From 6e35628c85fd0f3c774a1141c278b0dd52b81cfb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ricardo=20Montan=CC=83ana?= Date: Wed, 20 May 2020 14:26:55 +0200 Subject: [PATCH] Grapher working --- main.py | 9 +- test2.ipynb | 42 ++-- test_graphs.ipynb | 512 ++++++++++++++++++++++------------------- tests/Stree_test.py | 8 +- trees/Snode_graph.py | 19 +- trees/Stree_grapher.py | 3 + 6 files changed, 326 insertions(+), 267 deletions(-) diff --git a/main.py b/main.py index ab77139..3c9feb5 100644 --- a/main.py +++ b/main.py @@ -50,9 +50,8 @@ print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}") proba = clf.predict_proba(Xtest) print("Checking that we have correct probabilities, these are probabilities of sample belonging to class 1") res0 = proba[proba[:, 0] == 0] -res1 = proba[proba[:, 0] == 0] -print("++++++++++res0++++++++++++") +res1 = proba[proba[:, 0] == 1] +print("++++++++++res0 > .8++++++++++++") print(res0[res0[:, 1] > .8]) -print("**********res1************") -print(res1[res1[:, 1] < .4]) -print(clf.predict_proba(Xtest)) \ No newline at end of file +print("**********res1 < .4************") +print(res1[res1[:, 1] < .4]) \ No newline at end of file diff --git a/test2.ipynb b/test2.ipynb index f5aaefb..a63128e 100644 --- a/test2.ipynb +++ b/test2.ipynb @@ -5,6 +5,21 @@ "execution_count": 1, "metadata": {}, "outputs": [], + "source": [ + "#\n", + "# Google Colab setup\n", + "#\n", + "#!git clone https://github.com/Doctorado-ML/STree.git\n", + "# Set working dir to Stree\n", + "#import os\n", + "#os.chdir(\"STree\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", @@ -17,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -29,13 +44,13 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", - "text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 33.244% 496\nValid: 66.756% 996\n" + "text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 32.976% 492\nValid: 67.024% 1000\n" } ], "source": [ @@ -84,20 +99,13 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", - "text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9559\nClassifier's accuracy (test) : 0.9531\nroot\nroot - Down\nroot - Down - Down, - Leaf class=1 belief=0.980769 counts=(array([0, 1]), array([ 6, 306]))\nroot - Up\nroot - Up - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up, - Leaf class=0 belief=0.945205 counts=(array([0, 1]), array([690, 40]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9588\nClassifier's accuracy (test) : 0.9509\nroot\nroot - Down\nroot - Down - Down, - Leaf class=1 belief=0.990323 counts=(array([0, 1]), array([ 3, 307]))\nroot - Up, - Leaf class=0 belief=0.945205 counts=(array([0, 1]), array([690, 40]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([4]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9732\nClassifier's accuracy (test) : 0.9531\nroot\nroot - Down\nroot - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([313]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([6]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([9]))\nroot - Up - Up, - Leaf class=0 belief=0.960839 counts=(array([0, 1]), array([687, 28]))\nroot - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9732\nClassifier's accuracy (test) : 0.9509\nroot\nroot - Down\nroot - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([312]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([7]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Up - Up, - Leaf class=0 belief=0.960784 counts=(array([0, 1]), array([686, 28]))\nroot - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9741\nClassifier's accuracy (test) : 0.9531\nroot\nroot - Down\nroot - Down - Down\nroot - Down - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([312]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([8]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Down - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up, - Leaf class=0 belief=0.961756 counts=(array([0, 1]), array([679, 27]))\nroot - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([7]))\n\n**************************************************\n0.8116 secs\n" + "text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9559\nClassifier's accuracy (test) : 0.9442\nroot\nroot - Down, - Leaf class=1 belief=0.986928 counts=(array([0, 1]), array([ 4, 302]))\nroot - Up, - Leaf class=0 belief=0.943089 counts=(array([0, 1]), array([696, 42]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9588\nClassifier's accuracy (test) : 0.9397\nroot\nroot - Down, - Leaf class=1 belief=0.993443 counts=(array([0, 1]), array([ 2, 303]))\nroot - Up, - Leaf class=0 belief=0.944520 counts=(array([0, 1]), array([698, 41]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9703\nClassifier's accuracy (test) : 0.9531\nroot\nroot - Down\nroot - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([313]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([4]))\nroot - Up, - Leaf class=0 belief=0.957359 counts=(array([0, 1]), array([696, 31]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9703\nClassifier's accuracy (test) : 0.9531\nroot\nroot - Down\nroot - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([313]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([7]))\nroot - Up, - Leaf class=0 belief=0.957182 counts=(array([0, 1]), array([693, 31]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9789\nClassifier's accuracy (test) : 0.9509\nroot\nroot - Down\nroot - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([313]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Up\nroot - Up - Down, - Leaf class=0 belief=1.000000 counts=(array([0]), array([4]))\nroot - Up - Up\nroot - Up - Up - Down, - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([4]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([5]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Up - Up - Up - Up - Up - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up - Up - Up - Up - Up, - Leaf class=0 belief=0.968481 counts=(array([0, 1]), array([676, 22]))\n\n**************************************************\n0.6609 secs\n" } ], "source": [ @@ -115,7 +123,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -132,13 +140,13 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", - "text": "root\nroot - Down\nroot - Down - Down\nroot - Down - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([312]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([8]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Down - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up, - Leaf class=0 belief=0.961756 counts=(array([0, 1]), array([679, 27]))\nroot - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([7]))\n" + "text": "root\nroot - Down\nroot - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([313]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Up\nroot - Up - Down, - Leaf class=0 belief=1.000000 counts=(array([0]), array([4]))\nroot - Up - Up\nroot - Up - Up - Down, - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([4]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([5]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Up - Up - Up - Up - Up - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up - Up - Up - Up - Up, - Leaf class=0 belief=0.968481 counts=(array([0, 1]), array([676, 