree')\n18 functools.partial(<function check_estimators_pickle at 0x1254e8950>, 'Stree')\n19 functools.partial(<function check_classifier_data_not_an_array at 0x1254f15f0>, 'Stree')\n20 functools.partial(<function check_classifiers_one_label at 0x1254eb050>, 'Stree')\n21 functools.partial(<function check_classifiers_classes at 0x1254eba70>, 'Stree')\n22 functools.partial(<function check_estimators_partial_fit_n_features at 0x1254e8a70>, 'Stree')\n23 functools.partial(<function check_classifiers_train at 0x1254eb170>, 'Stree')\n24 functools.partial(<function check_classifiers_train at 0x1254eb170>, 'Stree', readonly_memmap=True)\n25 functools.partial(<function check_classifiers_train at 0x1254eb170>, 'Stree', readonly_memmap=True, X_dtype='float32')\n26 functools.partial(<function check_classifiers_regression_target at 0x1254f40e0>, 'Stree')\n27 functools.partial(<function check_supervised_y_no_nan at 0x1254da9e0>, 'Stree')\n28 functools.partial(<function check_supervised_y_2d at 0x1254eb710>, 'Stree')\n29 functools.partial(<function check_estimators_unfitted at 0x1254eb5f0>, 'Stree')\n30 functools.partial(<function check_non_transformer_estimators_n_iter at 0x1254f1c20>, 'Stree')\n31 functools.partial(<function check_decision_proba_consistency at 0x1254f4200>, 'Stree')\n32 functools.partial(<function check_fit2d_predict1d at 0x1254e2830>, 'Stree')\n33 functools.partial(<function check_methods_subset_invariance at 0x1254e29e0>, 'Stree')\n34 functools.partial(<function check_fit2d_1sample at 0x1254e2b00>, 'Stree')\n35 functools.partial(<function check_fit2d_1feature at 0x1254e2c20>, 'Stree')\n36 functools.partial(<function check_fit1d at 0x1254e2d40>, 'Stree')\n37 functools.partial(<function check_get_params_invariance at 0x1254f1e60>, 'Stree')\n38 functools.partial(<function check_set_params at 0x1254f1f80>, 'Stree')\n39 functools.partial(<function check_dict_unchanged at 0x1254e2440>, 'Stree')\n40 functools.partial(<function check_dont_overwrite_parameters at 0x1254e2710>, 'Stree')\n41 functools.partial(<function check_fit_idempotent at 0x1254f43b0>, 'Stree')\n42 functools.partial(<function check_n_features_in at 0x1254f4440>, 'Stree')\n43 functools.partial(<function check_requires_y_none at 0x1254f44d0>, 'Stree')\n"
"text": "1 functools.partial(<function check_no_attributes_set_in_init at 0x12735b3b0>, 'Stree')\n2 functools.partial(<function check_estimators_dtypes at 0x1273514d0>, 'Stree')\n3 functools.partial(<function check_fit_score_takes_y at 0x1273513b0>, 'Stree')\n4 functools.partial(<function check_sample_weights_pandas_series at 0x12734acb0>, 'Stree')\n5 functools.partial(<function check_sample_weights_not_an_array at 0x12734add0>, 'Stree')\n6 functools.partial(<function check_sample_weights_list at 0x12734aef0>, 'Stree')\n7 functools.partial(<function check_sample_weights_shape at 0x12734d050>, 'Stree')\n8 functools.partial(<function check_sample_weights_invariance at 0x12734d170>, 'Stree')\n9 functools.partial(<function check_estimators_fit_returns_self at 0x1273564d0>, 'Stree')\n10 functools.partial(<function check_estimators_fit_returns_self at 0x1273564d0>, 'Stree', readonly_memmap=True)\n11 functools.partial(<function check_complex_data at 0x12734d320>, 'Stree')\n12 functools.partial(<function check_dtype_object at 0x12734d290>, 'Stree')\n13 functools.partial(<function check_estimators_empty_data_messages at 0x1273515f0>, 'Stree')\n14 functools.partial(<function check_pipeline_consistency at 0x127351290>, 'Stree')\n15 functools.partial(<function check_estimators_nan_inf at 0x127351710>, 'Stree')\n16 functools.partial(<function check_estimators_overwrite_params at 0x12735b290>, 'Stree')\n17 functools.partial(<function check_estimator_sparse_data at 0x12734ab90>, 'Stree')\n18 functools.partial(<function check_estimators_pickle at 0x127351950>, 'Stree')\n19 functools.partial(<function check_classifier_data_not_an_array at 0x12735b5f0>, 'Stree')\n20 functools.partial(<function check_classifiers_one_label at 0x127356050>, 'Stree')\n21 functools.partial(<function check_classifiers_classes at 0x127356a70>, 'Stree')\n22 functools.partial(<function check_estimators_partial_fit_n_features at 0x127351a70>, 'Stree')\n23 functools.partial(<function check_classifiers_train at 0x127356170>, 'Stree')\n24 functools.partial(<function check_classifiers_train at 0x127356170>, 'Stree', readonly_memmap=True)\n25 functools.partial(<function check_classifiers_train at 0x127356170>, 'Stree', readonly_memmap=True, X_dtype='float32')\n26 functools.partial(<function check_classifiers_regression_target at 0x12735f0e0>, 'Stree')\n27 functools.partial(<function