mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-15 23:46:02 +00:00
Remove travis ci and set codecov percentage
This commit is contained in:
20
.travis.yml
20
.travis.yml
@@ -1,20 +0,0 @@
|
||||
language: python
|
||||
os: linux
|
||||
dist: xenial
|
||||
install:
|
||||
- pip install -r requirements.txt
|
||||
- pip install --upgrade codecov coverage black flake8
|
||||
notifications:
|
||||
email:
|
||||
recipients:
|
||||
- ricardo.montanana@alu.uclm.es
|
||||
on_success: never # default: change
|
||||
on_failure: always # default: always
|
||||
# command to run tests
|
||||
script:
|
||||
- black --check --diff stree
|
||||
- flake8 --count stree
|
||||
- coverage run -m unittest -v stree.tests
|
||||
after_success:
|
||||
- codecov
|
||||
- bash <(curl -Ls https://coverage.codacy.com/get.sh)
|
@@ -1,6 +1,7 @@
|
||||
[](https://travis-ci.com/Doctorado-ML/STree)
|
||||
[](https://app.codeship.com/projects/399170)
|
||||
[](https://codecov.io/gh/doctorado-ml/stree)
|
||||
[](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
|
||||
|
||||
# Stree
|
||||
|
||||
Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn LinearSVC models.Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.
|
||||
|
@@ -2,10 +2,10 @@ overage:
|
||||
status:
|
||||
project:
|
||||
default:
|
||||
target: auto
|
||||
target: 90%
|
||||
patch:
|
||||
default:
|
||||
target: auto
|
||||
target: 90%
|
||||
comment:
|
||||
layout: "reach, diff, flags, files"
|
||||
behavior: default
|
||||
|
@@ -41,22 +41,6 @@ class Stree_test(unittest.TestCase):
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
def _get_Xy(self):
|
||||
X, y = make_classification(
|
||||
n_samples=1500,
|
||||
n_features=3,
|
||||
n_informative=3,
|
||||
n_redundant=0,
|
||||
n_repeated=0,
|
||||
n_classes=2,
|
||||
n_clusters_per_class=2,
|
||||
class_sep=1.5,
|
||||
flip_y=0,
|
||||
weights=[0.5, 0.5],
|
||||
random_state=self._random_state,
|
||||
)
|
||||
return X, y
|
||||
|
||||
def _check_tree(self, node: Snode):
|
||||
"""Check recursively that the nodes that are not leaves have the
|
||||
correct number of labels and its sons have the right number of elements
|
||||
|
Reference in New Issue
Block a user