Remove travis ci and set codecov percentage

This commit is contained in:
2020-06-06 19:47:00 +02:00
parent 37577849db
commit 8ba9b1b6a1
4 changed files with 4 additions and 39 deletions

View File

@@ -1,20 +0,0 @@
language: python
os: linux
dist: xenial
install:
- pip install -r requirements.txt
- pip install --upgrade codecov coverage black flake8
notifications:
email:
recipients:
- ricardo.montanana@alu.uclm.es
on_success: never # default: change
on_failure: always # default: always
# command to run tests
script:
- black --check --diff stree
- flake8 --count stree
- coverage run -m unittest -v stree.tests
after_success:
- codecov
- bash <(curl -Ls https://coverage.codacy.com/get.sh)

View File

@@ -1,6 +1,7 @@
[![Build Status](https://travis-ci.com/Doctorado-ML/STree.svg?branch=master)](https://travis-ci.com/Doctorado-ML/STree)
[![Codeship Status for Doctorado-ML/STree](https://app.codeship.com/projects/8b2bd350-8a1b-0138-5f2c-3ad36f3eb318/status?branch=master)](https://app.codeship.com/projects/399170)
[![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=Doctorado-ML/STree&amp;utm_campaign=Badge_Grade)
# Stree
Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn LinearSVC models.Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.

View File

@@ -2,10 +2,10 @@ overage:
status:
project:
default:
target: auto
target: 90%
patch:
default:
target: auto
target: 90%
comment:
layout: "reach, diff, flags, files"
behavior: default

View File

@@ -41,22 +41,6 @@ class Stree_test(unittest.TestCase):
except KeyError:
pass
def _get_Xy(self):
X, y = make_classification(
n_samples=1500,
n_features=3,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=2,
n_clusters_per_class=2,
class_sep=1.5,
flip_y=0,
weights=[0.5, 0.5],
random_state=self._random_state,
)
return X, y
def _check_tree(self, node: Snode):
"""Check recursively that the nodes that are not leaves have the
correct number of labels and its sons have the right number of elements