check_supervised_y_no_nan at 0x1273449e0>, 'Stree')\n28 functools.partial(<function check_supervised_y_2d at 0x127356710>, 'Stree')\n29 functools.partial(<function check_estimators_unfitted at 0x1273565f0>, 'Stree')\n30 functools.partial(<function check_non_transformer_estimators_n_iter at 0x12735bc20>, 'Stree')\n31 functools.partial(<function check_decision_proba_consistency at 0x12735f200>, 'Stree')\n32 functools.partial(<function check_fit2d_predict1d at 0x12734d830>, 'Stree')\n33 functools.partial(<function check_methods_subset_invariance at 0x12734d9e0>, 'Stree')\n34 functools.partial(<function check_fit2d_1sample at 0x12734db00>, 'Stree')\n35 functools.partial(<function check_fit2d_1feature at 0x12734dc20>, 'Stree')\n36 functools.partial(<function check_fit1d at 0x12734dd40>, 'Stree')\n37 functools.partial(<function check_get_params_invariance at 0x12735be60>, 'Stree')\n38 functools.partial(<function check_set_params at 0x12735bf80>, 'Stree')\n39 functools.partial(<function check_dict_unchanged at 0x12734d440>, 'Stree')\n40 functools.partial(<function check_dont_overwrite_parameters at 0x12734d710>, 'Stree')\n41 functools.partial(<function check_fit_idempotent at 0x12735f3b0>, 'Stree')\n42 functools.partial(<function check_n_features_in at 0x12735f440>, 'Stree')\n43 functools.partial(<function check_requires_y_none at 0x12735f4d0>, 'Stree')\n"
}
],
"source": [
@@ -306,7 +306,7 @@
{
"output_type": "stream",
"name": "stdout",
"text": "== Not Weighted ===\nSVC train score ..: 0.9521072796934866\nSTree train score : 0.9578544061302682\nSVC test score ...: 0.9553571428571429\nSTree test score .: 0.9575892857142857\n==== Weighted =====\nSVC train score ..: 0.9616858237547893\nSTree train score : 0.9616858237547893\nSVC test score ...: 0.9642857142857143\nSTree test score .: 0.9598214285714286\n*SVC test score ..: 0.951413553411694\n*STree test score : 0.9480517444389333\n"
"text": "== Not Weighted ===\nSVC train score ..: 0.9578544061302682\nSTree train score : 0.960727969348659\nSVC test score ...: 0.9508928571428571\nSTree test score .: 0.9553571428571429\n==== Weighted =====\nSVC train score ..: 0.9636015325670498\nSTree train score : 0.9626436781609196\nSVC test score ...: 0.9553571428571429\nSTree test score .: 0.9553571428571429\n*SVC test score ..: 0.9447820728419238\n*STree test score : 0.9447820728419238\n"
}
],
"source": [
@@ -338,12 +338,49 @@
{
"output_type": "stream",
"name": "stdout",
"text": "root\nroot - Down\nroot - Down - Down, <cgaf> - Leaf class=1 belief= 0.969325 counts=(array([0, 1]), array([ 10, 316]))\nroot - Down - Up, <pure> - Leaf class=0 belief= 1.000000 counts=(array([0]), array([1]))\nroot - Up, <cgaf> - Leaf class=0 belief= 0.958159 counts=(array([0, 1]), array([687, 30]))\n\n"
"text": "root feaures=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) impurity=0.4438\nroot - Down, <cgaf> - Leaf class=1 belief= 0.978261 impurity=0.0425 counts=(array([0, 1]), array([ 7, 315]))\nroot - Up, <cgaf> - Leaf class=0 belief= 0.955679 impurity=0.0847 counts=(array([0, 1]), array([690, 32]))\n\n"
}
],
"source": [
"print(clf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test max_features"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "****************************************\nmax_features None = 28\nTrain score : 0.9664750957854407\nTest score .: 0.9642857142857143\nTook 0.09 seconds\n****************************************\nmax_features auto = 5\nTrain score : 0.9511494252873564\nTest score .: 0.9441964285714286\nTook 0.37 seconds\n****************************************\nmax_features log2 = 4\nTrain score : 0.935823754789272\nTest score .: 0.9330357142857143\nTook 0.10 seconds\n****************************************\nmax_features 7 = 7\nTrain score : 0.9568965517241379\nTest score .: 0.9397321428571429\nTook 3.36 seconds\n****************************************\nmax_features 0.5 = 14\nTrain score : 0.960727969348659\nTest score .: 0.9486607142857143\nTook 112.42 seconds\n****************************************\nmax_features 0.1 = 2\nTrain score : 0.8793103448275862\nTest score .: 0.8839285714285714\nTook 0.06 seconds\n****************************************\nmax_features 0.7 = 19\nTrain score : 0.9655172413793104\nTest score .: 0.9553571428571429\nTook 10.59 seconds\n"
}
],
"source": [
"for max_features in [None, \"auto\", \"log2\", 7, .5, .1, .7]:\n",
" now = time.time()\n",
" print(\"*\"*40)\n",
" clf = Stree(random_state=random_state, max_features=max_features)\n",
" clf.fit(Xtrain, ytrain)\n",
" print(f\"max_features {max_features} = {clf.max_features_}\")\n",
" print(\"Train score :\", clf.score(Xtrain, ytrain))\n",
