mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-17 00:16:07 +00:00
Update doc to separate classes in api
This commit is contained in:
@@ -49,6 +49,7 @@ Can be found in
|
|||||||
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
|
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
|
||||||
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
|
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
|
||||||
| | splitter | {"best", "random"} | random | The strategy used to choose the feature set at each node (only used if max_features != num_features). <br>Supported strategies are “best” to choose the best feature set and “random” to choose a random combination. <br>The algorithm generates 5 candidates at most to choose from in both strategies. |
|
| | splitter | {"best", "random"} | random | The strategy used to choose the feature set at each node (only used if max_features != num_features). <br>Supported strategies are “best” to choose the best feature set and “random” to choose a random combination. <br>The algorithm generates 5 candidates at most to choose from in both strategies. |
|
||||||
|
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
|
||||||
|
|
||||||
\* Hyperparameter used by the support vector classifier of every node
|
\* Hyperparameter used by the support vector classifier of every node
|
||||||
|
|
||||||
|
9
docs/source/api/Siterator.rst
Normal file
9
docs/source/api/Siterator.rst
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
Siterator
|
||||||
|
=========
|
||||||
|
|
||||||
|
.. automodule:: stree
|
||||||
|
.. autoclass:: Siterator
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:private-members:
|
||||||
|
:show-inheritance:
|
9
docs/source/api/Snode.rst
Normal file
9
docs/source/api/Snode.rst
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
Snode
|
||||||
|
=====
|
||||||
|
|
||||||
|
.. automodule:: stree
|
||||||
|
.. autoclass:: Snode
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:private-members:
|
||||||
|
:show-inheritance:
|
9
docs/source/api/Splitter.rst
Normal file
9
docs/source/api/Splitter.rst
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
Splitter
|
||||||
|
========
|
||||||
|
|
||||||
|
.. automodule:: stree
|
||||||
|
.. autoclass:: Splitter
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:private-members:
|
||||||
|
:show-inheritance:
|
9
docs/source/api/Stree.rst
Normal file
9
docs/source/api/Stree.rst
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
Stree
|
||||||
|
=====
|
||||||
|
|
||||||
|
.. automodule:: stree
|
||||||
|
.. autoclass:: Stree
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:private-members:
|
||||||
|
:show-inheritance:
|
11
docs/source/api/index.rst
Normal file
11
docs/source/api/index.rst
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
API index
|
||||||
|
=========
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 2
|
||||||
|
:caption: Contents:
|
||||||
|
|
||||||
|
Stree
|
||||||
|
Splitter
|
||||||
|
Snode
|
||||||
|
Siterator
|
@@ -15,6 +15,7 @@
|
|||||||
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
|
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
|
||||||
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
|
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
|
||||||
| | splitter | {"best", "random"} | random | The strategy used to choose the feature set at each node (only used if max_features != num_features). <br>Supported strategies are “best” to choose the best feature set and “random” to choose a random combination. <br>The algorithm generates 5 candidates at most to choose from in both strategies. |
|
| | splitter | {"best", "random"} | random | The strategy used to choose the feature set at each node (only used if max_features != num_features). <br>Supported strategies are “best” to choose the best feature set and “random” to choose a random combination. <br>The algorithm generates 5 candidates at most to choose from in both strategies. |
|
||||||
|
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
|
||||||
|
|
||||||
\* Hyperparameter used by the support vector classifier of every node
|
\* Hyperparameter used by the support vector classifier of every node
|
||||||
|
|
||||||
|
@@ -1,18 +1,15 @@
|
|||||||
.. STree documentation master file, created by
|
|
||||||
sphinx-quickstart on Sun Apr 18 12:24:32 2021.
|
|
||||||
You can adapt this file completely to your liking, but it should at least
|
|
||||||
contain the root `toctree` directive.
|
|
||||||
|
|
||||||
Welcome to STree's documentation!
|
Welcome to STree's documentation!
|
||||||
=================================
|
=================================
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:maxdepth: 2
|
|
||||||
:caption: Contents:
|
:caption: Contents:
|
||||||
|
:titlesonly:
|
||||||
|
|
||||||
|
|
||||||
stree
|
stree
|
||||||
install
|
install
|
||||||
hyperparameters
|
hyperparameters
|
||||||
example
|
example
|
||||||
package
|
api/index
|
||||||
* :ref:`genindex`
|
|
||||||
|
* :ref:`genindex`
|
@@ -3,7 +3,7 @@ Install
|
|||||||
|
|
||||||
The main stable release
|
The main stable release
|
||||||
|
|
||||||
``pip install stree```
|
``pip install stree``
|
||||||
|
|
||||||
or the last development branch
|
or the last development branch
|
||||||
|
|
||||||
|
@@ -1,8 +0,0 @@
|
|||||||
STree package
|
|
||||||
=============
|
|
||||||
|
|
||||||
.. automodule:: stree
|
|
||||||
:members: Stree, Snode, Splitter, Siterator
|
|
||||||
:undoc-members:
|
|
||||||
:private-members:
|
|
||||||
:show-inheritance:
|
|
Reference in New Issue
Block a user