Make project python package friendly

- Add setup.py
- Move classes to module files
- Move tests folder inside module folder
This commit is contained in:
2020-05-23 23:40:33 +02:00
parent ac1483ae1d
commit 77f10281c1
19 changed files with 383 additions and 470 deletions

311
stree/Strees.py Normal file
View File

@@ -0,0 +1,311 @@
'''
__author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
__license__ = "MIT"
__version__ = "0.9"
Build an oblique tree classifier based on SVM Trees
Uses LinearSVC
'''
import typing
import os
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.svm import LinearSVC
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
class Snode:
def __init__(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray, title: str):
self._clf = clf
self._vector = None if clf is None else clf.coef_
self._interceptor = 0. if clf is None else clf.intercept_
self._title = title
self._belief = 0. # belief of the prediction in a leaf node based on samples
# Only store dataset in Testing
self._X = X if os.environ.get('TESTING', 'NS') != 'NS' else None
self._y = y
self._down = None
self._up = None
self._class = None
@classmethod
def copy(cls, node: 'Snode') -> 'Snode':
return cls(node._clf, node._X, node._y, node._title)
def set_down(self, son):
self._down = son
def set_up(self, son):
self._up = son
def is_leaf(self) -> bool:
return self._up is None and self._down is None
def get_down(self) -> 'Snode':
return self._down
def get_up(self) -> 'Snode':
return self._up
def make_predictor(self):
"""Compute the class of the predictor and its belief based on the subdataset of the node
only if it is a leaf
"""
if not self.is_leaf():
return
classes, card = np.unique(self._y, return_counts=True)
if len(classes) > 1:
max_card = max(card)
min_card = min(card)
try:
self._belief = max_card / (max_card + min_card)
except:
self._belief = 0.
self._class = classes[card == max_card][0]
else:
self._belief = 1
self._class = classes[0]
def __str__(self) -> str:
if self.is_leaf():
return f"{self._title} - Leaf class={self._class} belief={self._belief:.6f} counts={np.unique(self._y, return_counts=True)}"
else:
return f"{self._title}"
class Siterator:
"""Stree preorder iterator
"""
def __init__(self, tree: Snode):
self._stack = []
self._push(tree)
def __iter__(self):
return self
def _push(self, node: Snode):
if node is not None:
self._stack.append(node)
def __next__(self) -> Snode:
if len(self._stack) == 0:
raise StopIteration()
node = self._stack.pop()
self._push(node.get_up())
self._push(node.get_down())
return node
class Stree(BaseEstimator, ClassifierMixin):
"""
"""
def __init__(self, C: float = 1.0, max_iter: int = 1000, random_state: int = 0, use_predictions: bool = False):
self._max_iter = max_iter
self._C = C
self._random_state = random_state
self._tree = None
self.__folder = 'data/'
self.__use_predictions = use_predictions
self.__trained = False
self.__proba = False
def get_params(self, deep=True):
"""Get dict with hyperparameters and its values to accomplish sklearn rules
"""
return {"C": self._C, "random_state": self._random_state, 'max_iter': self._max_iter}
def set_params(self, **parameters):
"""Set hyperparmeters as specified by sklearn, needed in Gridsearchs
"""
for parameter, value in parameters.items():
setattr(self, parameter, value)
return self
def _linear_function(self, data: np.array, node: Snode) -> np.array:
coef = node._vector[0, :].reshape(-1, data.shape[1])
return data.dot(coef.T) + node._interceptor[0]
def _split_data(self, node: Snode, data: np.ndarray, indices: np.ndarray) -> list:
if self.__use_predictions:
yp = node._clf.predict(data)
down = (yp == 1).reshape(-1, 1)
res = np.expand_dims(node._clf.decision_function(data), 1)
else:
# doesn't work with multiclass as each sample has to do inner product with its own coeficients
# computes positition of every sample is w.r.t. the hyperplane
res = self._linear_function(data, node)
down = res > 0
up = ~down
data_down = data[down[:, 0]] if any(down) else None
indices_down = indices[down[:, 0]] if any(down) else None
res_down = res[down[:, 0]] if any(down) else None
data_up = data[up[:, 0]] if any(up) else None
indices_up = indices[up[:, 0]] if any(up) else None
res_up = res[up[:, 0]] if any(up) else None
return [data_up, indices_up, data_down, indices_down, res_up, res_down]
def fit(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> 'Stree':
X, y = check_X_y(X, y.ravel())
self.n_features_in_ = X.shape[1]
self._tree = self.train(X, y.ravel(), title)
self._build_predictor()
self.__trained = True
return self
def _build_predictor(self):
"""Process the leaves to make them predictors
"""
def run_tree(node: Snode):
if node.is_leaf():
node.make_predictor()
return
run_tree(node.get_down())
run_tree(node.get_up())
run_tree(self._tree)
def train(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> Snode:
if np.unique(y).shape[0] == 1:
# only 1 class => pure dataset
return Snode(None, X, y, title + ', <pure>')
# Train the model
clf = LinearSVC(max_iter=self._max_iter, C=self._C,
random_state=self._random_state)
clf.fit(X, y)
tree = Snode(clf, X, y, title)
X_U, y_u, X_D, y_d, _, _ = self._split_data(tree, X, y)
if X_U is None or X_D is None:
# didn't part anything
return Snode(clf, X, y, title + ', <cgaf>')
tree.set_up(self.train(X_U, y_u, title + ' - Up'))
tree.set_down(self.train(X_D, y_d, title + ' - Down'))
return tree
def _reorder_results(self, y: np.array, indices: np.array) -> np.array:
y_ordered = np.zeros(y.shape, dtype=int if y.ndim == 1 else float)
indices = indices.astype(int)
for i, index in enumerate(indices):
y_ordered[index] = y[i]
return y_ordered
def predict(self, X: np.array) -> np.array:
def predict_class(xp: np.array, indices: np.array, node: Snode) -> np.array:
if xp is None:
return [], []
if node.is_leaf():
# set a class for every sample in dataset
prediction = np.full((xp.shape[0], 1), node._class)
return prediction, indices
u, i_u, d, i_d, _, _ = self._split_data(node, xp, indices)
k, l = predict_class(d, i_d, node.get_down())
m, n = predict_class(u, i_u, node.get_up())
return np.append(k, m), np.append(l, n)
# sklearn check
check_is_fitted(self)
# Input validation
X = check_array(X)
# setup prediction & make it happen
indices = np.arange(X.shape[0])
return self._reorder_results(*predict_class(X, indices, self._tree))
def predict_proba(self, X: np.array) -> np.array:
"""Computes an approximation of the probability of samples belonging to class 1
(nothing more, nothing less)
:param X: dataset
:type X: np.array
"""
def predict_class(xp: np.array, indices: np.array, dist: np.array, node: Snode) -> np.array:
"""Run the tree to compute predictions
:param xp: subdataset of samples
:type xp: np.array
:param indices: indices of subdataset samples to rebuild original order
:type indices: np.array
:param dist: distances of every sample to the hyperplane or the father node
:type dist: np.array
:param node: node of the leaf with the class
:type node: Snode
:return: array of labels and distances, array of indices
:rtype: np.array
"""
if xp is None:
return [], []
if node.is_leaf():
# set a class for every sample in dataset
prediction = np.full((xp.shape[0], 1), node._class)
prediction_proba = dist
return np.append(prediction, prediction_proba, axis=1), indices
u, i_u, d, i_d, r_u, r_d = self._split_data(node, xp, indices)
k, l = predict_class(d, i_d, r_d, node.get_down())
m, n = predict_class(u, i_u, r_u, node.get_up())
return np.append(k, m), np.append(l, n)
# sklearn check
check_is_fitted(self)
# Input validation
X = check_array(X)
# setup prediction & make it happen
indices = np.arange(X.shape[0])
result, indices = predict_class(X, indices, [], self._tree)
result = result.reshape(X.shape[0], 2)
# Turn distances to hyperplane into probabilities based on fitting distances
# of samples to its hyperplane that classified them, to the sigmoid function
result[:, 1] = 1 / (1 + np.exp(-result[:, 1]))
return self._reorder_results(result, indices)
def score(self, X: np.array, y: np.array) -> float:
"""Return accuracy
"""
if not self.__trained:
self.fit(X, y)
yp = self.predict(X).reshape(y.shape)
right = (yp == y).astype(int)
return np.sum(right) / len(y)
def __iter__(self):
return Siterator(self._tree)
def __str__(self) -> str:
output = ''
for i in self:
output += str(i) + '\n'
return output
def _save_datasets(self, tree: Snode, catalog: typing.TextIO, number: int):
"""Save the dataset of the node in a csv file
:param tree: node with data to save
:type tree: Snode
:param catalog: catalog file handler
:type catalog: typing.TextIO
:param number: sequential number for the generated file name
:type number: int
"""
data = np.append(tree._X, tree._y.reshape(-1, 1), axis=1)
name = f"{self.__folder}dataset{number}.csv"
np.savetxt(name, data, delimiter=",")
catalog.write(f"{name}, - {str(tree)}")
if tree.is_leaf():
return
self._save_datasets(tree.get_down(), catalog, number + 1)
self._save_datasets(tree.get_up(), catalog, number + 2)
def get_catalog_name(self):
return self.__folder + "catalog.txt"
def save_sub_datasets(self):
"""Save the every dataset stored in the tree to check with manual classifier
"""
if not os.path.isdir(self.__folder):
os.mkdir(self.__folder)
with open(self.get_catalog_name(), 'w', encoding='utf-8') as catalog:
self._save_datasets(self._tree, catalog, 1)