" print(\"Test score .:\", clf.score(Xtest, ytest))\n",
" print(f\"Took {time.time() - now:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

View File

@@ -7,12 +7,16 @@ Build an oblique tree classifier based on SVM Trees
"""
import os
import numbers
import random
import warnings
from itertools import combinations
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.svm import SVC, LinearSVC
from sklearn.utils import check_consistent_length
from sklearn.utils.multiclass import check_classification_targets
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils.validation import (
check_X_y,
check_array,
@@ -27,7 +31,15 @@ class Snode:
dataset assigned to it
"""
def __init__(self, clf: SVC, X: np.ndarray, y: np.ndarray, title: str):
def __init__(
self,
clf: SVC,
X: np.ndarray,
y: np.ndarray,
features: np.array,
impurity: float,
title: str,
):
self._clf = clf
self._title = title
self._belief = 0.0
@@ -37,10 +49,21 @@ class Snode:
self._down = None
self._up = None
self._class = None
self._feature = None
self._sample_weight = None
self._features = features
self._impurity = impurity
@classmethod
def copy(cls, node: "Snode") -> "Snode":
return cls(node._clf, node._X, node._y, node._title)
return cls(
node._clf,
node._X,
node._y,
node._features,
node._impurity,
node._title,
)
def set_down(self, son):
self._down = son
@@ -81,11 +104,15 @@ class Snode:
count_values = np.unique(self._y, return_counts=True)
result = (
f"{self._title} - Leaf class={self._class} belief="
f"{self._belief: .6f} counts={count_values}"
f"{self._belief: .6f} impurity={self._impurity:.4f} "
f"counts={count_values}"
)
return result
else:
return f"{self._title}"
return (
f"{self._title} feaures={self._features} impurity="
f"{self._impurity:.4f}"
)
class Siterator:
@@ -109,6 +136,169 @@ class Siterator:
return node
class Splitter:
def __init__(
self,
clf: SVC = None,
criterion: str = None,
splitter_type: str = None,
criteria: str = None,
min_samples_split: int = None,
random_state=None,
):
self._clf = clf
self._random_state = random_state
if random_state is not None:
random.seed(random_state)
self._criterion = criterion
self._min_samples_split = min_samples_split
self._criteria = criteria
self._splitter_type = splitter_type
if clf is None:
raise ValueError(f"clf has to be a sklearn estimator, got({clf})")
if criterion not in ["gini", "entropy"]:
raise ValueError(
f"criterion must be gini or entropy got({criterion})"
)
if criteria not in ["min_distance", "max_samples"]:
raise ValueError(
f"split_criteria has to be min_distance or \
max_samples got ({criteria})"
)
if splitter_type not in ["random", "best"]:
raise ValueError(
f"splitter must be either random or best got({splitter_type})"
)
self.criterion_function = getattr(self, f"_{self._criterion}")
self.decision_criteria = getattr(self, f"_{self._criteria}")
def impurity(self, y: np.array) -> np.array:
return self.criterion_function(y)
@staticmethod
def _gini(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
return 1 - np.sum(np.square(count / np.sum(count)))
@staticmethod
def _entropy(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
proportion = count / np.sum(count)
return -np.sum(proportion * np.log2(proportion))
def information_gain(
self, labels_up: np.array, labels_dn: np.array
) -> float:
card_up = labels_up.shape[0] if labels_up is not None else 0
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
samples = card_up + card_dn
up = card_up / samples * self.criterion_function(labels_up)
dn = card_dn / samples * self.criterion_function(labels_dn)
return up + dn
def _select_best_set(
self, dataset: np.array, labels: np.array, features_sets: list
) -> list:
min_impurity = 1
selected = None
warnings.filterwarnings("ignore", category=ConvergenceWarning)
for feature_set in features_sets:
self._clf.fit(dataset[:, feature_set], labels)
node = Snode(
self._clf, dataset, labels, feature_set, 0.0, "subset"
)
self.partition(dataset, node)
y1, y2 = self.part(labels)
impurity = self.information_gain(y1, y2)
if impurity < min_impurity:
min_impurity = impurity
selected = feature_set
return selected
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
) -> np.array:
features = range(dataset.shape[1])
features_sets = list(combinations(features, max_features))
if len(features_sets) > 1:
if self._splitter_type == "random":
return features_sets[random.randint(0, len(features_sets) - 1)]
else:
return self._select_best_set(dataset, labels, features_sets)
else:
return features_sets[0]
def get_subspace(
self, dataset: np.array, labels: np.array, max_features: int
) -> list:
"""Return the best subspace to make a split
"""