22]))\n" } ], "source": [ @@ -149,13 +157,13 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", - "text": "root\nroot - Down\nroot - Down - Down\nroot - Down - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([312]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([8]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Down - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up, - Leaf class=0 belief=0.961756 counts=(array([0, 1]), array([679, 27]))\nroot - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([7]))\n" + "text": "root\nroot - Down\nroot - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([313]))\nroot - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([10]))\nroot - Up\nroot - Up - Down, - Leaf class=0 belief=1.000000 counts=(array([0]), array([4]))\nroot - Up - Up\nroot - Up - Up - Down, - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([4]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([5]))\nroot - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([1]))\nroot - Up - Up - Up - Up - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Up - Up - Down - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Up - Up - Up - Up - Up - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up - Up - Up - Up - Up - Up, - Leaf class=0 belief=0.968481 counts=(array([0, 1]), array([676, 22]))\n" } ], "source": [ diff --git a/test_graphs.ipynb b/test_graphs.ipynb index efea77e..4908d95 100644 --- a/test_graphs.ipynb +++ b/test_graphs.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -17,7 +17,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -27,12 +27,12 @@ "from sklearn.datasets import make_blobs\n", "from sklearn.svm import LinearSVC\n", "from trees.Stree import Stree\n", - "from trees.Sgrapher import Sgrapher" + "from trees.Stree_grapher import Stree_grapher" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -42,9 +42,9 @@ } ], "source": [ - "random_state=1\n", - "\n", - "X, y = make_blobs(centers=10, n_features=3, n_samples=1500)\n", + "random_state=19\n", + "random.seed(random_state)\n", + "X, y = make_blobs(centers=10, n_features=3, n_samples=1500, random_state=random_state)\n", "def make_binary(y):\n", " for i in range(2, 10):\n", " y[y==i] = random.randint(0, 1)\n", @@ -55,32 +55,32 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { - "text/plain": "Sgrapher(C=0.01, max_iter=200, random_state=0)" + "text/plain": "Stree_grapher(C=0.01, max_iter=200, random_state=0)" }, "metadata": {}, - "execution_count": 5 + "execution_count": 4 } ], "source": [ - "gr = Sgrapher(dict(C=.01, max_iter=200))\n", + "gr = Stree_grapher(dict(C=.01, max_iter=200))\n", "gr.fit(X, y)" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", - "text": "root\nroot - Down\nroot - Down - Down\nroot - Down - Down - Down\nroot - Down - Down - Down - Down, - Leaf class=1 belief=0.948882 counts=(array([0, 1]), array([ 32, 594]))\nroot - Down - Down - Down - Up, - Leaf class=0 belief=0.854167 counts=(array([0, 1]), array([41, 7]))\nroot - Down - Down - Up\nroot - Down - Down - Up - Down, - Leaf class=1 belief=0.913043 counts=(array([0, 1]), array([ 4, 42]))\nroot - Down - Down - Up - Up, - Leaf class=0 belief=0.935065 counts=(array([0, 1]), array([72, 5]))\nroot - Down - Up, - Leaf class=1 belief=1.000000 counts=(array([1]), array([47]))\nroot - Up\nroot - Up - Down, - Leaf class=1 belief=0.864407 counts=(array([0, 1]), array([ 8, 51]))\nroot - Up - Up, - Leaf class=0 belief=0.993300 counts=(array([0, 1]), array([593, 4]))\n\n" + "text": "root\nroot - Down\nroot - Down - Down\nroot - Down - Down - Down\nroot - Down - Down - Down - Down, - Leaf class=1 belief=0.796875 counts=(array([0, 1]), array([ 65, 255]))\nroot - Down - Down - Down - Up\nroot - Down - Down - Down - Up - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([16]))\nroot - Down - Down - Down - Up - Up, - Leaf class=0 belief=0.921053 counts=(array([0, 1]), array([35, 3]))\nroot - Down - Down - Up\nroot - Down - Down - Up - Down, - Leaf class=1 belief=1.000000 counts=(array([1]), array([13]))\nroot - Down - Down - Up - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([19]))\nroot - Down - Up\nroot - Down - Up - Down\nroot - Down - Up - Down - Down, - Leaf class=1 belief=0.982456 counts=(array([0, 1]), array([ 1, 56]))\nroot - Down - Up - Down - Up, - Leaf class=0 belief=1.000000 counts=(array([0]), array([11]))\nroot - Down - Up - Up, - Leaf class=0 belief=0.989418 counts=(array([0, 1]), array([187, 2]))\nroot - Up\nroot - Up - Down\nroot - Up - Down - Down, - Leaf class=1 belief=0.914397 counts=(array([0, 1]), array([ 22, 235]))\nroot - Up - Down - Up, - Leaf class=0 belief=0.869281 counts=(array([0, 1]), array([133, 20]))\nroot - Up - Up\nroot - Up - Up - Down, - Leaf class=1 belief=0.921875 counts=(array([0, 1]), array([ 10, 118]))\nroot - Up - Up - Up, - Leaf class=0 belief=0.892977 counts=(array([0, 1]), array([267, 32]))\n\n" } ], "source": [ @@ -89,82 +89,7 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "from trees.Snode import Snode\n", - "import copy\n", - "arbol = copy.deepcopy(gr._tree)\n", - "def copy_tree():\n", - " pass\n", - "arbol._title='sssssroot'" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": "root\n" - } - ], - "source": [ - "print(gr._tree)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAHBCAYAAADkRYtYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydaWwc9333v3PsPXtRlCiRoihZtiVKsmzrfBq3iZ3AT+o6qdzYcRUUqIO6KJIWaZogQPIiKFqgQOygadq3KYLWSdMgbV6kdtIGSOu6sZP4URy7FiWR4iXeFCly793Zuf7/58XsjJerJTm7O3uR/w8QKKLo2dlrvvO7vj+OUgoGg8FgMBhbw7f7BBgMBoPB6AaYYDIYDAaD4QAmmAwGg8FgOIAJJoPBYDAYDmCCyWAwGAyGA5hgMhgMBoPhAHGbf2czJwwGg8HYbXDVfsgiTAaDwWAwHMAEk8FgMBgMBzDBZDAYDAbDAUwwGQwGg8FwABNMBoPBYDAcwASTwWAwGAwHMMFkMBgMBsMBTDAZDAaDwXAAE0wGg8FgMBzABJPBYDAYDAcwwWQwGAwGwwFMMBkMBoPBcAATTAaDwWAwHMAEk8FgMBgMBzDBZDAYDAbDAUwwGQwGg8FwABNMBoPBYDAcwASTwWAwGAwHMMFkMBgMBsMBTDAZjC7kk5/8JL785S+3+zQYjF0FE0wGo03out7uU2AwGDXABJPBaCGHDx/Giy++iNOnTyMUCuHll1/GyZMnEYvF8Oijj2J0dNT+3dHRUTz66KOIxWI4efIkXn75ZQDAN77xDXznO9/BV7/6VUiShI9+9KPtejoMxq6Co5Ru9e9b/iODwaiNw4cPIxaL4ZVXXkEikcD73vc+/OAHP8Cjjz6Kr3/96/jGN76BGzdugOM4DA8P4w/+4A/whS98AW+88QYuXbqEt956C8eOHcMnP/lJHDx4EH/1V3/V7qfEYOxEuGo/ZBEmg9Fi/vRP/xSDg4N4+eWX8eSTT+Lxxx+Hx+PBF77wBciyjJ///Od48803kcvl8KUvfQlerxcf/OAH8ZGPfATf/e532336DMauRWz3CTAYu43BwUEAwNLSEoaGhuyf8zyPwcFBLC4uQhRFDA4Oguffu6cdGhrC4uJiy8+XwWCYsAiTwWgxHGdme/r7+zE7O2v/nFKK+fl5DAwMoL+/H/Pz8yCE2P8+NzeHgYGBDcdgMBitgwkmY9dCKcU2Nfym8uyzz+JHP/oR/uu//guapuFrX/safD4f3ve+9+HixYsIBoP46le/Ck3T8Nprr+GVV17B5cuXAQB9fX2Ynp5u27kzGLsRJpiMXQkhBIqiIJVKIZvNolgsQtO0lgrosWPH8E//9E/4zGc+g97eXrzyyit45ZVX4PV64fV68corr+A//uM/0Nvbiz/+4z/Gt771LRw/fhwA8Pzzz+PGjRuIxWJ46qmnWnbODMZuhnXJMnYVlFIYhmGLo6qq4DjOjjY5joMgCBBFEaIoQhCEDXVEBoOxK6ha82CCydg1WAJJCLFFUlXVDYJoCWf594LneXg8HiagDMbugQkmY/ei6zp0XbejSI7jQAi5SzAr2UxARVGEx+NhAspg7EyYYDJ2H5RSWywtobRwIpjVjredgFY+DoPB6DqYYDJ2F5YglkeV1f69kQjR+v6Uj39wHHdXCpcJKIPRVTDBZOwOtooqy3FDMKs9tnVs6/9Xq4EyAWUwOhommIydT2Vjz1bC1AzB3OycKiNQqwtXFEUmoAxG58EEk7FzKR8XAeCojtgqwayECSiD0fFU/QIyL1lG10MphaZpMAyjKxpurFlPCyuFrGkapqencc8999hNRExAGYzOgQkmo6vZrrFnOzpBiMrPO51OAwAMw9gwBlMegVqduAwGo7UwwWR0JZWNPTtpFrLy+ZSnmy2hZALKYLQeJpiMroMQAk3THDX27ASs52iJaDUBFQRhQyfuTn9NGIx2wAST0TXU09izE6kmoIQQyLLMBJTBaCI7J4/F2NFYjT1XrlwBpdS1Rph2rvdyC0s8y+c8CSEoFovI5XJIp9Nt28