indices = self._get_subspaces_set(dataset, labels, max_features)
return dataset[:, indices], indices
@staticmethod
def _min_distance(data: np.array, _) -> np.array:
# chooses the lowest distance of every sample
indices = np.argmin(np.abs(data), axis=1)
return np.array(
[data[x, y] for x, y in zip(range(len(data[:, 0])), indices)]
)
@staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array:
# select the class with max number of samples
_, samples = np.unique(y, return_counts=True)
selected = np.argmax(samples)
return data[:, selected]
def partition(self, samples: np.array, node: Snode):
"""Set the criteria to split arrays
"""
data = self._distances(node, samples)
if data.shape[0] < self._min_samples_split:
self._down = np.ones((data.shape[0]), dtype=bool)
return
if data.ndim > 1:
# split criteria for multiclass
data = self.decision_criteria(data, node._y)
self._down = data > 0
@staticmethod
def _distances(node: Snode, data: np.ndarray) -> np.array:
"""Compute distances of the samples to the hyperplane of the node
:param node: node containing the svm classifier
:type node: Snode
:param data: samples to find out distance to hyperplane
:type data: np.ndarray
:return: array of shape (m, 1) with the distances of every sample to
the hyperplane of the node
:rtype: np.array
"""
return node._clf.decision_function(data[:, node._features])
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (down) and its complement
:param origin: dataset to split
:type origin: np.array
:param down: indices to use to split array
:type down: np.array
:return: list with two splits of the array
:rtype: list
"""
up = ~self._down
return [
origin[up] if any(up) else None,
origin[self._down] if any(self._down) else None,
]
class Stree(BaseEstimator, ClassifierMixin):
"""Estimator that is based on binary trees of svm nodes
can deal with sample_weights in predict, used in boosting sklearn methods
@@ -127,8 +317,11 @@ class Stree(BaseEstimator, ClassifierMixin):
tol: float = 1e-4,
degree: int = 3,
gamma="scale",
split_criteria="max_samples",
split_criteria: str = "max_samples",
criterion: str = "gini",
min_samples_split: int = 0,
max_features=None,
splitter: str = "random",
):
self.max_iter = max_iter
self.C = C
@@ -140,6 +333,9 @@ class Stree(BaseEstimator, ClassifierMixin):
self.degree = degree
self.min_samples_split = min_samples_split
self.split_criteria = split_criteria
self.max_features = max_features
self.criterion = criterion
self.splitter = splitter
def _more_tags(self) -> dict:
"""Required by sklearn to supply features of the classifier
@@ -149,68 +345,6 @@ class Stree(BaseEstimator, ClassifierMixin):
"""
return {"requires_y": True}
def _split_array(self, origin: np.array, down: np.array) -> list:
"""Split an array in two based on indices (down) and its complement
:param origin: dataset to split
:type origin: np.array
:param down: indices to use to split array
:type down: np.array
:return: list with two splits of the array
:rtype: list
"""
up = ~down
return (
origin[up] if any(up) else None,
origin[down] if any(down) else None,
)
def _distances(self, node: Snode, data: np.ndarray) -> np.array:
"""Compute distances of the samples to the hyperplane of the node
:param node: node containing the svm classifier
:type node: Snode
:param data: samples to find out distance to hyperplane
:type data: np.ndarray
:return: array of shape (m, 1) with the distances of every sample to
the hyperplane of the node
:rtype: np.array
"""
return node._clf.decision_function(data)
def _min_distance(self, data: np.array, _) -> np.array:
# chooses the lowest distance of every sample
indices = np.argmin(np.abs(data), axis=1)
return np.array(
[data[x, y] for x, y in zip(range(len(data[:, 0])), indices)]
)
def _max_samples(self, data: np.array, y: np.array) -> np.array:
# select the class with max number of samples
_, samples = np.unique(y, return_counts=True)
selected = np.argmax(samples)
return data[:, selected]
def _split_criteria(self, data: np.array, node: Snode) -> np.array:
"""Set the criteria to split arrays
:param data: distances of samples to hyperplanes shape (m, nclasses)
if nclasses > 2 else (m,)
:type data: np.array
:param node: node containing the svm classifier
:type node: Snode
:return: array of booleans of samples under or above zero
:rtype: np.array
"""
if data.shape[0] < self.min_samples_split:
return np.ones((data.shape[0]), dtype=bool)
if data.ndim > 1:
# split criteria for multiclass
data = getattr(self, f"_{self.split_criteria}")(data, node._y)
res = data > 0
return res
def fit(
self, X: np.ndarray, y: np.ndarray, sample_weight: np.array = None
) -> "Stree":
@@ -242,22 +376,29 @@ class Stree(BaseEstimator, ClassifierMixin):
f"Maximum depth has to be greater than 1... got (max_depth=\
{self.max_depth})"
)
if self.split_criteria not in ["min_distance", "max_samples"]:
raise ValueError(
f"split_criteria has to be min_distance or \
max_samples got ({self.split_criteria})"
)
check_classification_targets(y)
X, y = check_X_y(X, y)
sample_weight = _check_sample_weight(sample_weight, X)
check_classification_targets(y)
# Initialize computed parameters
self.splitter_ = Splitter(
clf=self._build_clf(),
criterion=self.criterion,
splitter_type=self.splitter,
criteria=self.split_criteria,
random_state=self.random_state,
min_samples_split=self.min_samples_split,
)
if self.random_state is not None:
random.seed(self.random_state)
self.classes_, y = np.unique(y, return_inverse=True)
self.n_classes_ = self.classes_.shape[0]
self.n_iter_ = self.max_iter
self.depth_ = 0
self.n_features_ = X.shape[1]
self.n_features_in_ = X.shape[1]
self.max_features_ = self._initialize_max_features()
self.tree_ = self.train(X, y, sample_weight, 1, "root")
self._build_predictor()
return self
@@ -291,19 +432,35 @@ class Stree(BaseEstimator, ClassifierMixin):
return None
if np.unique(y).shape[0] == 1:
# only 1 class => pure dataset
return Snode(None, X, y, title + ", <pure>")
return Snode(
clf=None,
X=X,
y=y,
features=X.shape[1],
impurity=0.0,
title=title + ", <pure>",
)
# Train the model
clf = self._build_clf()
clf.fit(X, y, sample_weight=sample_weight)
node = Snode(clf, X, y, title)
Xs, features = self.splitter_.get_subspace(X, y, self.max_features_)
clf.fit(Xs, y, sample_weight=sample_weight)
impurity = self.splitter_.impurity(y)
node = Snode(clf, X, y, features, impurity, title)
self.depth_ = max(depth, self.depth_)
down = self._split_criteria(self._distances(node, X), node)
X_U, X_D = self._split_array(X, down)
y_u, y_d = self._split_array(y, down)
sw_u, sw_d = self._split_array(sample_weight, down)
self.splitter_.partition(X, node)
X_U, X_D = self.splitter_.part(X)
y_u, y_d = self.splitter_.part(y)
sw_u, sw_d = self.splitter_.part(sample_weight)
if X_U is None or X_D is None:
# didn't part anything
return Snode(clf, X, y, title + ", <cgaf>")
return Snode(
clf,
X,
y,
features=X.shape[1],
impurity=impurity,
title=title + ", <cgaf>",
)
node.set_up(self.train(X_U, y_u, sw_u, depth + 1, title + " - Up"))
node.set_down(self.train(X_D, y_d, sw_d, depth + 1, title + " - Down"))
return node
@@ -342,7 +499,8 @@ class Stree(BaseEstimator, ClassifierMixin):
)
)
def _reorder_results(self, y: np.array, indices: np.array) -> np.array:
@staticmethod
def _reorder_results(y: np.array, indices: np.array) -> np.array:
"""Reorder an array based on the array of indices passed
:param y: data untidy
@@ -377,9 +535,9 @@ class Stree(BaseEstimator, ClassifierMixin):
# set a class for every sample in dataset
prediction = np.full((xp.shape[0], 1), node._class)
return prediction, indices
down = self._split_criteria(self._distances(node, xp), node)
x_u, x_d = self._split_array(xp, down)
i_u, i_d = self._split_array(indices, down)
self.splitter_.partition(xp, node)
x_u, x_d = self.splitter_.part(xp)
i_u, i_d = self.splitter_.part(indices)
prx_u, prin_u = predict_class(x_u, i_u, node.get_up())
prx_d, prin_d = predict_class(x_d, i_d, node.get_down())
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
@@ -388,6 +546,11 @@ class Stree(BaseEstimator, ClassifierMixin):
check_is_fitted(self, ["tree_"])
# Input validation
X = check_array(X)
if X.shape[1] != self.n_features_:
raise ValueError(
f"Expected {self.n_features_} features but got "
f"({X.shape[1]})"
)
# setup prediction & make it happen
indices = np.arange(X.shape[0])
result = (
@@ -418,7 +581,7 @@ class Stree(BaseEstimator, ClassifierMixin):
X, y = check_X_y(X, y)
y_pred = self.predict(X).reshape(y.shape)
# Compute accuracy for each possible representation
y_type, y_true, y_pred = _check_targets(y, y_pred)
_, y_true, y_pred = _check_targets(y, y_pred)
check_consistent_length(y_true, y_pred, sample_weight)
score = y_true == y_pred
return _weighted_sum(score, sample_weight, normalize=True)
@@ -446,3 +609,34 @@ class Stree(BaseEstimator, ClassifierMixin):
for i in self:
output += str(i) + "\n"
return output
def _initialize_max_features(self) -> int:
if isinstance(self.max_features, str):
if self.max_features == "auto":
max_features = max(1, int(np.sqrt(self.n_features_)))
elif self.max_features == "sqrt":
max_features = max(1, int(np.sqrt(self.n_features_)))
elif self.max_features == "log2":
max_features = max(1, int(np.log2(self.n_features_)))
else:
raise ValueError(
"Invalid value for max_features. "
"Allowed string values are 'auto', "
"'sqrt' or 'log2'."
)
elif self.max_features is None:
max_features = self.n_features_
elif isinstance(self.max_features, numbers.Integral):
max_features = self.max_features
else: # float
if self.max_features > 0.0:
max_features = max(
1, int(self.max_features * self.n_features_)
)
else:
raise ValueError(
"Invalid value for max_features."
"Allowed float must be in range (0, 1] "
f"got ({self.max_features})"
)
return max_features

View File

@@ -1,3 +1,3 @@
from .Strees import Stree, Snode, Siterator
from .Strees import Stree, Snode, Siterator, Splitter
__all__ = ["Stree", "Snode", "Siterator"]
__all__ = ["Stree", "Snode", "Siterator", "Splitter"]

View File

@@ -4,14 +4,14 @@ import unittest
import numpy as np
from stree import Stree, Snode
from .utils import get_dataset
from .utils import load_dataset
class Snode_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
self._clf = Stree(random_state=self._random_state)
self._clf.fit(*get_dataset(self._random_state))
self._clf.fit(*load_dataset(self._random_state))
super().__init__(*args, **kwargs)
@classmethod
@@ -63,27 +63,27 @@ class Snode_test(unittest.TestCase):
run_tree(self._clf.tree_)
def test_make_predictor_on_leaf(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], "test")
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
test.make_predictor()
self.assertEqual(1, test._class)
self.assertEqual(0.75, test._belief)
def test_make_predictor_on_not_leaf(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], "test")
test.set_up(Snode(None, [1], [1], "another_test"))
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
test.set_up(Snode(None, [1], [1], [], 0.0, "another_test"))
test.make_predictor()
self.assertIsNone(test._class)
self.assertEqual(0, test._belief)
def test_make_predictor_on_leaf_bogus_data(self):
test = Snode(None, [1, 2, 3, 4], [], "test")
test = Snode(None, [1, 2, 3, 4], [], [], 0.0, "test")
test.make_predictor()
self.assertIsNone(test._class)
def test_copy_node(self):
px = [1, 2, 3, 4]
py = [1]
test = Snode(Stree(), px, py, "test")
test = Snode(Stree(), px, py, [], 0.0, "test")
computed = Snode.copy(test)
self.assertListEqual(computed._X, px)
self.assertListEqual(computed._y, py)

View File

@@ -0,0 +1,142 @@
import os
import unittest
import numpy as np
from sklearn.svm import LinearSVC
from stree import Splitter
from .utils import load_dataset
class Splitter_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
super().__init__(*args, **kwargs)
@staticmethod
def build(
clf=LinearSVC(),
min_samples_split=0,
splitter_type="random",
criterion="gini",
criteria="min_distance",
random_state=None,
):
return Splitter(
clf=clf,
min_samples_split=min_samples_split,
splitter_type=splitter_type,
criterion=criterion,
criteria=criteria,
random_state=random_state,
)
@classmethod
def setUp(cls):
os.environ["TESTING"] = "1"
def test_init(self):
with self.assertRaises(ValueError):
self.build(criterion="duck")
with self.assertRaises(ValueError):
self.build(splitter_type="duck")
with self.assertRaises(ValueError):
self.build(criteria="duck")
with self.assertRaises(ValueError):
self.build(clf=None)
for splitter_type in ["best", "random"]:
for criterion in ["gini", "entropy"]:
for criteria in ["min_distance", "max_samples"]:
tcl = self.build(
splitter_type=splitter_type,
criterion=criterion,
criteria=criteria,
)
self.assertEqual(splitter_type, tcl._splitter_type)
self.assertEqual(criterion, tcl._criterion)
self.assertEqual(criteria, tcl._criteria)
def test_gini(self):
y = [0, 1, 1, 1, 1, 1, 0, 0, 0, 1]
expected = 0.48
self.assertEqual(expected, Splitter._gini(y))
tcl = self.build(criterion="gini")
self.assertEqual(expected, tcl.criterion_function(y))
def test_entropy(self):
y = [0, 1, 1, 1, 1, 1, 0, 0, 0, 1]
expected = 0.9709505944546686
self.assertAlmostEqual(expected, Splitter._entropy(y))
tcl = self.build(criterion="entropy")
self.assertEqual(expected, tcl.criterion_function(y))
def test_information_gain(self):
yu = np.array([0, 1, 1, 1, 1, 1])
yd = np.array([0, 0, 0, 1])
values_expected = [
("gini", 0.31666666666666665),
("entropy", 0.7145247027726656),
]
for criterion, expected in values_expected:
tcl = self.build(criterion=criterion)
computed = tcl.information_gain(yu, yd)
self.assertAlmostEqual(expected, computed)
def test_max_samples(self):
tcl = self.build(criteria="max_samples")
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
]
)
expected = np.array([0.2, 0.01, -0.9, 0.2])
y = [1, 2, 1, 0]
computed = tcl._max_samples(data, y)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
def test_min_distance(self):
tcl = self.build()
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
]
)
expected = np.array([-0.1, 0.01, 0.5, 0.1])
computed = tcl._min_distance(data, None)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
def test_splitter_parameter(self):
expected_values = [
[1, 7, 9],
[1, 7, 9],
[1, 7, 9],
[1, 7, 9],
[0, 5, 6],
[0, 5, 6],
[0, 5, 6],
[0, 5, 6],
]
X, y = load_dataset(self._random_state, n_features=12)
for splitter_type in ["best", "random"]:
for criterion in ["gini", "entropy"]:
for criteria in ["min_distance", "max_samples"]:
tcl = self.build(
splitter_type=splitter_type,
criterion=criterion,
criteria=criteria,
random_state=self._random_state,
)
expected = expected_values.pop(0)
dataset, computed = tcl.get_subspace(X, y, max_features=3)
self.assertListEqual(expected, list(computed))
self.assertListEqual(
X[:, computed].tolist(), dataset.tolist()
)

View File

@@ -5,7 +5,7 @@ import numpy as np
from sklearn.datasets import load_iris
from stree import Stree, Snode
from .utils import get_dataset
from .utils import load_dataset
class Stree_test(unittest.TestCase):
@@ -64,12 +64,11 @@ class Stree_test(unittest.TestCase):
warnings.filterwarnings("ignore")
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
clf.fit(*get_dataset(self._random_state))
clf.fit(*load_dataset(self._random_state))
self._check_tree(clf.tree_)
def _find_out(
self, px: np.array, x_original: np.array, y_original
) -> list:
@staticmethod
def _find_out(px: np.array, x_original: np.array, y_original) -> list:
"""Find the original values of y for a given array of samples
Arguments:
@@ -88,7 +87,7 @@ class Stree_test(unittest.TestCase):
return res
def test_single_prediction(self):
X, y = get_dataset(self._random_state)
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
yp = clf.fit(X, y).predict((X[0, :].reshape(-1, X.shape[1])))
@@ -97,14 +96,14 @@ class Stree_test(unittest.TestCase):
def test_multiple_prediction(self):
# First 27 elements the predictions are the same as the truth
num = 27
X, y = get_dataset(self._random_state)
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
yp = clf.fit(X, y).predict(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp.tolist())
def test_score(self):
X, y = get_dataset(self._random_state)
X, y = load_dataset(self._random_state)
accuracies = [
0.9506666666666667,
0.9606666666666667,
@@ -123,7 +122,7 @@ class Stree_test(unittest.TestCase):
"""Check if predicting sample by sample gives the same result as
predicting all samples at once
"""
X, y = get_dataset(self._random_state)
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
clf.fit(X, y)
@@ -141,29 +140,30 @@ class Stree_test(unittest.TestCase):
"""Check preorder iterator
"""
expected = [
"root",
"root - Down",
"root - Down - Down, <cgaf> - Leaf class=1 belief= 0.975989 counts"
"=(array([0, 1]), array([ 17, 691]))",
"root - Down - Up",
"root feaures=(0, 1, 2) impurity=0.5000",
"root - Down feaures=(0, 1, 2) impurity=0.0671",
"root - Down - Down, <cgaf> - Leaf class=1 belief= 0.975989 "
"impurity=0.0469 counts=(array([0, 1]), array([ 17, 691]))",
"root - Down - Up feaures=(0, 1, 2) impurity=0.3967",
"root - Down - Up - Down, <cgaf> - Leaf class=1 belief= 0.750000 "
"counts=(array([0, 1]), array([1, 3]))",
"impurity=0.3750 counts=(array([0, 1]), array([1, 3]))",
"root - Down - Up - Up, <pure> - Leaf class=0 belief= 1.000000 "
"counts=(array([0]), array([7]))",
"root - Up, <cgaf> - Leaf class=0 belief= 0.928297 counts=(array("
"[0, 1]), array([725, 56]))",
"impurity=0.0000 counts=(array([0]), array([7]))",
"root - Up, <cgaf> - Leaf class=0 belief= 0.928297 impurity=0.1331"
" counts=(array([0, 1]), array([725, 56]))",
]
computed = []
expected_string = ""
clf = Stree(kernel="linear", random_state=self._random_state)
clf.fit(*get_dataset(self._random_state))
clf.fit(*load_dataset(self._random_state))
for node in clf:
computed.append(str(node))
expected_string += str(node) + "\n"
self.assertListEqual(expected, computed)
self.assertEqual(expected_string, str(clf))
def test_is_a_sklearn_classifier(self):
@staticmethod
def test_is_a_sklearn_classifier():
import warnings
from sklearn.exceptions import ConvergenceWarning
@@ -176,12 +176,12 @@ class Stree_test(unittest.TestCase):
def test_exception_if_C_is_negative(self):
tclf = Stree(C=-1)
with self.assertRaises(ValueError):
tclf.fit(*get_dataset(self._random_state))
tclf.fit(*load_dataset(self._random_state))
def test_exception_if_bogus_split_criteria(self):
tclf = Stree(split_criteria="duck")
with self.assertRaises(ValueError):
tclf.fit(*get_dataset(self._random_state))
tclf.fit(*load_dataset(self._random_state))
def test_check_max_depth_is_positive_or_None(self):
tcl = Stree()
@@ -190,13 +190,13 @@ class Stree_test(unittest.TestCase):
self.assertGreaterEqual(1, tcl.max_depth)
with self.assertRaises(ValueError):
tcl = Stree(max_depth=-1)
tcl.fit(*get_dataset(self._random_state))
tcl.fit(*load_dataset(self._random_state))
def test_check_max_depth(self):
depths = (3, 4)
for depth in depths:
tcl = Stree(random_state=self._random_state, max_depth=depth)
tcl.fit(*get_dataset(self._random_state))
tcl.fit(*load_dataset(self._random_state))
self.assertEqual(depth, tcl.depth_)
def test_unfitted_tree_is_iterable(self):
@@ -204,13 +204,11 @@ class Stree_test(unittest.TestCase):
self.assertEqual(0, len(list(tcl)))
def test_min_samples_split(self):
tcl_split = Stree(min_samples_split=3)
tcl_nosplit = Stree(min_samples_split=4)
dataset = [[1], [2], [3]], [1, 1, 0]
tcl_split.fit(*dataset)
tcl_split = Stree(min_samples_split=3).fit(*dataset)
self.assertIsNotNone(tcl_split.tree_.get_down())
self.assertIsNotNone(tcl_split.tree_.get_up())
tcl_nosplit.fit(*dataset)
tcl_nosplit = Stree(min_samples_split=4).fit(*dataset)
self.assertIsNone(tcl_nosplit.tree_.get_down())
self.assertIsNone(tcl_nosplit.tree_.get_up())
@@ -230,7 +228,7 @@ class Stree_test(unittest.TestCase):
def test_muticlass_dataset(self):
datasets = {
"Synt": get_dataset(random_state=self._random_state, n_classes=3),
"Synt": load_dataset(random_state=self._random_state, n_classes=3),
"Iris": load_iris(return_X_y=True),
}
outcomes = {
@@ -265,33 +263,72 @@ class Stree_test(unittest.TestCase):
outcome = outcomes[name][f"{criteria} {kernel}"]
self.assertAlmostEqual(outcome, clf.score(px, py))
def test_min_distance(self):
clf = Stree()
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
def test_max_features(self):
n_features = 16
expected_values = [
("auto", 4),
("log2", 4),
("sqrt", 4),
(0.5, 8),
(3, 3),
(None, 16),
]
)
expected = np.array([-0.1, 0.01, 0.5, 0.1])
computed = clf._min_distance(data, None)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
clf = Stree()
clf.n_features_ = n_features
for max_features, expected in expected_values:
clf.set_params(**dict(max_features=max_features))
computed = clf._initialize_max_features()
self.assertEqual(expected, computed)
# Check bogus max_features
values = ["duck", -0.1, 0.0]
for max_features in values:
clf.set_params(**dict(max_features=max_features))
with self.assertRaises(ValueError):
_ = clf._initialize_max_features()
def test_max_samples(self):
clf = Stree()
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
def test_get_subspaces(self):
dataset = np.random.random((10, 16))
y = np.random.randint(0, 2, 10)
expected_values = [
("auto", 4),
("log2", 4),
("sqrt", 4),
(0.5, 8),
(3, 3),
(None, 16),
]
clf = Stree()
for max_features, expected in expected_values:
clf.set_params(**dict(max_features=max_features))
clf.fit(dataset, y)
computed, indices = clf.splitter_.get_subspace(
dataset, y, clf.max_features_
)
expected = np.array([0.2, 0.01, -0.9, 0.2])
y = [1, 2, 1, 0]
computed = clf._max_samples(data, y)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
self.assertListEqual(
dataset[:, indices].tolist(), computed.tolist()
)
self.assertEqual(expected, len(indices))
def test_bogus_criterion(self):
clf = Stree(criterion="duck")
with self.assertRaises(ValueError):
clf.fit(*load_dataset())
def test_predict_feature_dimensions(self):
X = np.random.rand(10, 5)
y = np.random.randint(0, 2, 10)
clf = Stree()
clf.fit(X, y)
with self.assertRaises(ValueError):
clf.predict(X[:, :3])
def test_score_max_features(self):
X, y = load_dataset(self._random_state)
clf = Stree(random_state=self._random_state, max_features=2)
clf.fit(X, y)
self.assertAlmostEqual(0.9426666666666667, clf.score(X, y))
def test_bogus_splitter_parameter(self):
clf = Stree(splitter="duck")
with self.assertRaises(ValueError):
clf.fit(*load_dataset())

View File

@@ -1,4 +1,5 @@
from .Stree_test import Stree_test
from .Snode_test import Snode_test
from .Splitter_test import Splitter_test
__all__ = ["Stree_test", "Snode_test"]
__all__ = ["Stree_test", "Snode_test", "Splitter_test"]

View File

@@ -1,10 +1,10 @@
from sklearn.datasets import make_classification
def get_dataset(random_state=0, n_classes=2):
def load_dataset(random_state=0, n_classes=2, n_features=3):
X, y = make_classification(
n_samples=1500,
n_features=3,
n_features=n_features,
n_informative=3,
n_redundant=0,
n_repeated=0,