jCYOwkWITJ6HjKG3vK05BusBMjr8rI24pAi8WiLZaVNdCdVANmMJoFE0xGx1KtsccyTXfjAr8TxbIamwmooihQFAUA28jCYDiBCSajI9msscday7WTafbzqyaglNK7BJQZyjMYG2GCyegotmvs2emC2Q5R2kxAVVWFqqoAmIAyGAATTEYH4cQHdqcLZidQTUAB2AJaLBZRLBaxb98+ZijP2FUwwWR0BFZUuZ1jj9uCaT0eY3PKR1UAQFEUJBIJxGKxLWug7HVl7DSYYDLaSq2OPW4LJruo10c1P9zyFC4zlGfsRJhgMtpGPY49LCXbfqpF5dUEVNO0DbVoJqCMbocJJqPlVDb21DLCwASzO9hqI0v5v1tNRMyNiNENMMFktJRaFjxXgwlm+6mn7lutkcjayGLBDOUZnQ4TTEbLsGqV9a7iAtwTTEopJicnsby8DEmSEIvFEI/HEQwG2YW6BWwmoMxQntHJMMFkNB03V3HxPN+wYMqyjJGREcTjcZw/fx7FYhHJZBK3bt1CPp9HKBRCPB5HLBZri4B2egTdjM5iZijP6AaYYDKaSqMLnitpNMJcWVnB5OQkhoeHEY/HoaoqQqEQQqEQDh48CEop8vk8UqkUpqenIcsygsFgywSUiYAJE1BGJ8IEk9EUmrXg2fKSrRXDMDA2NgZVVXH+/Hl4vd6qwstxHCRJgiRJVQW0UCjYEWg8HkcgENh1F+p2zK5uJqDFYtH+ncomIuaHy3AbJpgM12m0sWcr6okws9ksrl27hoGBAQwODtZ0PpsJaDKZxNTUFAqFwoYa6G4U0Haw1UYWCyt9HwwGmYAyXIEJJsM1LKHUdd2es2tGrcupYFJKMT8/j8XFRZw6dQrhcNiVx7cEdHBwcFcKaCe6I20moL/61a9w9uxZAHf74TIBZdQKE0yGK1gp2KmpKQQCAfT39zflcZwKpqqquHbtGvx+Py5cuLBhJtDt89lKQGVZ3tBEtBMFtBMpT+EKgsAM5RmuwAST0TDljT3Nvmt3Ipjr6+sYGxvDvffei76+vqaeTyXVBDSXyyGVSmFychKyLEOSpK4W0E6MMKtRfp7bGcoDTEAZ28MEk1E31Rp7eJ6vqynHKVsJJiEEU1NTSKVSOHv2LPx+f9POwykcxyEcDiMcDlcV0GKxuKGJqNNHSrqJrYS90lC+XEAVRbHFkhnKM8phgsmoi60WPLdDMAuFAkZGRtDb24tz58517IVtKwGdmJhANpvF2NgYenp6EI/H4ff7O+65dGOEuR1OBbSyBtoNrwPDPZhgMmpiuwXPPM/DMIymPX41wVxeXsb09DROnDiBeDzetMduBpUC+vbbb2NgYADZbBYTExMoFot3NRExnNFIiaBSQK3jMUP53Q0TTIZjrAuGYRib1nd4nt/gD+o25U4/uq5jbGwMuq7jwoUL8Hg8TXvcVmHVQOPxOA4dOmRHoMlkcoOAltdAW81OjDCdwDayMJhgMhzh1LGn2SlZwLxQZTIZXLt2DYcOHcLAwMCOvTCVR6CWgGazWaRSKYyPj0NRlLYLaKdilQuaxXYbWQBsSOEyN6LuhwkmY0vaveC5Gnfu3MHs7CxOnz4NSZKa+lidBsdxiEQiiEQi2wqoVQN1m90aYW4H28iy82GCydiUehY8N7NLVlVVLC4uwufz4eLFi66MsHT7BatSQAkhdhPRzZs3oSgKwuGwXQPthM7hVtFuYWcbWXYeTDAZd7FdY89WNCsla81W9vT0QJIk5tKyCTzPVxXQZDLpmoC2Yt7WDdotmJVsZyi/sLCAoaEhJqAdDBNMxgacNPZshRvrt8ohhGBiYgKZTAZnz57F2tpaU7twdxrlAjo0NLSpgFo10J0UgXaaYFZSLqCEEKyurmJwcLCqoTwT0M6ACSbDxo1VXG7WMAuFAq5evYp9+/bZs5WtqJHuZKoJqFUDtba5bCegnS5EFoSQroiEgffOtfx82UaWzoMJJsP1Bc9upGSXlpYwMzODEydOIBaL2T93WzA78eLfyhsCnucRjUYRjUY3CGgymbxLQOPxOHw+X8vOrVE68b3djGppbqcbWSrdiBjNgwnmLqeexp6taFTQdF3HjRs3QCnFhQsXIIobP6I7PcJs9wW+XEABbBDQ0dFRqKoKnucRDofR09PT0QLaTYLpJBquJqCUUiiKAkVRALCNLM2GCeYupbKxx60vViMRZjqdxvXr1zE0NISBgYGqv7PTBbPTqCagExMT0DTNFtBIJGI3EXWSgO40waxkMwFlhvLNgwnmLqTTFjxTSjEzM4OVlRU8+OCDCIVCrh6f4R48z8Pv9yMWi6Gvr29DBHrjxg1omoZIJGLXQNspoDtdMCupZSOL9T8moLXBBHOXYUWVjTT2bEWtEaaiKBgZGUE4HMaFCxdaaoxgPfduurB2AuWvV3kEevjwYRBCkMlkkEqlsLS01FYB7camHzfZzlAeqF4DZd+FzWGCuUuwGnveffddnDp1qmkXkloE7c6dOxgfH8exY8fQ29vr+vHbcbzdDs/ziMViiMViGwQ0mUzaAhqNRu3faaaAdtONUCvEfTNDebaRxTlMMHcB5Y092Wy2qY/lJMIkhGB8fBz5fB7nzp2r6aLp9pwno3ZqEaJyAQVwl4Dqur6hBur1ettynu2m2b63m8EM5WuDCeYOptKKy/qwN/NCsl3Els/nMTIygv379+PYsWM1n4ebTkLLy8uYmJiAx+OxL9jRaHTDBaTV7PSLkVMBtVK4jQhoNwlmp7gnMQHdGiaYO5TNGnusCLBZX87NIkxKKRYXFzE3N4eTJ0/aXZe14kYK1TAMjI6OQtd1nDt3DoQQpNNprK2tYWpqCoIg2HOHkUik5ReyTo+g3RSiSgE1DMOugS4sLMAwjLoFtJsEs1PrrZttZEkkEkilUhgcHNxVG1mYYO5ALBOCao09zTRHB6oLmqZpuHHjBnierzpbWevxGyGXy2FkZAQDAwMYHBy0G6D27t2LvXv3AjCbIpLJJG7fvo3x8XF4PB7E43HmY9sCym9Wjhw50pCAdqoIVaNbztW6nhiGAcMw7IXxu2UjCxPMHYQTx55mC2bl8VOpFK5fv44jR46gv7+/4ePXm5Itj3AfeOABhMPhTX/X6/Wir68PfX19AMxO3mQyicXFRWSzWfh8PvuiLknSjrogOKGVkdtmAppMJm0BLW8iKhfQTklzOqFbBNPCOl8nG1m++93v4tKlS658/9sNE8wdglMf2FZEmID5xbl16xbu3LmDhx9+GMFg0LXj15qytNyDANQV4fp8Puzfvx/79+8HAMiyjGQyibm5OeRyOQSDQfuiHgwGd52AtpJyAQWwpYDqut5RRgpb0W2CaRhG1Vp/tY0sP/7xj/H444+3+hSbAhPMLqdWH9hmCyZgfvnfeustRKNRnD9/3tULQa2CmclkcO3atS3dg2olEAggEAigv78flFIUCgWkUincunUL+XweoVDIvqgHAoEdJ6CdVBvcSkBv374NAMhms3YK1+PxtPN0N6XbBNPp+XIch0Kh4NoNc7thgtnF1OPY02zBXF1dRaFQwPDwMPbs2eP68Z0KJqUU8/PzWFxcxOnTpyFJkuvnYp1PKBRCKBTCwMAAKKXI5/NIJpOYnJyELMsbzMt30vqsTqRcQAVBgNfrhc/nQyqVwvz8vB2BdpqAEkLa2p1dK4ZhOM7UFAqFpn3/Wg0TzC6kkQXPzRJMwzBw8+ZNFItFBIPBpogl4EwwNU3DtWvX4PV6ceHChZZeiDiOgyRJkCQJg4ODoJTa1nGV+yc7zXvVKZ0UYW4FIQSiKKKnpwc9PT0AzM9pOp3uOAHttgjTMAzHn11ZlhEIBJp8Rq2BCWaX4caCZ7cF0+o87e/vx/DwMH7xi1+4evxythNMq8no6NGjds2xnXAcV3X/pOW9Wj53GI/Hu0KIuoVqwi4IQlUBtWrSlNINTUStEtBualACahN468ZlJ7AznsUuwY0Fz24KJqUUCwsLmJ+fx6lTpxCJRFw57lZsJpjlBu5uNhm5TaX3amXTSi6Xw/T0NPbu3YtYLNaRF5puiTCdnOd2AkoIscWzmQLajRFmN52vW3Tet5FxF24ueHbLO9VKe3o8Hly8eLFlac9q56+qKkZGRhAKhRwZuG93vFZS2bTy7rvvIh6PI51OY3Z2FpRS24UoFot1TJ1rpwhmJe2KQLtNMJ3WXDvdhKNWmGB2OG4veHYjwrTSie1Ie1Z6ySYSCYyOjuK+++7Dvn37WnouzYDjOMRiMft11XUdqVQKiUQCt27dAsdxG1yI2iGg3XIRdCMSrhRQXdftGmi5gFq2ivUKaLcJ5mZjJZvRDTdYTmCC2aE00tizFY0IJqUUU1NTWF9fx5kzZ9pSyLciQutcEokEzp49u2O7T0VRRG9vr73NRdM0JJNJ3LlzB5OTkxBF0Y5AW2nj1w0XwGbUBUVRxJ49e+ymtnIBtTIC5U1ETlPq3SaYTs+3257XdjDB7EAabezZinoFU5ZljIyMIB6PO5qtbFadi+M46LqOt956C7FYDOfOndtRX8jt8Hg82Ldvnx1NK4qCVCpl2/h5vV47Ag2Hw015D3ZThLkdTgS0vAa6mYB2m7A4jTB3UocswASz43CjsWcr6hHMlZUVTE5OYnh42E5NbUUzN6IkEglks1mcOXPG8Q7NnYzP59tg41csFjc0EPn9fltAQ6GQK+9JtzT9tGNl1mYCmkwmtxTQdq33qhenAl8oFJhgMtzHzcaerbDMkp1gGAbGxsagqirOnz/veFNEMzaiEEIwOTmJdDqNUCjExHIT/H4/Dhw4gAMHDoBSClmW7Whnt9n4dYKwbyWgMzMzAIBYLAZFUZruwOUmTiNMy/lqp8AEswOwGnvefPNNXLx4salfcp7n7broVmSzWYyMjODgwYMYHBys6Zzc7jyVZRlXr15Fb28vzp49izfffNO1Y3cibr12HMchGAwiGAxusPFLJpOYnp62HVjKXYicvM+dIERO6MTzrCagqVQKq6urGB0dtZu+rCaiThwrApy/trIsd+yIVz105ruxS6hs7LFqls1ku5RsuaXcdls96n2MWlhdXcXExAROnDhhj17sZJr5/pfb+B08eBCUUuRyOaRSKUxMTKBYLN4loN1MJwpmJVZT19zcHE6fPg3ANN9IJpN2V3R5F24nCaiT13Yn+cgCTDDbRjUf2FZ8ubcSM1VVcf36dfh8voYs5dyIMAkhuHnzJmRZrikdzHAOx3EIh8MIh8MYHBwEIQS5XA7JZNJOxZe7EFnvQTcIEdBdjTTWufI8v6ErutpYkVX/7DQBrQYTTEbDWFFltcaeZl+MNhNMa57x3nvvtRtI3H4MpxQKBVy9ehX79+/H8ePHu+LivBPgef4uGz/LhWhxcdH2XS0WixsWBncq3SLswObnWm2sKJ1Od42Ashomo262a+yxhKaZw+iVYkYIwdTUFFKplGvzjI1EmMvLy5iensapU6cQjUYbPhdG/fA8b1+My5c3JxIJjI+Pb0gXdqKNXzcJJuAsxenxeBwLaC3OUHqxCEoIPA6jQaff70KhwASTUTtOHHsEQajZQaNWysWsUChgZGQEvb29OHfunGsXl3oiTMMwMDo6Cl3XceHChY5Zu8R4D8vGT5Ik3HPPPfB6vRs6PisbVtpt49dNglnvDWY1Aa2Wwt3sPSGGgdtvvQVdlnHo0UcdPWYtIzCs6YdRE5WNPVvVVFqx3Nl6DCuSa0YzTa0RprXtZGBgoOaO3EZpxWu+07CEqLLj04p21tfXMTU1BUEQNlysW11P7CbBdAuPx4O9e/di7969AN4T0PX1dUxPT2+IQPXlZSz+9Kfw9/Rg+NlnHT9GLVmwfD6/Y3ZhAkwwm0qtC54FQWj6xZtSikQi0dRIrtLvdatzWVxcxNzcXN0duY3SLa413UBltKOqqj0yYdn4lbsQNVtAu6npp1nCXk1AF69fx9VXXkFidhb+fftw/wc/iGQq5TgrUMvrKstywz0RnQQTzCZh1SprceypxVSgHjKZDK5duwZRFPHggw827UvKcdy2wq/rOm7cuAEAuHDhQtvqX9lsFoQQSJK066KRenEauXm93rts/JLJJJaWlpDNZuHz+ez6ZzNs/HZjhLkV8vo6Fl59FZmlJUQ8HkTuuw/HL19GwTCwtraGqakp8DxvvyebCWgtZSPWJcvYkkYce5qVHqSUYnZ2FsvLyxgeHsbs7GzT5/22eh6WcA8NDWFgYKBp57EVlFJMT0/jzp078Hq9djdfPB5HT09P2+y82r1uzCn1fH58Ph/2799vb2KxXIgWFhaQzWYRCARct/FjgglouRxuv/kmVt55B55QCJqqwuv14tjTTyPU04MQcFcK1xJQK61eLqC1RJis6YexKY2u4mpGStbaFRkMBnHx4kX7/JrJZinZclOE06dPt622Yb0mkiThzJkz9vuVz+eRTCYxPj4ORVEQDoftC7jP52vLuXYibgl6IBBAIBDYYONnNRCV38DE43EEAoEdK37NukEyVBWr/+//4c477wCiCF4UYVAKj9+Po088gVCVdXiVKVwrrV4uoIFAALquO4o0mWAy7sItH1i3U7Lr6+sYGxvbsCuylY1F5VgLp71eb0OmCI1i7fK0XhNd123BlCQJkiTZQ/zZbNb+fV3X7RGKeDzecSMUrcZt8Sq38RsYGNhg4zc1NXWXjd9OMvR2u9ZKCUFyZASL//M/oDBTqFRVAb8fWj6PI088gejhw46OVZlWV1UVi4uLyGazePvttzc0dlXbz8q6ZBkbqLWxZyvcEjNCCCYmJpDJZO6arWyFYFamFVOpFK5fv96WhdMWlFLMzMxgdXXV0S5PnucRjUYRjUZx+PBhGIaxYetEp41QtJJWpIw3s/HbiRkANzeVZCYmsPLTn6JYKJilEQC8xwOjdIN38JFHsO+BB+o+vtfrRSQSASEER48evauxyxJQSin2799fd4RpGAbOnTuHgYEB/PCHP8StW7dw+fJlrK+v4+zZs/j2t7/dFvcvJph10owFz26kZC2XnH379lWdrWxVhGkteZ6ZmcHKygoefvjhtt1papqGkZERBAIBR7s8qyEIAnp6euz1ZpW1nlZ3gLaTdjTTlNv4HTp06K4MgKZpG0wUuslK0Y1F1/LyMpZffRWFpSVwoRD0fB5iLAYjkwEfDoMUCogfO4aBRx5p+HzLU7HVItBUKoXvfe97eOmll6CqKv7+7/8ely5dwsWLFx3f2Pzd3/0dhoeHkclkAABf/OIX8bnPfQ6XL1/Gpz71KXzzm9/Epz/96YafS63s3G91E7FSsJqm2SlYNy4gjaZkl5aW8M477+D48eO45557qp5TKy50HMdBVVW8/fbbUBQFFy5ccF0snUY56XQaV65cwcDAAIaHh10TMqvWc//99+P8+fM4ceIE/H4/lpaW8NZbb+Hq1auYn59HLpfriiaebsPKABw+fBgPP/wwzp07h76+PuTzeVy7dg2//OUvUSwWcefOHUfbedpJIylZNZnE4ssvY/Zf/xVqKgXO7wcIgRiJwFAUiNEotHwekcOHceSJJ5p+vpaAfuYzn8Fbb72F/v5+PPDAA/je976HRx55BJ///Oe3Pf7CwgJ+9KMf4Q//8A8BmN/1V199Fc888wwA4LnnnsMPfvADV55LrbAIs0aaueC53ujPGtGglOLixYttr6/JsozV1VWcOHHCvvN0EycLqimlmJubw/Lyckui2/IO0GoNLDup/taJ4xrVbPyuXLmCTCaDubk5e3FzJ279qEcwDVnG2s9+hsTbb0OIREAUBbwkgagqeJ8PKG0+MjQNgXgc9zz5JHiXyga1jJUoioJPfOIT+OQnP2n/fTv+7M/+DF/96leRzWYBmL0Y5daLBw8exOLiYn0n3yCd86npcFqx4FkQhJrvhtPpNK5fv97WEQ0LSimmpqawtraGQ4cONUUsge1HL6wGI2vrSqvTo9UaWKrV33p6ejZsAWG4hyAIEEURR48eBbBxcbMTy7hWUotgEl1H+q23kPzf/4WhaRBCIRBZhhAOo5jNwhMOQ06l4IlEoOZy8MViuP/jH4fo4qo2QojjGw5d1zd8vrdLyf7whz/Evn37cPbsWbz22muNnGZTYILpgEbHRZxSS4RZXh988MEH2966XSwWMTIyYt/hNzMNuZVgWjOeR44cwYEDB5p2DrWwWf0tkUjYW0CsizchpONTuJ0YYW5HNRu/ynEJKwMQiURaepPlRDAppcjduIHEa6+BCAIMRQE8HsAwQEURRNfB+3wwdB1iKATDMOANh3HvpUvwRiKunq9hGE1rsvrZz36Gl19+Gf/+7/+OYrGITCaDz372s0ilUtB1HaIoYmFhoW3BARPMLbAaeyYnJ9Hf3w+v19vUC4XTph9FUTAyMoJwONyWCKqStbU13Lx5E8eOHUNvby8WFxebWjeqJpjlM5613EC048Jf3oFrpQ+tjRNWxmDPnj3o6emp2qrPaJzN5g1XVlYwMTHR0iau7QSzODuLxM9+BmV5GTQYhJpOQ4xGoaTTECQJWqEA3usFAUCKRfCBAPRcDvc/8wyCTbClMwzD0etRz43fV77yFXzlK18BALz22mv467/+a3znO9/Bxz/+cXz/+9/H5cuX8dJLL+HSpUs1H9sNmGBuAqUUmqbBMAwkk0n09fU1/eLqpOnnzp07GB8ft8WpnZSPr5w7d86+62y2W03l8XVdx/Xr1yEIQltnPOulvANXURQcPHgQqqre5cHa09PTFAu5WunGCHM7nNr4Wdta3Hz+mwmmuraG5KuvQllbAyUE8PtBCYEYCoFomunao+vwBALQdB2CxwMCAJTi8Ic/jGgpHe02ta4gdOO1evHFF3H58mV8+ctfxsMPP4znn3++4WPWAxPMKlQ29rTCFB3YOiVLCMH4+Djy+fwGcWoXsizj6tWrVVeDNXt0pdxJKJvNYmRkBIcPH0Z/f3/THrOViKKIaDRqRz/WxXthYQG5XA5+v98W0GAwuOPEyw0avWGrZuOXTCYxNzeHXC6HYDBoC2ij70HlHKaRzSL95pvIvvMO+HAYWjYLIRSCXmEuSUUAACAASURBVCwCggDK8zCKRXChkPlnNAojnwcXCICqKvY8+CD2PvRQQ89/u/N1IpiNvgePPvooHi2tHLvnnntw5cqVho7nBkwwy9isscfaU9lsNhPmfD6PkZER9PX14dixY65cIBuJElZXVzExMbHparBmC6YVYS4sLGB+fr6tNnutYLMO3Fu3brWlA7cbIky3z9Gy8evv76/6HjRi42fNYRJVRe7NN5G7cQNE1yEEg9A1DYIkQVdVCH4/VEUB7/GAeL3gKQUfDEIvFiFGIlAzGfScPImBD3zAteddDacpWUVRXFlI30kwwSyxVWNPqwSzMiVLKcXS0hJmZ2dx8uRJRKNR1x6n1rQKYL5GN2/ehCzLOH/+/Kbdna0wEB8dHYUgCDh//nxHjQg0GycduJFIxL5479YO3GaKerX3wPIhnpycRLFY3HATs51oGLoOMjaG1VdeAeF5GJpmfn88HhBFARcKgWoaSCklC0EAr2mAIAC6Dng8oIRAOngQQx/+cNNvZpyOleTz+R1liwcwwXTk2NNKwbQiM6sux/O86+uv6hFMy0Fo//79OH78+JZfSqf7MOvBEofDhw/bIwO7mWoduJlMBslk8q4O3PJZNjcet5NpZRRc6UNcfhNz8+bNLW38lPFxFH78Y6jJJEJ798JQFPBeL7RiEbwggHo8oLoOBAIwikUIoRC0TAaCJEFOpyGGw9BlGb54HEefesq1WcutcDoGs9NWewG7XDDLG3u2GhdpdUrW8l49cuRIU+pytaZMl5eXMT09jVOnTjmKcp3sw6yHpaUlzMzMIBqN7qiltG5SbYA/lUrZJgocx9kX7mg02vYO62bRzuXR29n46bqOcLGIwMgIxGzWLAHpOgjHgeo6SCAAUApSuibR0vgI5/WCGoZZzzQMeMJhaKoKXzyOe59+GmKLDDGcRpg7bVMJsIsFsxbHnlb4rwLmFy2Xy+HmzZtNdadx+nwMw8Do6Ch0XceFCxfg8XgcHd/tlKx1HoZh4MKFC7arEWN7BEG4a/4wmUzadWiPx2MbKHRCB65bdFKdtXyMaDASQf6NN5AaGUHBMFBIp6FwHESOA5dMwhsMgis18GiZDPhoFGoqBSESgV4omGlawKxpBoMAITj8W78FXyzWsufDIsxdRD2OPa2IMIvFIq5evQpCSN0G4U5xIpi5XA4jIyMYGBjA4OBgTRcfN28w8vk8rl69uuE8umXJcj00+7l5PJ4N4xPFYtHuwLWWOFsC2s0duJ0kmABgFApQfvYzFN99F1SSEPD54A+HEZMkrBUKIKoK2TCwvrwMg+Pg9/vhD4XgKzX0aKV0bDGXgycUAkoGF0cuXUKoxQYdTgWT1TC7nHode+qxrKsF627//vvvx+TkZNNTSVsJGqUUi4uLmJubwwMPPIBwOFzX8d246C8vL+PWrVs4deoUImVuJTtZMFuN3+/HgQMHNixxTiQSmJ6etndQWgLaTR2PnSKYVNeh/vKXKPzylwDHgXg8oLIM6vOBZLOgwSDIygq8e/bATyl6Dh2CWiigoOvIZTK4k8+D+nzwAgju3QtPKVXL8zwO/NqvIXbvve1+ipvCIswupdFVXIIgoFgsun5ehmFgfHwchULB7jqdmJhw/XEq2UwwLRN3juMaajRqtIZJCMHY2BgURcH58+fvSgUzwWwO5d2flTsox8bGoKoqIpEINE2Dqqod3YHbbsGklEK/dg3Fn/4URBDAEQLi84ErWdmBUtBAAJQQ0FDIrE3G49AKBXjCYfgyGYQOHIBSKACCgJwsI3PnDmRKQRcX0fd//g88R4+2tVa7HbIssxpmt+HGgudmpGStlGd/f/+2XaduU00wLQ9WN0zcGxE0qxv3wIEDGB4e3nRFmVuCycR3czbrwL1z5w6uXbsGQsiGHZSdNN7TTiHRb92C8vrrIOvroF4vaCYDGg7DSKdNk4FsFgiFQBXF9oFF6TtJCYFBCDhBMCNJjwcQRYQ9HoSiURBKEThwANIjj+D27dsYHx+H1+vdYOPXCZE1AHs+dSfROZ/wJlG+CqreD1KjeyrLKR+4r0w1toryCLDcg9UtA4B6a5grKyuYnJzEyZMnEduiicFtkeuUC0ynY3Xg+nw+nDlzZsMGkE7rwG1HhElWV6G/+iq0RAKUEJBSBE5DIRDDAFfaUcmHw9DyefChELRcDlQQzK5YXQcVBJBCAZzfDy2TMT1jMxmzM1ZR4O/txT2XLoEXRduFqLwOXe4EFYvFXLfxA5x/X2RZZinZbqTRmppb1niapuH69esQRREXL15sm+ep9XpYa7C8Xq+rHqy1Clq5IYKTbtxmznkynFNtA0h5B247I59WCibNZKD//OfQr14FDYdBslkgHAYKBRCfD8QwQDkOBDBTsJSCchwMSsEJghlRBgKgPG/enHu9oJRCjESgKwrESARKNovg/v048vTT4Csi+co6tCWgrbDx24p8Po+enp66H6sT2RWC2ShupGStGayjR4/ad4btgud5ZLNZ3Lx5synnU0uEaXnS7tu3r6bUdCvGfBi1sV0HrpsX7u1ohWBSRQH5xS+gj46CGgYgSaCaBi4ahS7LgCSBZLPgJMn0g5Uk83NbcukhhQJoIAAjmwUXj5t+sJEIiCyb7j26DmoYpuG6z4ehJ5+EZ5uIjeO4u2z8CoUCksnkhkYuKwKt1cavllR3sVhkEWY30mgKrxHBtJYqr6+v48yZM468Ppv5ZaeUIp1OQ5ZlnD17tikfaKcR4HaetI0efzt0Xce1a9eQzWbtWtxutpNzitPPZmXkU3nhLne/cbsDt6mCaRgg774L8vrrMAQBRFVBBcFMwxJiRpSUAiUbO4MQ0/8VAO/1wuA4cDwPiCI4ADQYBNU0CNEo1GwWoiShmMlADIdhKAoEw8Dhj30MvjqiNY7jEAqFEAqF7Eauhmz8HJoWAKyGuWupVzCt2cp4PO54trK85uo2qqpiZGQEhmHgyJEjTbv7265L1loLlsvltvSk3er4jWJtORkaGsL999+PfD5vL3QmhGywk+u2dWGdSLULt+V+Y3Xglt+0ODXJ2IymNf3cvAny5pswUinA6wWVZXDBIIxcDlwoBD2XAy+K5ndY10FEEaRQAAIB6JkM+FgMJJMBwmEzkvT77TSnYRjgRRE6IeYyaEIg+P0YePxxSAcPunL61Wz8Kt+HrbyIa3ldWQ1zl1KPYFoNLMPDwzXl8a10pttf9kQigdHRUdx3332QZdnVY1eyVURv3UTs2bMHZ86cqUv8Gh1bsSz2HnjgAYRCIftibS101nUdqVTKnkds5T7K3dK1y3EcIpEIIpEIhoaGQAixG4jm5+dBKW3opsX1m86FBeC//xtkbc2cpSxFkdb/eEGAToi5k5LjwHm9MAAzkixllfho1FzwHA5Dy+XAh8NQUilQwNxrqWkgggCjUAAfCkHNZDDw2GOIHTvm3vOooNr7kM1mkUgksLS0BF3XEY1G7feilgiTWeN1KY1+cWqpyRmGYd+p1RM9WeLsVou+lRJOJBI4e/Ys/H4/5ufnW7J+q5K1tTXcvHmz5psIp8ffDmu+U1VVe8602usgiiJ6e3vtBd3l+yitWpw1zF9rDYhRHZ7n7agGwIabllu3btkduj09PYhEItveULommIkE+NdfB5meBi1Fg+A4EEoBwwDleVBZBilFmzQQMA0JolHQbBaIREBlGfD5TBN161ri9YIYBvhAAHoyCY/fbzb9iKKZ3tV19F24gH0XLzb+HGqg3MYPMK9nlpn//Py87ZC2tra27SgRc/rZpTitmWWzWVy7dq0uO7nyx3JLzIrFIkZGRhCLxXDu3Dn7IsPzfFOdiyqfN6UUk5OTSKVSriy/rkcwreaivr6+Tec7N6NyH6VVi7NqQOFw2BZQVv90h8qbFlVVkUqlNsweWq95tdGJhgWzUAD/xhvgrl6FIUmmKTrHARxn1iAFAYTnbW9XcBxoIGDWLaNR0GIRXGn5Mx8O236wWj5vmqgDZpOPJEEvFMyINJ83BVPXEezvx4HHHqv//F1CEIQNNzJra2tYWlpCKpWyR4ms6DMajW6IPmVZ3nF7aplgukD5LOOpU6fqspOzcEswrWju+PHjdtu/24/hBEVR7DruuXPnXLnrr1Uw79y5g/Hx8ZqbizZ77PJaXHkKy1qnZV1gWP3TPbxeb9UO3MrRiZ6eHgQCgfoFU9PAv/02uF/+0qwriiKgKCA+H5DLgfh8oLmcOT6SyYBGIkDp7ygWzUiz5OZDCAHn85lpzGAQhq6DDwZhaJrZ8BMIgBqGKZqyDCESgZJKIXToEIaeeqpjMxehUMherWdlAtbX1zE9PQ2e53Hr1i0EAoGaU7LFYhHvf//7oSgKdF3HM888g7/8y7/ErVu3cPnyZayvr+Ps2bP49re/3bYbUyaYDaKqKq5fvw6fz+fKLGOjIyxWQ00mk9k0mmuVYK6vr2NsbKyqaDeCU8G00tHJZHLLyLaRC1N5Csuqf6bTabv+KQiCHQlFIpGOvQh2G5t14E5OTkKWZYiiCJ/PB0VRnGU0KAV//TqEn//c/GxpGgyfD5TnTWs7SqFbHe6SBOj6eyMg4TCMTAaIRKCnUuAjERj5vJl2Bcymn1DIbvqhJWMCy+kHhIATRRBNg6+nB0O//dumw08HUrlHt1omYGVlBd///vcxOjqKZ599Fh/60IfwwQ9+EOfOnduymcvn8+HVV1+FJEnQNA2//uu/jieeeAJ/8zd/g8997nO4fPkyPvWpT+Gb3/wmPv3pTzf9uVZjVwhmsy5SViPNvffe69p+xkbEzEo79vb2bhnNNVswKaVQFAVTU1N23dRNnAimqqq4evUqIpGIa5GtEyqH+VVVtRsoxsbG7oqEmIA2TrUO3Fu3biGbzeLGjRvQNG3LDlxubg7CL34Bbm0NlOfB5fMwAgEgmwWJRIBMBiQSAVcomLsqNc105NF1O5KE3w+q66Yjj6aBCwZBVBWcxwPq9QKGAT4cNl18wmFo6TT4SARaNgvDMMydvACOfOxjEDu4UWa7ph+v14snnngCTzzxBH7jN34D3/rWt/D666/jH/7hH/CTn/wEf/7nf77pf2t18AKmCYamaeA4Dq+++ir++Z//GQDw3HPP4S/+4i+YYHYDVpqHEGJHLm4LQr02fLXMNDbTKccSKkrphrqpm2wnmNYC7vvuu89O4bULr9e7of5pbQOZmpqCLMv2LGJPTw+rf7oEV1qP5fV67bR5tQ7cXkLQc+MG+GQSnK4DogiUFjhTSkEjEXCaBhKNguTzgCTBSKXARSLQ02lw1mgIpWZNUpaBUMgUxWgUhq6DCwTAlYQVhmEaElhLoFUVnmAQhBCIwSAGf+u34HcxE9MMau3gHxgYwCc+8Ql84hOfcPT7hmHg7NmzmJycxJ/8yZ/g6NGjG5qLDh48iMXFxbrO3Q2YYDrEukhbYxG9vb04f/686xFCrTZ85bZyTrtyGx3L2AzLzej+++/HxMRE07xENzt/q5a8tLTU1AXc9VK5DYQQglwuh0QigWvXrsEwDBBCkEqlEAwGWf2zAcprmHd14KbTUF5/Hca772LeMOArFOCNRhHSdXjicaAkcFTTQDjONCIomaRzfj+IroMPhcyO0WAQhqKYM5kAYBjgSqLJS5IprJEItEwGXCgEQ9NAAVCvF4Ysg0ajgGFg//vfj9ChQ217vZxiGIaja0y9N+SCIOB///d/kUql8Du/8zsYGxur6zjNYlcIphuiJggClpaWMDs760rzyGbUki61Nnvs37+/Jls5t1OyVgrszp07tptRM9eU8TwPXdc3/EzXddun9/z5810hNjzP2zNwhw8fhmEYGBkZQSaTwcrKin2ht+Y/O3WNUydCKb379VIUCCMj8ExOIqBpoAcPYo+iQCcExfV1pChFcXISXDiMgGHAv3cvRE0DgkFzowghoKU5SUQiIJkMeGtcJBAAV0rVghBzjMQwTGHVNIihEFRFgRAIQJFl8JSaAirLCD78MGInTrTnhaqRWiPMeq+9sVgMjz32GH7xi18glUpB13WIooiFhYWGtyk1wq4QzEbRdR2FQgErKyuOzMEbwWnTz/LyMqanp3Hq1Cl7Zsopbgqm5R4UCoUcuxk1SmVK1lqVdujQobq+TO3enWghCAL8fj/6+/sRiUSgqiqSySSWlpaQzWbh9/vtBqJme7F2OxveU8MAPzkJ8Ve/AuV5IJ8H5ThwmgYQApEQSJKEgMcDhMMochzkbBbr6+soKgpEUUQgHIbX44HX47HrlVYkSUMhkNLqLj2dNn9eLJpjJ6IIqqowgkHTOq9ksI7SjszY8DAKpYaZbqAW44JauXPnDjweD2KxGGRZxk9+8hN88YtfxGOPPYbvf//7uHz5Ml566SVcunSpKY/vBCaY22DtifR6vTh27FhTxRLYXswMw8Do6Ch0Xa9bvN0SzO1qhc0SovKU7PLyMm7duoUHHnig7nGeThUer9eLvr4+9PX12fXPSi9WS0AbnW3daVgRJj83B/76dXDZLIjHAy6XA/X5wKXToIEAuEQCNBwGLRRsQwIPIRBiMQRlGYYkobi+jgLPI3n7NgoeD/w8D180Cr/PB97nM7tcJQmGqoIPh6HLMvhgEFo+bzr/CAJosWj+rNTso6bTCB89igP/9/9i8Ve/avfL5RinEWY9C8aXl5fx3HPP2aWJZ599Fh/5yEdw4sQJXL58GV/+8pfx8MMP4/nnn6/39BuGCeYmUEoxOzuL5eVlnD59GtPT0y2xLNtKzKxIqhFjhO0ewwnWa3P79u1Na4XN9MS1BHN0dBTFYhHnz5+v+0amU8WykvL658DAgO0BmkgkcOPGDei6vsFKrpOWObcDPpFAZGoKgvU5L3VcwtoWwvOArgM+33u1SUrN2qJhmOLp9wO6Dl9PD7yKAnL0KPRMBkWvF/nVVSQ5DkaxCF8wCJ8kwScIECTJjCRh2uIRngcniqYjEABBkqArCkKHDuHgpUsAx3VVqt1phFkoFBwtmijn9OnTeOedd+76+T333IMrV67UdKxmsSu+VbVeFK00YzAYxMWLF8HzvCsrvpwgCAIURdnwM0opFhcXMTc311AkZdGIYFo7NP1+Py5cuLDpl72ZnqiapmFxcRFDQ0M11W53EuUeoFb905r/nJmZ2b31z1wOwugooiMj4Px+gOMAj8cUSatTlRCAUnD5PIjXa0af0ShoJgMajYIrFkH8fnDFoj0SQnw+UELARSLw6Tp8hw4hIstAIIDs2hpkTcP62hrI6ip8oRD8hQL8e/ZAz2QgWPOaJeHkRREHP/pRCF4vdF3vqvfGqWDuxE0lwC4RzFqwhu0r04ytEsxKMdN1HTdu3ADHcbb/qduP4ZR0Oo1r16452qFpPYbb9Y719XVMTU0hHo/jyJEjrh67m7EMEiyPXqv+uby8jJs3b8Lv99sC2kj9s2ON4RUFwtgYhNlZEFE0BdJKUxsGUPJn5aymHJ4H8XgAQkDCYVBVNV178nkYoRBoOg0aiZhbSSIR0GLR9HilFLQkvtZrEZQkBHw+xONx6AAKsoy8LOPO7Czg8cCTySC8dy9QLMIXi+Hg7/wOPKWb3loWMncCTlOyO3FTCcAE06bcIafabGU7BNOqnw4NDbnaGVarYFJKMTc3V9O4htsRJqUU09PTWF9fx/33349MJuPasTsJty6e5fVPAPb8Z+Uuyp6enu6ufxoGhJkZ8DMz5jhIqZmHABCKRdBQCFwuB3i94PN5kEAAfC4HEgqBVxQYwSCgqvacpOHzmQIbCpnGA9EoDFkGFwhAy+fBB4NmulXTAI/HdPQJBqFns6aLTzaLYCgEn8+HeCQCTRCQSyaRTCahFAqInT4NX7GInlwOoVCoejdvB8MiTAYKhQJGRkawd+/eTV1hap2PrBdBEKDrOubm5rC4uIjTp0+7bmBci2BaS5Y9Hk9N1n9uduJqmoarV69CkiScO3cOyWSycyOdDiUQCGBgYGBD/dOam7VWOPX09Gxb/+yUjmJQCn5xEcLkpPlZUBTTpQdlUbAggAMAK60aCICTZZBQCFwmY0aWyaSdjiWlRc60VHuEppnzmISAUAqO52FQCk4UTY9ZwLS0KzUJabkc+EgESjIJMRKBms+DAyDF4wjIMvqfeQa+++5DMpnE7OwscrkcfD4fVFW1a34d8dpugdMIs54aZjewKwRzqw+htRvxxIkTiMVim/5evQ48tUIIwerqKnp7e13xpq2G0+jPinAPHz6M/v7+pjzGdlhp4HL7wd2yM7JZVO5ArKx/chxnR59OVmm1Gi6RgDAzY3a6AuAKBVBBMCNIjwd8Pm8uY1YUUK8XnCWmqmqKqKaZq7p0HVSSTJEMh0GKRcDvh25FkppmiqbHY46PlFZ3IRYz652SBFISWGoYQOlPwe+HbhgQfD5zNybHYe+v/zpip08DMG9e+vv7QSnF2toaZmZmNmy+sUwWOjHyNwzDsWCyCLOLqbzIWrVBSqmj2mArUrKpVAqjo6MIBAI4efJk0x5nu7tYSikWFhawsLBQd4TrRieudQ6VaeCdLpitfm6V9U9N05BMJu1VWj6fzx5f8fv9bYuCuFwOwvQ0uHzerFECpu1caaaReL3gVNVMu66ugvT0gMtmQQMB8OvrIOEw+EQCJBAwhY7jzJEPVTX/JAQUAC8I5souUYQhCObqrlLNkotGbes7LZmEEI1Cy2TAl/ZZGvk8EArBSKchxuMg+Twix49j7yOP3P18ShZ+kiRheHjY3nxTGflbnc/NHmlzilPBZDXMHUI6ncb169drqg1W6151C0opZmZmsLKyghMnTrTVK9G6keB5vqEItxFRMwwD169ftxudKs9hpwtmu/F4PBtWaVn1z5mZGeTzeaiqiuXl5dbVPxUFwuIi+KUlwOs1u1s9HvCFAqgomhFkqXZJCQGn62bqUFXNLldFAQkGgUIBpOT/SgMB0NJGEVoaMbEjSb/fXAJtRZJW04/HY9rkcZxptB4IwNB1c3VXKVWL0j5LMR6Hls1COnoUB554YtOnVp7iLN98U975bK0xo5Ta0Wfl7slOg0WYO4ByYXrwwQdrekObFWGWO+VcuHABxWKxZbsqK8lmsxgZGXGlyaheg/d8Po+rV69icHAQBw8erPo7TDBbS3n9U9M0vPPOO1BV1d4EYs1/xuNxd+c/dR3C8jL4tTVT0HjerFWW0qzE5wMny+bfMxlQnw98NmtGmIpiGgooivnfllKxRsn8nHCcGWFynLl5pHTeVBTBUWougZZl2wLPNlwPBs15zUIBtNTsI5SafRAOmyu7eB60NL954MknwW0RkW1VE6yM/HVdRzKZxNraGqampiCKov26d9roEBPMLsdaZCxJ0pbzg5vRDMG01oOVj7C0crlzOYuLi5idnXVlzhOoz+B9ZWUFU1NTOHXqFCKRyKa/18xtK4ztEUURQ0NDG+qfViOLVf+0oqC6LuKUgl9fhzA/b85RyrIZQer6e3OUum4bEXCaBgiC2e3q8wGKAt3jMSPMYNAUTUEw066KYhoS5HKggYC5uisaBc1mQUpLoA2v1/aNJYYBzucDUVXwwSD00t8NXQdHKYRIBEYuBy4SgZJIQIxEoBUK8IRCOPjxj0PYJgKvxZtVFEXs3bsXe/fuBbBxdVw2m92QOg+FQm1tICoUCq6tPOwkdo1gjo2NYWhoyP6w1YqbXbLWYuNEInHXCEurxlcsDMOoqZbrlFqEnxCC8fFxFAoFR649LMJsL+UX4s3qn9a6OV9pPrGnp2f7izil4DMZCKurQLFoimWpUxWKYkaJxaIZBZat4wJgzliWhJNXFPPvhgFQClBqNt/wvB1BGoGA+fNSurU8kjRSKXBWQ08pVavn8+CjUdNCz9qJyXGgJaN1oqoQJQm6psEbieDAU0/Bs8VNn0Ujc5jlq+OAu1PnoVDIFlA3OlZr+c6xCLPLeeihhxoSPLe6ZIvFIkZGRhCLxarui2xlhGlZ7R08eBAHDx509Y7UqaiVr0s7duyYo3Nwcz3Z4uIiZmZm7LEK19OKO4zt3tNq9c9kMmlfxCVJsgW0/EaRk2UIt2+DKxZNEdQ0041HUUyRMwxTnGA2+oDnQTXNrBsqimlIoGnm+fE8eE0DJMls+vH7wadSMKJRcyl0KZIklZGk32/6wUqSvcvSUBRwHGcbqnORCHRrJ2YmA5Qs9az/jsgy9n30owg4jK7cnMOsHB3K5/NIJpMYHx+HoigN716tZaSIGRfsctyI/NbW1nDz5k0cP34cezZZFNsqwbRmG7dLf9aLk+dhpaS3ej2q4UaESQjB2NgYVFXFQw89hHw+j0QigdnZ2bbaynX6HB5Q2zkGAoENYxS5XA7JZNJ+7fdIEg6IIkKUmjOT1nes1LEKQbAjRa60S5Irue7wVv3SqmdSaqZrOQ4GpWZ3ayBgLoWORs36YjS6wcWHkyTQ0rgJEQRTFMNhsyHI7zeXQ/M8YBigpfonHwrBUBQIkgStWATv90OnFIamYf9v/iako0cdvz61rstyCsdxkCQJkiRhcHBwQwfu9evXN3TgOr1JrGVTCYswu5xGL0SNCGa5i9C5c+e27Cxs9gXTMAyMjY1B13X82q/9Wl13mk7YStTK92dWc1Vq5NhOKBaLePfdd9HX14fjx49D07QNC4bL12plMhkEg0E77bgTh7FroRHjAo7jEA6HEQ6HcWhgAHwiAW11FdlkEvlMBjohCHu98Pn9CJRdmGlZ2pID7NVY1hgJ9fvNLSQeD/hUCiQYhJjPg/b0mPVPUQQ1DHtekpYM13lJgm4YQCAAQ1XN5hy/H0RVzRnLTAYIh2Gk04AkgaiqOW7i85kRpd8PSggMngcnCIidPm3PWjqlWYJZyVYduFbt2Wre2qwDt5ZzZWMlu5x6BVOWZTvluJmLUKuwOlAHBgaQzWab+kXdrDFH0zTb2L7e/ZmNCKYV1Q4PD6Onp6fqcSrXahUKBSQSCUxMTKBYLCISg1pNDgAAIABJREFUidjp22bMxu3o+iwhEPJ5cNksuNJIht/jAaJRkGIR+XwehUQCq7IMn2HAFwpBohQeq3mnVLekADhC7GYg6vGY4yShELh8HmowCKFQAI1GQdLp94wJKAUBQAoFIBwGyefBRaPgCQERBDOiFEUzog2FYGgauFIjDx8Mmp2zVuNPLgdOkqCkUoiePIneD3ygjpejNYJZSbXacyqV2rIDl0WYTDAdU0/Tj9X4cOLECTt6aRe3b9/G9PQ0Tp48iWg0ipWVlaamfqvVGS3noHvuuWdb8/btjl2rqFgryVZWVmqKajmOQygUQigUslNbmUwGiUQC8/PzANDRrjhuU3eESSn4YhFCJmOmXa2ZyVKtEoZhRqDBICSfD726Dk1RUEinsV4oQFtehujzQaIU/mgUvnze3CiSzwPWLCZgpm8BQFFMETYMwHLtKc1NQhBAfT5QVQUXCoGWvGX1dBp8SUSJ12s29ZR8ZjkAhOPs1C1HKSCKIJqG8L33muMjdbwuhJCOqJl7PJ4NHbiKoty1vDwYDMIwDEefASaYu5xamn4IIbh58yZkWcb58+eblvZ0ei5jY2NQFGVDB2qza6WVx19YWMD8/HzN86/VqFUwLT9cr9dbd1RrwfM8YrGYbaNY6Yrj9/vt6LORrSA7CU5VIcgyUCyaoqZpAMeZIleqRRKeN7tbrZ9zHDwAIpKEqN8PGotBLRSQz+VwZ3ERuqYhSCl8kQhCxSJ4STLdfEIhcKpq1js5ztw+Eg6DpNNALAYUCqDhsBmdWhFlMAiq6+CjUeiFgrkMOpcDHwqZ9nklowM9nQYfjYJks+ACARDDgBgI4MBHP2o2HdVBuyLM7fD5fHYHrrW8fGlpCYVCAVeuXLGbtzbrwJVlmQlmN9Pohcvpf18oFHD16lXs37+/7bsay89leHh4w7k0WzAtUTMMA6OjoyCE4Pz5867cTdcimFYaemhoqGY/XCdUdoUWCgUkk0lMT09DlmWEw2E79dUp1maNUFOEqesQZdmsMxqGGf2VmnKssQxomhmxaZrpypPPAx6PuWHE5wOfyZim6fk8vDwPXygElHZTyuk0Cvk8suk0jNu3EfJ6EdA0BAIB6JadXclEHZJkRpKSBJJKmc0/JZMDomnmmi+eN1O2lIIvWeXxXi/00miKEIlALxQgRCIoZjLw9/TgwDPPQKixBl9OpwpmOdby8j179oBSinvvvddu3irvwLWyLIFAwO6Idsr8/Dx+//d/HysrK+A4Dn/0R3+Ez372s0gkEvjd3/1dzMzM4PDhw/iXf/mXtmbrdo1gtoLl5WVMT0/j1KlTiEajDR2r0a0QVjr45MmTVU3l3RzNqAbP81AUBVeuXMHAwAAGBwddu3lwKpirq6uYnJxsWidwNYLBIILBIAYGBuzOxEQigYWFBdvarKenp/6h/m6AEAiaBr5YNN8nXTdF0vrTSp+WGxEQ8l6HrK6/Z3nn95uRqc8HLp83u2ILBcDrRdDrRdDnMxt1ZBkFXYe8uooVUQTJ55HIZBAURYiSZApiIGCmfiMRs55pzV6Gw9DzebOb1uMxI8hIxIxKo1FzTtPyly1lmjyBAPqefBLeLRY2OHupumcfplXD3NC8dejQhs/5Cy+8gDfeeAOCIOA///M/8dhjjzn67omiiK997Ws4c+YMstkszp49i8cffxz/+I//iA996EP40pe+hBdeeAEvvPACXnzxxRY8203Os22PvIOwoihd13HhwoWGI4lGli9bJgD5fH7LdHCz3XJyuRxWV1fx8MMPN3zzUMl2504pxcTEBLLZrCMjhGZR3pl45MgR29qsrqH+DmHLGzlKIeg6BE0za4dlIshZtUNVBXjeFEGet9OyXLFoNvSU0rXQtPeae1QVtPQecqr63u+JIlD6O+/xQPJ4EDx8GPFiEVOGAbFQwJogQJufBx8OI+DzwR8MQggG7fPjBQEGIeC8XhglcwMuHDadfWIxqOk0hGgUSjoNwe83rfTyefQ99RT8Bw648np2y43TZtFw+ef861//OrLZLD784Q/j5z//OV588UXwPI/Pfvaz+PjHP77psQ8cOIADpdczHA5jeHgYi4uL+Ld/+ze89tprAIDnnnsOjz76KBPMbsYa/ncziqpXMK2O3L17925rAtCslCwhBJOTk0gmkxgcHHRdLC02E0xVVXH16lVEo1GcOXOmo0So0tqscqg/HA5DVVVopU0c20INADoArykybYQHIGiauXeSEHsmkrNE0zDMGcbSaAZHiPkelkzTbdceUQSKRbMmWCyaox7W7xBi2t8JAvhcDjQUMqNVn880NvB4zMf3esFRCunAAQQ0DbSvD8VkEgWOw+ryMjRRhFcQ4M/l4N+zx/SBjcVAcznTxack8oZhgPf5YGiaabROKXiPBz3vfz/C99/vyuvWDSlZC6ddspIkQRAEvPDCC+A4DslksqaF7zMzM3jnnXdw8eJFrKys2EK6f/9+rKys1H3+brBrBNOtC6d1h00pxeLiIubm5lzzX7WwRlhqiYzu3LmD8fFxxx25zRBMy683Ho/j8OHDUFXV1eNbbJaStXZnlnvzdjKVQ/3ZbBYTExO4desWZmZmNqRv79rYYsxDID8FqA7K7YEhPgpw7i4ar0ZlhMkBEK2IkFKz8xUwa5aWkQDwnoUdpebPKbXFlFNVs9mnWATxeGxXHw6lGUyrDikIAM+DMwyQYNBM0Zat7kI6DRoKmd2vhmGapOs6qNcLXyAA0edDOBSCznFQVBW5fB6JhQUYPA9fOo3g3r0Q0mnTH1bTQDQNXCAALZOBGI+D5nKInDqF6Jkzrr2eO1EwLazPSfmM83bkcjk8/fTT+Nu//du7UrlcabdoO9k1gukGlshQSnHjxg17/ZTbbeG1+rBOTk4ik8nU1JHrtmBaO/yOHTuG3t5e3L59u2k10mpfGqsL96GHHqq5O6/dX0LrHKylzr29vQiHw3fNxVnNQ1KIQjT+G5SLArwPHF2HYLwOQ9x8jVQTzhg8x0MAea+hxzDAGwaIYYAvrdjidN1MO8IUUQDvNf6URJRQagqcKG4QTyqK4HM5M2IsFgGv10zTcpz5eKXfJ5JkuvhEIuZ6rmAQtBSlU54HLdngkWwWiMfBpdPwRSLweDyI7dkDjRDI2SyyqRRkWQZNJhGMRODz+eA1DIixGPRsFtLwMPZ88IOuvordJJjNHoHRNA1PP/00fu/3fg8f+9jHAAB9fX1YXl7GgQMHsLy83PYbYSaYNSAIAlKpFG7evOnKCqzNcCpmlg/rnj17cPbs2Zou/G4JZvl845kzZ+wW81YZpBNC7PqxW124nYAoiujt7UVvby8A87229iLqygwO7r0Nr98LSeIhevaAJyswqAFwAjgyD46sApwEwh8FOPdeE0qBnp5e8LwAAQQwyHuNOyVTAM7606pBaprZeaoo5viIpplm6KVOWa5kg8eVPi8cYBoRaJppeVfaUcknkyDBIPhEwkzH5vNmPRQwu229XvMcCDF3VwKA1wtSSv0iEgHJ54FoFEYyCS4ahZ7Ngvd6EZQkeAUB3IEDKCYSkD0epFIpyLoOj9eLcF8fDnzgA67fXHWTYDqNMHVdr7mcRCnF888/j+HhYXz+85+3f/7bv/3beOmll/ClL30JL730Ei5dulTzebvJzri6OKDRDzqlFIqiYGxsDA8++GBNLdO14sRVyIkv7Va4IZi6rmNkZAQ+n++u+cZWrOAqt7gbGhrqiEixKjQDjuZBuXDdaVO/3/9eYwTpg5FfQCanYmExBY4WEAz6Qf0p9IRn4aFvwKxrquDIvTDE3wQ4873hyBIE/X8A/H/23jRGsvSs9/y973u2OBGREblU1r713rZ7LXfbxm5jLot9bYOxDDYIYXz5YGTESIMEmkZ8QAgBZpBm/AHNleB6bIN0sXoWw71mLJYG29cbvblr79qrOiu3ysyIjOVEnO193/lwIrIW15JZlVnV2yNZ5arqPOdULOd/nu3372HkAxj1bhA3vrkVbAGF75foRX2UsFhtkHm+MuVqtS5E8FLu60BIh3uPIssuG/aRUYRxnJVfh5xYMTBrF1oXZdghAi9JMNVqAVUPw6IMWyoVUIGhNVe3S+66hYVXvY7o9TClUoHFUwqbZYVV14AHm8cxwvOgXMb0+7hjY7C8TGXHDrJuF1Mq4X3wg5w4fZokSdaV9PR6EszVXuvNQAu++93v8jd/8zc89NBDPProowD8yZ/8CU8//TSf/OQn+eIXv8ju3bt55plnbura1yveNIJ5K5FlGYcOHcIYs+FiCdcXM2stJ0+eZHl5+YZc2ps9x2piaDa9d+/elab8pbHRayt5nvPiiy++JihK1wupD6P0NynUQ5KrD2PV7jUfR5hFoANUsXICt/RuNvk/ZNN4iLEVGt0nWWwuYjpfIzd1wjAgLI9R8k4h7AJWbAbbxMmewYoA8HD0d8kxGOepa5630EKFMRLXhSwFJVkRRQMX4eiDcukKiGCQWQ7LsiuDO8PJ2SwrRDLLLq6N+D6y1Sp+32oVNJ84vngxwylZYwoLr8G6hx1kkkIpdKWCXFjA1GqYdvty0LoxmCQpxLHXQ/h+kZUqVaD1PA+rNapaJe/38cbH2fzxj+ONjbEbVkhPzWaT8+fPY4yhXq9fs9d8o3g9rpXcKHq93pqZy+973/uu+YD97LPPrulYGxlvCeYNYnl5mcOHD3P33Xfjuu5t+XBfC8M3HKoZWoPdyrXcimDOzMxw9uxZHn744Ws+PGyUYFprOXv2LEmS8NRTT60Z3H5bw3ZQ+ptYxkG6YPs4+T+Syf8EYvWZidQHUfrfwAoQFi0/gHEewdjdCJtgxQj18RL10Q5uNkmmNxH1uyw3l2nqOZaTI1RGNJtG53GlBlEMUxgmkfoQECDNfsBBqx/DqvuwFtJUYq1CCPA8S0GGKxB2YtAjFIPJWDv0nszzyzPJOC4yxCHCLo4vZpJDDqwxF0U3SYrBnzQtgAW9XiGenU7xa54X55ES2emgKxVEu40ZHS2su8plyDK0UsU1DWDqolpFxzGiVCqQdwOYgR7sXF7qgWm0RpRKCGDThz6EN+CtwuWkp+Gq0NUYrEOnmxt9R19PGabWesMyzNdLvCWY14jhjXl+fp7HHnuMMAxpNBq3xdz5ahi+ITR8OFSzHudYq6AN+4VZlt1w2GkjSrKXIu7CMFw3sbxVSMS1QtheIXJyII6iBLSAGFilYNoeKv8WVmwaiG6O0v+MFQFWbsLKzWA7OOkzCDuPMKfw7Qv4JY/RUGDEw4T5wzQaEWfPTDFemUEohzAsEQY9JA0U3yoyUDRO/g/0sgpJOo50HKRUuK5FmAa+PEpue5SFC/adkOqLAIJBJrmSQQ6BBUMRHZg+G89D9PtFj7LXKwZ7BuzWFWSe1oXH5XDf8pI+5TC7RMoVcTQDn0tbLqMHoHWRJNiB+bTt92FkpMguYcVIGmsLDF6/j6zVSDsd1MD30uY5mz76UYIbzClc2WseMljPnz9Pp9NZcboZIuSu/Jy93vYwV5NhRlH0hnX1edMI5lpuiGmacvDgQcrlMk8++eTKB3o9PDFXE5eKmbWW06dPs7S0dFNWWNc7x1r+LUPM3tatW9m1a9cNX8/1Fsxut8uBAwfYs2cP27Zt43vf+966HXujwoqRoj9oeyBCsC0sZWAttkcJIFYyUmGbSHMEJwdEgJZPIc0xBA2smESYwwhmwJYQ1sXKGSqlFrVtp8DkCL2dJF2G/GXSbguLwopJ8MaQahNJMok1x1Cuh9I+ytkD1HHFy0ANk2s81ULGBzDqoWIvcggiuHSQJ0mKDHOwWiQGwHWGKyVD6s8QiZckxRRsr1eI4lBwB9mpdZwCk1cuIwawdNIUM0DYmaFlV7VKniSYICiABIANgsLfslJBD3iwutstBoIGll/GWoSUhaD6PrV3vYvK/fev+T2/ksE6dLo5efIkcRyvIORGR0fxPG/DHtY2IlabDb9RObLwJhLM1cYwk7vaLt/tEsxhSXYo3JVKhXe+853r+iQqpVz1gvxwx/NamL2rxXqWZOfn5zl16tRtRdytS4gSufNRVP4NhG1jqaKdD193yOZHp4srWFEG2wRGkHo/iCrYAGHO4uYHsaICOEj7IpJTWFwgRBChzAvI5FWMfAgrRxAiJQhGESbGyPdCfoY0WWB+qUIUjzBem0Y4Eo8xpGNwOI4UdyFxwGgEiiyRlGQLa7JijWQoTMMy7YDqw9COK45XxFEodVE4ByADq1QBNHBdhLXF8NDAtBmlilKu1hfFslqF5WXMyAi20ykE0drCWaRcxg6ncIUoAOvGrBhJq1qNNIoK8+cBRN0qhY4iRKVC3mox8vjj1J944tbf/qs43QwRctPT0xhjiOOYRqNBvV6/KbLX7YzV9jCjKHpDemHCm0wwb2RqfOrUKRqNxjUzuduZYXY6Hc6cOcN99923QoZZ73PcSNCGA0atVmvNrivrkWG+VhB3txJWbid3/xNFphisTKsWfxkhbH+QiV7jtRUuuftzONk/Iux5EBLNHpQ5MhBSgbSHgQqWESBFkGNxsFQQxGBTBItYsQsrPaQ+iVF3oc0ord4ukjgm8HPC0OIoQaI30eu1SRJFOegibR8lewh8yBIkOVb7oAZgAWsLMRyCCAZ9SamLku1w5QSlVgZ1GCDy7GAf07juSlYqB1B0ORDDIS5PDCAEZBkmDLGD4R0dx0Wv0piC/BOGiOlpzK5dhQl0pVKIKRTDSEKgB56WBpCeh/U8dJJQedvbGP/pn96Qz8LVUInPPfccjUaD06dPr7n/ebtjLUM/b2WYb+CI45iDBw+uDNNcK5O7GU/MtYa1lkajQavV4sknn9ywXsCNBPNSxNxadzzh1jPM4fnr9fqGIu6G9JANLY0JxZVlWJkfKAZ5ACtKaOfjWHmNByMxRu79MuguXvrHOObfgARrx7AUhCnJHNAANMVIbl78N1SAsOinAtgMYzq020s0uzvw/FGEaOK4PYRIcJSH78+i3O1IlaFklaWWT2pHcMwZXFHC5l2M947LepQIcRmdZ0j9YeCfKNMUM5yg9byC5iNlkVEyWD8Z9C+H7iSmXF7ZuRRLS8VqSJoW9J4wxAxWTbC2WCtxHPSwxFqpYOO42LUc+FxmUVQYRXteYf5crxeCWi5jjcEbHWXiP/7H2yZUjuPgOA733nsvcLH/OT09TbvdJgzDFQG9Wv/zdsda1kreyjDfoLGWfca19v3WGmmacujQIay17Ny5c0Mb59fLtoeTwbeS3d4KuGCIuNuo7PqOh22g9LPFII9wwbZR+T+Qe5+55o+IfD9e8mdIpimGhkDRAMoU6yaK4nZaAlIKumsP8IAZrNkKpkFruU279xG0cfGcDuhXcf0AzW5830HYJo48gRRdXKnQ4jEmxrdj882Q7qK1dIGorbmwuExJdfAch4rn4TjOys4lw7KqEEW/koK4I/K8mHQdgNdlFGFc9yLNZ7i7OexdpinG96Hfx1ar2AHAwMQx1piiFDvoZ5rl5ZWdSz30uRwaU3seOs9RQVBYdQmx0sdUtRpxs4k/OcnmX/gF5G2uYlwqglfrfzabzcv6n0MBvVMeu6sR7bd6mG+QuPQmbozhxIkTtNvtVe8zKqU2jI86FKl77rkHKPYcNzKulmFaa3n11VeZnZ1dmQxez+OvJoaIu1s9/2s5hC1A1MVuZQxyBGwE9io9ZWsQ5ihe+qdIzgMZRfYIhShGFGwcAajB73VRigXAwVKi10uYXvBw3D0YuRnXc4FxHLeLUH1cz0eQIGWEkCModw8aB0c0yHWKMGCp4XmS1G2xbfMYWb9Pv91mYXERE8c4SlFxXYJSCXcwkDPczVzZxbwEbTdE3plSqVgbCYKCCxuGiH6/eI0GmDxdLhfZarHbghmIoglDSNMiW+x0oFolbzYLOy8oDKMrlYsG0v1+MTlrDLgueZLg1ets+tjHUK+hm/yl/c8dO3Zc1v88dOgQWuuV/c/XWv8ziqKbgqm8HuJNJZjDGLp6TExMrGmfcSN6mEO03Nzc3IpILCwsbHjp90pBG65suK572WTwrRx/LRmmMYYjR45gjOHJJ59c1Q1gvcqot2153GZI/SLCnEHmLxR9S+FBXlB3EC5SxBSiCNguTvYNlP4fSDtNIZBX+/x5gAG6FOXYi9HrjzDfeIJO/26CICXLcwL/JCYdpVSaxlgX1wkLqIHyUfRx3BLWuiiZYrPTOCZH253IrFYs9QNYi6cU7sgItcGgTdzvE7XbLC8uYoyh4jj45TLlQe9RDqZdRZKsiOiKo8nA4suG4QoKT3S74LrowQqKHpB9hmskw7USy6CX6nlFb7JUwi4vFz1KY7BpWqyNLC8XmWWnU6yVuC6m32fy538e7w7d4Ff7Hbmy/6m1Znl5eaX/qZS6rP95J1dV+v3+G/Zh900nmEMvwpshxKy3YA4JQr7v3/b1lUsFc7iysZ583LX0MIcPMFu2bFnVysrw+OsRMzMznDhxAsdxNvaJ3Rqc7BmkPQZWI1nG2hJWjANVBAaV/t9sqb5IoErI/CcRtomwi1hboRBRw+WCOHx9XS72LotIsjLn599N1N+GUhLf7SEICbwMKVoEfgMrFL7rYK3Cc9tgRnA9jbUllGggsznIW1gb46RHyeVTCB0WC+zDAZ0BH1bkOYHrUhoZwVYq2Cwj6nbpNhosRRGOMZTKZcqAUy6jhhSfISQ9z4tjuS5ysD/JJb1lMyTy1GpFljjkwQ75sFqjXRfT7WIqlWL3U8piQnaweiIHO5aqXCaJY5QQbPrZnyXYtWt93+tVxq088CmlGB8fX8nk0jSl0WgwMzNDp9MhCIKV9ZUwDG9r//OtoZ83SAyRcmud+BzGeg79tFotDh8+zF133cWWLVsu+7uN8qq82jlmZ2c5c+bMuluUrbaHubS0xCuvvLLmB5hbHdQxxnDs2DHiOOaJwQpBq9VaeWJ3XXfFHWQ9zJ2FnUfak1i2g2hhxQSg0fIRoIw0L6J0hBJ9lGjipl/BMoFR9yHtFIU4XushKl75f3nuMn3hUS40HsNxekCI6/awIsB1OiA8PC8FIfHdHITFVSmwCeVvATOFK6cQpgtaYO0YQguwESp9AWufQhpTlEYHKyEiSYoMcbgvmSQYpai6LtXxcajVyHo9on6fRrtNMjtbiKvjEIYhzmDdZLi/aTyv2LkslRDNZrE+kiQYxykGeoTAZBkyCNBpighD8iwrVlGqVfRgMjZvNouMMkkKek+lUohrECClZGTfPsoPPnhL7+utxHpSfjzPu6z/2e/3Vz7LvV5vZf/zZvufdtgTXkW8NfTzBokdO3awd+/eW3qqu9XMz1rL1NQU09PTPPLII1d9Ersd07hQ9E211nfEomxIUlpYWLgpIMMwg72ZG06apuzfv5+xsTEeeOABsgEw/NIn9uF+3NDceQjcHhsbu8n1FlMkgFJQrIB4CAa9TOYRNgbboOLP4ogeWAn4kM9T9CU9it5lzgBMO/hf8RobK5iZf4jzc4/geQLHiVHKwXUihPQJ3AhEIZ7aVAn8CG3KBH4XKBM457CmgyPBijpkGkEDsgpWuIhcAX1E1i/2Iy+BrgOXIfEug6gPRNQVgnq5XMAJ0pR+lpEsLDC7vIzs9/HKZcqOQ+D7SGuxpVLR3xzwYM3ICLbdLtZHhCgGgCoVbLtd/LeDKVyMAd/HdjqoWo2s30eWSpgkKRiy1Sp5q0X18cepvec9N/E+rl9sFBZPCEEYhoRhyI4dO1a8VhuNBocPHybPc+r1OqOjo9Tr9VV999dyrW9lmG+QKJVKtyR4tzolO+wTOo5z3T7dRk/j9vt9Dh06hJSSRx99dGOwcNfJMIevg+/7Nw1kuNkp3Ha7zcGDB284gRsEAdu2bVsxd2632zQaDc6fP4+1dkU8R0ZGVnX9Vkxi5VaEmcOKMlZOYOwkwi4hyMA2gAwlYgxBsetIBclpBJJCHP3BrymFaBb//rmFvZybeTd5HuD6Am0EnmMQCKRSKFVkX1L1EULhORFCKjzVQ+DieglWuLjqAlKOYfIERBWbzCPoY7N0MPlaw6Au0nwuofVgLSJLkMlhhD2PSAW5uBfkRCGurlsADJQCISg5DqXNm6n3++RKkc3O0k5TGlNTCM8jdByCIMB1HBjuYpbL6MGxrJRFhjsygmk2YbAiYj0PPdgLNVKurJwI112BGJTvu4+xn/qpNX921jtuF0f2Uq/VPXv2rPQ/m80mZ8+eRUp5w/7narF48FaG+VYM4lYyzKG7xxDtdr3YyJLscI3mnnvuYWpqakP3G68WVyLubuX4axXMmZkZzp07t2aTaSHEZQMXWZbRbDaZm5vj+PHjK/2i8fHxa68CCZfM/RVU/i2EXcCox7DWx9H/ihWbELgIlsBqhDCAC2IUrAb6XNytvDil3Wxt4djpH0PbEKzE8y1S5kjp4zgZUEGKLkKUEbLIMB3VQ6gAR/URysNxNAhwVYKUArImgiqkLoI6NpcIXcVYsOIhyHLEoGfJQLRQCvp9hD2FMOewtoo1fZz8h+TOE8i+i/X9i0zZ4ftmLbguTpqitmyh1GrBvfeiZ2fpSElzaYl0ZgZZqVAB3K1bUQNnE4xBD7my1Sq610NUq2SdzsoUrRnQe7LBsI9JEpxajfGPfrQo397huFPg9av1P5vN5mX9z6GADvufaxHMfr+/4Y5OdyreVIJ5q+JwM4JprWV6epqpqanruntceZ71FswhyajZbK5kdefOnVvXc9wohoi79eiXrkUwr+xX3mr52XVdJicnmZycvKxfdPz4cZIkoVarrQxcXHYuUUa7H754nPT/KHqZIsCq+xA6wpJgUUiCQdbpYBhHco6i/CroRnVOntvH/OLdhGGPLC8zUumS5QGVcg9tLEoppOijXBdHRggR4LkRqAqO6iLECEp0sKKKq9oIFWKzCIGHSBtYRtH6Aay6B2yMJcAmEmE6Ba0nzwtd5L+DAAAgAElEQVRT6CGGzlpEPg2UCyiBcrHaIHQD4+64CFpvtQoT6E6nKN0mSbHiMRTgJEHV61SNoVKrYdKUJM/pxDHNU6dIPI9wbg5vyxaCAazAuC4MeLDSdQuGrOchSiV0mqJGR8laLdzJSSZ/8ReRd2iH8cp4rVh7eZ7H5s2b2bx588rnudlsXtb/LJfLq/6+RVF0R0qyU1NTvP/97+fFF19kbGyMZrPJ448/zte+9jU+97nP0W63UUrx+7//+3zqU5+6qXO8qQTzVmOtgpnnOUeOHEEIsepVCVj/kuyQSVutVtm3b9/K8W9HnxQKsT5+/DjdbnfdEHerFcwr+5XrfYO6sl9kjFkZHjp37hxSypXy7Y/gzkwLYRdAjGDFNqy4QG5yXNVBYLCU0OJRlD0MGJLU58iJd7HU3I1UglKpALOXSn0MkiDIizURF7RReEEBDZBSIWSGkgopekjpoFQH6Xg4qoNUZcg7CFHFZgYr3o7m7WjtsDTdQBjDSN0SuHME/BDPSyDfjrD3FKXZNC0oPamHZRmR+VipEbkGoRB2YB6d5ys7ljYMkY1GIZ7NZjHJqjUyjskrFYiiAkSQZbjlMqNhSG1sDJ1l9PKc7sICiwBZRlCpEFQqeK0W1GqYxUUQAqN1ATgwBhWGjH/0o6jXUObzWnQqufTzvH379pX+59zcHJ1Oh+eff37lgfBa/c87BS7YuXMnn/vc53j66af5y7/8S55++mk++9nPEoYhf/3Xf829997LzMwM+/bt44Mf/OCqudiXxluCuYZYS1YzLD3u2rWLHTt2rOk861mSHVJzroTJ345JXLgoWKOjo+uKuFvNe7HafuV6xrAfNJz4HY77D+2eKpUKY2NjTNbP4NklJEVPVHISS0iUPozythF6DjL/Jorj6Dzl5Nl9HDvzKIGXYCgRuj1yXaVcamMI8L0Y0DiOQMkU5XpIkYEsIWQf5YYgY5TjI0WKlC5K5CjlInQXYQU2b4GdJBePoGPB8994ibzbJ+722bTJ8sh7GpCX0Nog1TRGGyz3Fn1MrdHO/aj+90E1Ud0M449CVAW/8LnE2qIca23BgfW8YkWkVII4RrguGgpQQbUKzSamXse225ggKMabtKYUhgSTk2jfJ88yOv0+rU6HXpriNRo4tRrZ8jJ20yZMnmOjiE2/+It4rzFq1OvBC3PY/xxOyd5zzz0rD4SX9j9HR0dX+vlr3cP89V//db7+9a8zOTnJoUOHgMIE41Of+hRnz55lz549PPPMM6uaov/t3/5t9u3bxxe+8AW+853v8Bd/8ReXPaBv27aNyclJFhYW3hLMjY7V3uyHBss3W3pcL3D5cBr3atSc21EK0lrz/PPPb4hg3Ugw19KvvBWM343iynH/brdLo9Ggs/j3LOUh5dKDhGFcDOCokNTUKSGLMi11Tp8JOXbqPhAa382QyiNwuxjKlAJNmm+jHC6TZRXCsIvOywRBr2CdOwopUhxXoUSE45SQ9NC2hmO7SLeMNT0kFdA9sKNYM4IQiqlj54mWOpSrPrXREGvO05nvURoLkKnEOh4yuUDu3r2yS4kJ0c57ENkitiSxSRlKzor5s2y3C8h6lhV2X0ohe73ChUTrorQKWNctRHVkBNPrYUdGCh5spYJJU4giTBhi2m3k6OhK+dZaSxxFNLpdYuDs6dOURkaY+KmfwlnjQ+vtiNeDYA5jCF5XSq1UTKB4IFxeXmZubo7f+73f4/Tp0xhjeOWVV3j729++qvvMZz7zGX7rt36LT3/60yt/9vnPf56f/Mmf5Omnn+bzn/88n//85/mzP/uzGx7LdV3+/M//nA996EP80z/9049Us5577jnSNOXuu+9e4ytQxJtKMDdaJLTWHD16dMNWNVYbw1KwlHJNpeD1jPPnzxPHMe9973s3ZGLuWiK33v3Ka4XONXma4wbuZTe9bjNi4fwS5w5NobVh5wPbuPuxvSglEUJQrVapVip46Tja1unHGe1uD6vPY3GQYoE89zk/E3L40M/S70cFVACB5xqk0Ajp4qsYIRRhaQkhDEEgsVYRBCnWuHi+xZgabtDHWIXvaUyeYbRDv5chR1xcp02nWeLIcwJpNzOxpctd93poYWhPL5H2YkJfoaXFEw551kdog1EakWZYVSp6k55HvtDg6Etn6c4sEpR97n/n3ZTDAkgw5MJa1y3Kt65b9CzzvFgJ6XSKUu1g59LEceFzOfDFNFqjfL9oUwwyTZvniLEx8sFAT95qIXwft1QijCIYG6PuusiHHiLesoWXX375smnQkZGRO94/fD0J5rWu1fO8lX7+f/7P/5mjR4/ymc98hj/6oz/i6NGjPPLII/zGb/wG73vf+6557Pe///2cPXv2sj/7+7//e775zW8C8Gu/9mt84AMfWJVgAnzjG99g69atHDp0iJ++xHlmdnaWX/3VX+UrX/nKTb/ubyrB3MiIoogDBw6wY8cOduzYcce+jMPr2Llz55pLwesRlyLuhr2QjYirZeHr1a+01jJzao7zr8zieA53P7qb+mRt5e8vvLrIgW8eQeeasBby+E89hOu7HPrOK5x44TSvHjmP63vc+/geXv7Xw3SbEY/8xNtRzuDBRQi0egKV/w/KpTqVwGDlPXSzn+XVU1/j0OFtpGmIFaOMlDMcJwCbolQPYyso2UebAM/vYm0Fz42wOHheMRTkeQaBwXUzBC6eN0KSJCjTQziackXgeNBpKJ5/Nix8ImWX5quKPKnSnT/AmcPTmKjHq/NNdu0eY7HrsOeuSYRpoXQKqoSx9xTZYJLw8vdO0p1dxA1LRAvLvPQvB3jPTz6I4xarHKLfLyy7sqzIMgevA8OdyyQpdi47HezICHQ6xevkONhuFzvcw6zVCgsvKTF5jggCdByjKhXSNC0+F5UKttmk8oEPMPbBD172+RhOg77yyiuEYbiSLW2k0cG14vUkmKu19nrggQfwPI+vfvWrWGvZv3//Tc0szM/Ps3XrVgC2bNnC/Pz8qn7u5Zdf5p//+Z/5wQ9+wPve9z5+6Zd+ia1bt9Jut/nIRz7CH//xH/Pud797zdczjLcEcx1iSMu50wbHc3NznD59+o5dR7/fZ//+/WzdupVdu3bx/e9/f8POdWWGuZ79yumTc+z/18NUxyr0OzH//vUf8tD7CwHuRzE/+O8vUZ+oMrFznG4z4ht/+SwnfniG88dm8UOPkfEq2++tcfA7r+CXPF49Mk2n0eXJjzxOqVIAGrT6cSxlpDmJkVVa8VPsPzDO88//OlsnG6BS6pUZ4riMFWUcGVGSFn+wSxn4HSylAkBgywR+hyyvUw675CagFERYLI6SWN0iTt/Pke+d4eEnZnCcHr7ncOqgB7lDKRSQgRrZxMkXG2A05bJLL3MQUZ+pkxfY99R9VLftojN1lKjXZ7Q0QVgrIUxO2u2zPNPAsZrm+QUCT0KU0u1l1KuiGMDx/UI0PQ/ZbBZl2FbrYvk1zzGOA46DHayO5NYilMKUy9h+HwY4PDsygun3i/c/DFdMpCWFKwqAs20bo1f4Wl45Ddrr9a463Vyv12+L9+prZUp2NbFawRzG0Dbvscceu+VzD491o7DW8rnPfY4vfOEL7Nq1i9/93d/ld37nd/jSl77Exz/+cT796U/zC7/wC7d0LW8qwVyPD+elhJlhrT5JkjtqcGyM4fjx4/R6vTt2HTeLuLvZuJRVe7P7ldeK6VdmqI5VVsRt9vQ83/gv/4rjOrz0LwfI45zqeIVdD25n+/3b+M7/8xzSVWRJRtyNWZpuElZLNGaa7H14F67n0mvHHPnucfZ98OHBP0BinCeJ0yd56UXFuXMFuadeXcSTpwgrhYelTboszm+hXK0QBhbHXURbhYeD6yQIK5EqwuQuYSnCWonvxVhTwnVjkriEI/qY+CVcf5zDL22mWm6zfU8Xz5FkiSUMyuSmj80UOk/pzCyR9hLyXoLnCoKSxz2P72HmxCwvP3u+GNCR87zt0R3seng3Ekuv2SFpRwTKsriYU3UKj8vLfC8H+5umWkW029hKBdFsFm4iaQq9XuF52W5jxsaQ3S7a8wqykOsWGWW1io5jZBiSJ0lR2h0ZIW82EfU6ebcLnkfpZ37muruWl7qB7Ny580emm4UQl5VvNyITfD1lmKu91vV6CNi8eTOzs7Ns3bqV2dnZywYWrxV/9Vd/xa5du1bKsL/5m7/Jl770Jf70T/+Ub3/72ywtLfHlL38ZgC9/+cs8+uija76uN5VgrkcMhTKOYw4cOMDWrVt58MEH79iT4vA6JiYmuP/++2/7dVhrOXPmDIuLi1e1SdsoY+ahYB49enTd+pVpkuJ6LssLbc4ceBW/7DM6OcLRH5xg2z1bOPbCKeIoIe7EWOCHzx5k6ugMywst6ltq+CUfQktnKeLs4SnCaom4G7P3PbsIR0osX2itnEtrOHxY8uKLCs+zaC2oVCyZmMP1PCwhF85b9n+rj+c1AMO9D4c89tRWrBVIeRpjQlwnIu6FKJGSJFUmJtsICa7MyVPw3ISzx8p0GhKb97F2nG7X45UXwFGWzmIXHVuU9hEyQ2pNtxPj2xwE2CQlTjOaM0sc++4rKGEJax55LjjxwzNM7BzDlRSMV21pRwnSGDqZgG4HU59EDgg8Io4vTsoOCEHW94v1D88r+LRaF5OxrVbRz1xexoZhsauZpgVYXWv0wOZLD+g9cmSELIpwx8eR738/2RofGq+cbr4WnGI9zZxfT4KptV7V92u9nEp+7ud+jq985Ss8/fTTfOUrX+FjH/vYDX/ms5/9LJ/97GdXfq+U4qWXXgLgD/7gD275muAtwVxzKKWYm5vj3LlzvOMd76BWq934h24iVsNKHWZ1qzG/3ojI85yDBw8SBMFVEXfDh4uNGDoaiuXmzZtveb9y4fwS/+//9nVmTy/QaXRRjkQqSW2iyv5nD2GASj1k7uQ89c01sNBZjhDWkqQpbuDSWYoY3z5Ka76N6zuUqyWcwMVamD19gdGtdXY/WDjBHDsmee45ibWC4Q59pWLJc0E5TEmSgFLJsP97MdWaojoRcu8Di0jZw+SKIKwR90YpeW2SZAR0TJSM0rig8LwJli9keK5gbFOLI0eqXHjVI0sFWRwTjrQLkLnxkFkCNmBpKmZyewWBYWmmgY0TrKewaUouQJmMo8+fptfs4PiKqJ0xUgloJTl6uY0aKaPyjH43Rumc3GgcLKdfmefRiRFMqcTsi8eYme1SMX12PnIXYegiOx3yWg1aLWyttgJYx5ii1BrHiJGRguITBIUfS69XkH1aLcQAym6FwLouUilGP/IRGtYWw0W3ENeCU1xq5jw+Ps7o6OhNV3Rei3uY14rVfo+jKFqzYP7yL/8y3/zmN1lcXGTHjh384R/+IU8//TSf/OQn+eIXv8ju3bt55plnbvbS1zXeEsw1hDGGXq/H7OwsTz755IaWPodic7Uv1KVZ3c2Ay6881s2IzWoQdxu1rtFut7lw4QJ79+7lrrvuuqVjaW34v/7X/87yYps0yViaaZLGKbXxKp1mRHWsguMqep0YoRSdRkSlXtwQOo0upUoJDEyfmCPpJwC4nkPcT5ncNEK/G6OnG7iBy8iu+/nqVx2WlgTSxiT9jJG6Q6VWDJwEAUSdHYxWTmFNGYeYoCy5723L6DwgSw1ZHlBWMVIYup0KvX6VShjTaVqS3jbOHW2w/S4Xk/VYWhhj9pxlZLzEwrmIoFKlt9QCLHkUI6VAmQydamZPTIMBkyQEgUvc6VEpOXSWe7i+4th3iuwSXex6dpWkPhbij46wfHaWbi+nLHN62hLYHCMlC6fnyB7dwdTJC5x57gxSWJZzzfzUC7z7Y0/gVCrQ65HXaojlZWy1iu33iwlZ1y3E0PeLh0dAOA7W8zBpiqzXyVotVLVK2ushjGHsYx/D27wZOzu7rlWNq8EpOp0OS0tLTE1NYa1dKd/WarVVi6Ax5o5N0q81VtvDvBnB/Nu//dur/vmzzz67puPcjnh9vFvrFLfyJRp6NjqOw/3337/hfcJrgQWyLOPgwYOEYXjT4PIrz7HWDHA4XHSjPdONgCMM+5WTk5Prkt13Gx0ac8vUNlWZPjaLkJAnOXEvIY4SWvMtwlqJsFoq2KcWHNdhcbqBENBZ7ADgBQ5ZqrHGYrWhmSwT9xKUkozvuYsLp+6i/60QYwTR0hJTR84hXZdyWbD5rm3sfWCUPBdYMUkvKzNZbbBpp0XkHYTIMUahZE4QbkKpFpl8L53lbxGWLc2lEs35LZSqFZYWAlwvplKLmTsbkfQsfTfB9cvEnR6e7xA1u5QrAd3FNm7JIUn6uBJ0nBZo9zhGSUG3E1PyioeFaiDotFMqnqW3nKEVbNs9hrKG8ycv4GDoG0koMlLlUZUpFoHNMmYOnsYtuZRNSj8okS82uDC7zPa9m9C+j8hzbLWK6fcR5XJhwSUldtjPHBnBDCy7bJ5jtS6oQJ5HnueoIKD6vvcRDHbrNqoNMIxLzZyhqLQ0m80Vr13f91fKt9fzonw9lWRXe613ivJzu+JNJZg3G5eaTs/MzGzYkvulcTWebLvd5tChQ9x9991s3rz5ls+xVsE0xnDixAmiKFrVcNF6ZphX7leeOnVqXY7dWY5YOLfI0vklWgttlKvQ2tDvxGRJ4fLhVTxc32XH/VuRUjAyXuXC1AIgaM63yAdA8iD0kUoQtfoYk5Pj0ZH3cuzIA2zdlVE6E7Fjp8P+bx0jLOVIpSCTLE9Nk+6uUq27RJHC9cfo69088aGMYy8cQKk5lBLsvlfje/NIVWN083aC4Oe5cHaWoObxxL5NTB2dZr7dJU7GiWczLDGVeh+vpEi7LUxq6KUxriuJmh1KJYe43aMaunRaEZWSS7cV4StBGmcoAUmSoqSlG+UEytLp5VQdS9TXTL1wgrlj54kWWgityfspuSeQVqN9l4nJCn6tgtYWJSx96eGnfdrCwYm6aDuxIoCmVDyQ6AGQ3UhZsGWrVWyvh6jXyZrNAl4A2Cgq/q7dpvzud1O+ZIBjowXzynAch02bNq1MZ6/Wi/L1JJirzTB7vd4dWdG5XfGmE8y1QrtPnDixwkD1PI+5ubkNtd4axpU82fPnzzM1NXVND82bPcdqX4tLEXePPfbYqm5I65VhXm2/8kbv42pumvOvLvBXv/M3IAWN2WXiXozJDUJK0iRFOU7B0lyMEFYQ1kJc16Hb7lGuV0h7KXmWkyUZUkrKIyWssRgraZp7aHd3FM4hXpP2Epx7YT8nfwBp1CWs1CiPuKRJRi+KESJHCJcg0EjpEYYgpcvjT+1A6hP4XooQPr7bIucePEdSHa8wse1epATHgd1v28rS1CyL5xeoT5RRjuA//Mp7mTp8jkbZ5fRLp1FKouMUKSDpxSgJnXafwFV0O30qgUPUiSn7il6U4AlLbi3S5OQWlDXEmcG1GZ0Ygn6TVEPJ5igJSZRQr7pM7NnEzt2jGG246x07OPL9E7gK+mlOxVfU799V2H2FYZExxjGmVMK0WtjRUeh2i4EgMVhLyTJkGKLzHOX75L6P6fUIH3mEkR//8cve1ztd6iyVSmzfvv0yFmuj0eDQoUMYY6jX64yNjaG1ft0I5mrF/Y3shQlvQsFcbcRxzP79+9m0adNlDNT1MJFeTQzFRmvNkSNHsNauO7Xn0tWM68WQR7vWHcf1yDCvde5rHbu12OGFf3yZ9mKH8W2j7PuZRyjXLvZUFs8vMX1yDuFI/u5///84e/g8nu8ipMDzXYxjyDODNQKda6wuztGYWSZq9ZjcNUGnGZH0YlzPJc+L6VDpFH22RryJ89ne4gbjVgkqkPYNcXuZC2mM7xvQlqhh8Z0QIRRJt8fsmSbsijFS4bp24INsIW/gBWOgFK4DVuQD6y6L4wisLRIxYwxTR86RpSlSGJJezFOfeJzqaEi54nHk9Dyl0KPb6FApufRaKZ4UZJlBCcjTvBDDvsaRlm43IVSWfl9TVpo+4FiNUJD2c5SCLM+wEkSakQhQRiMdRWoFvblF/n16iR0HzvDQR96Jr1PmZ1t4JY/d92zC8V2s1WhrEb5fcGKNQYyOFgM9tRq61QLfxzgOutNB1OswXDUxBm/LFmpX7FrC7c8wrxdXelHmec7y8jKLi4vMz8/TbDaJooixsTHK5fJr5rqvjI3sYb6e4i3BvEosLCxw/PhxHnzwwRVm4jBul2AqpYiiiEOHDm0YPWg1GeDU1BTnz5+/Ko92JawFcx5sF+Q2kLVVH/96cb39yqsJZpbmfO/vnsNay/i2UVoLHb7/317gP/zK+5BSMn1yjn/7r99BuQ6n95/lyA+OYQ3EvQSd5aRxztjWOnmq6TQ76PTya0+ilNnT8yhHkSYZ/XYyuBiIxSTTC/eAEyKlxhgfVyYk/QBX5SQ6pOxorCzhOX0cz6O33EUIwfZ7x9H9FmcPNdm0O0SPbMb3LUkiqYY+WSqpBh7GeLheEyN9XLfYzHAcUMrSmG4we2qeyW11jDHkScyZ/edI9k5w4FtH6TW6CGPwpCBq9yi5gl6UUg0UUTfDExYtwOgcJSzaaHKKCdm+AcfkJBr8PEMIi04ySo4l7udUXEu7p3GFJk4NNonpN9pUKj7TecDWw+fY/I69TO5sYYMAnecFvadaRbRamFoNkaZoKTFar9B7ZKVSPABIiRwZQbfbxc5lq4U7McHoJz6BuMpN/LUkmFeG4zhMTEwwMTEBQL1eJ89zzp49SxRFK3D+sbGxH1nRupOxWsF8q4f5BovrZT3WWk6ePEmr1brqTiHcPsGM45jjx4/zyCOPbNjqyvUEbcjFNcZcP7O1FpH8V2T2LUCC8NCl/xnUXTedYa6GB3u1Y0fLEXEvYWJb8ZBTnxxhcbpBHCWE1RIH/u0wldEyfskj6adIqTDWkKc5SZJhjQUDtfEK7aXOVa8tTzR5cvH9j22Fpr2XuDeGBExikQikMnhBiTTuoXOBqzr0uw6lCpQmytTHSmSpYHyyQn2yhuNJgpKlObPMtrsmkFJQLlsMuwjLF9C6je9F5LqKH96D1oJhq8hxoNfu4QeKLMsJyw4YSRb1mT4xQ2+xheMKdF8jpEBqU6yLWE0vynExxHFOSWoSbZDC4DoCHSd4nkOvm+C7AttPMBJsmqOtQOc5joBObKjInG5qqYqcvgZXa+JmF7KcLM0KwIDvF583z8P6PjaOsfU6ptksbLl6vcKOq1zGdjqYICiqIFJirIVyGd3v423aRP0Tn0BeYzr8tSyYl4YxhiAIGBkZYdu2bZfB+Y8cOUKe5yvl23q9fkeY0Jde62pLsm9lmG+CiOOYgwcPMjo6yr59+675hdtowby0b3r//fdvmFjCtQVziLjbtm0bO3fuvP7NRx9HZt8EsRmEBNNG9v8LpvInN5VhrpYHe7X+qxe4GG3RuUY5ijzNkVLiesXHPM81UimMtXi+Q3mkxNLcMq7v4FuXLMtpLrTotLqY/PrXndmAJnuJGcWiEAyvxUGIDGMDkn4MwseVfaQKkCIlT8B1AvK4z+bd47QXFsl1jmtTRiZHQSZEjR7Vsofj+Pi+wvAEnrOMkQbHq2NxGWqF64IxgtHJkFelQEkNVqKThNKWCbqzS/SjhMARZNrgWYN1BDZJCFxFr9tH+QqRZeSOQBhNYkFmGdZCHqf4CpJeRtWTdLoJlcHQj0sBoZdGExuBZzK6WlDSMbGR+FmCiQXVzXVotTCjo9DpFDg8YwroQJZBpUIex4gwLIg/WVbg7wb0Hh1FhV+m54G11D78YZzrWDO9XpBzV4rQCpy/WmX37t1orVleXl4ZIHIch9HRUcbHx6lUKrf137hawYyi6JbN4V/L8ZZgsjYAgFKK9BaXoq8VSZJw4MABxsbG2LZt24Z/Ia4maGtF3Am7TJFZDr5Mooow84j0O0xWvodr7gH7YRA33hVdS6/0ahlmOBLy0FMPcPDbR5FKYA3s++AjuH4xzXvfO+/i37/+EiMTI/jlgEo9JOln5HmGXw7ptfoAOI5C+4Y8yX/kvNoqWuygxS4kOTklXDI0Dg4GiUYpD0SMlC6O7OP4IYGvQZZxVR83rLJtT8iFmRYiTXEqHq6vmD95lrHto8yemKI11+KBd25HqQphCMaOE/hF9dvzLCBwnKIs63ng7xjngXfu4uzBV4niGD/wOPbdo6ANIs/RojBwTqxB6QytLbnOcJUk68WUSg79bkzoO3RbEa4r0UmOwWLSDAlE/YyStHRiw4ijiWJDiZwUg81zFIZMGwwCkaWkVrJlW53axAjGcYqssVot6D2DqVibpgUqr9fDBAEoVUzIGoOs1cg6HWS1Sh5FkGXUP/Yx3AGU+1rxegEC3EiElFKMj4+v3JOSJKHRaPDqq6/S7XYpl8sr5dtb2cVebazmftTv91eg6W/EeFMLprWWU6dO0Ww2Vw0AuHJ6db2i0Whw9OjRFdEe+sptZFwqmNdF3FmLyL6F0EewYhPW/zCIok9h5TbAgk0AD8wM2BQZ/zUVXxPYY8j+OUzpfwJx7Y/bWnmw1xpYuu+dd7Np5wRxFBOOhNQmqpf9nXIU3/2758nijIld40S9PkL59Jp90n5aTGR6BqsvP7a1ghZbabMFi4cix+LgkmNwkIDGRaLQBjxXomSOclxcN0UqB6USPM9jz/3jeL4kbHQxbon6RJm0nxBUPCpjAZXRCp5jmT05x9t/7O4BEciitSQIDHkuKZWKhwXXLcTT8+CuR/cwtrnCc//wQ2bOTmGyHBOn+OWAeLlNOfToLrXxApesl6IVhfOHtcRRgqMEvU6fsqeIujFVT9DtpgQOJIlGGkNmDI7V9FKLZ3J6Bkp5SoLAZJpAWOJEUxWadi5IuhHnzp+nFIaUSiW8OIbhzmWphAYYeF6aVqtYFUlTLBTQgsFnVAQB5fe8h+Cee2742Xg9lWTXIuy+77N161a2bt2KtZYoimg0GrzyyitkWXYZPP5OTQm/tVbyBovhFylJEg4ePEitVmPfvn2r/vd68v4AACAASURBVOCud0nWWsvZs2e5cOHCZaK9EUv/V8bwHDdC3Inkq8j0vwEeggyrX8SEfwjCB7UT438GGf8NmLMI2wdSrJhAmz0YMkT696jsBaz3Hoz/aZAXnVSG/cohwH61X/Tr9UdHN9eAHy1lCyGojJZxHMUjP/E2pmenibo9LpxZWpmGtViyOAdhiwqzhciO0mQPBoXBR2LROCgsBolADH5SIUWGcks4XopfHsEREcopIUyEdEvsvG8MIQz9doROC3rQ2NYq/U5A3o/wQw8pLG7gk2cxw3VEIQa2XUIQBJeKpcRxDEJIBDk/fPYQSauLNZa8nxQghU6EIyVxq0dY8uh3+5TLHt1ml3LgELX7eBLyfoIU0O9neBI6vZyKC904pyo0PatxTY4QljjXVOoh6XyLXBRQ9RwJWYqHoa0lNZGSWZctlRFiDK1ul7TZxNbrVITAdRzcAb3Hpili6GtZraL7/QKDF4boVovyu95Fed++VX023qiCeWkIIahUKlQqFXbt2oXWegUef/bs2RU27vj4ONVq9ba9Hr1ej0qlclvOdSfiTSeYcDGbuxkrqPUUzCzLOHToEEEQ8MQTT1z25bkdw0VSSqIo4vjx4+zdu/fqpRSbIdN/ADEBohg6EPo8Qh/DOoXzhvV+DGMjZPJ/YsW9iPwA2Dah+woeF8AahI0g6SJthAn/FwDSJOHI4W8zOlrngfv3Xddd4sq40UBR0k85c+Ac/Shh612TbNlTuB0sX2iT64xXp19l65atNGttTi6cwSIQQmKNxpritcncGk25kzh1MTlYHBQZOSEOGRllHDJyAlwyQOB6knLNZXxrnbTbQ6oqVvdx/Drb91YZ27GZuZNnQXlIk6GzjOlj01TqIaNbR3Gcov+adDps3r0ZISzWCpQqRMBxil+VAikFrmuRUoDNeOmfDzJ7YoaRWkDSiQhLHlGzg+M55FG/YN/2EpzBpGzoK6JOzEgg6XQSQl8R91McYTHaIK0myS2uyYkM+DonQRCYnO27xvEDByeL6cQGRxjanQzXGnJtUTqni2QiT3HGRwl7PUq1GnpigqzdpqMUnXPniF0Xz/Mo+T5BvV6smGiNLJUwUPRiH36Yyk/8xKo/G28GwbwylFIr5VkoZgEajQbT09O02+3b5v351tDPGyympqaYmpq6aQbreglZp9Ph4MGD1xQqKSVZlt3yea4XURQxMzPD448/foNGfWFMfDHE4M8Gv8sOIdOvgW2DmMDKMYS5gOcsXfJTMcKeg6wMtk+r1aV74c95aPcFPM/FJu/ABJ8D4XHNMAvI5B/Atiip3UTZ1e15siTjX/762zTmmriew8FvH+WpT7yLvQ/tIkq6zM7M8fZ3PoiONSf3n8UYi3IkypHFJKmA7v/P3ptH2XXVd76fvc90z51v3apSTZrlQZZt5EEesMFAABtDHHDCC+F18tIkHd5aSb8M/ZJOeCGhO1mkkzy6X1h0SNIhAwRw4pBgIGAMCdhgG4wxlizJkjXPUs13PuPe74997y3J1lCajAf91tIqVdUdzq06db/n9/t9h8xSpoNBw3zFQ1oJSSpA2lgqQeP0x7JWt7vMeBLhOLiehZDmPInCDoVCBtuJiaIYP5NSGa/iOIL6pMZzNUiHbM5h2bqlTO0/QNTpMLFqiKVXVLudpUYIiZQKkFiWMj6wXRCVEvZvPcKxXUfwsy6dWptcPkNrtkmh6NOYaVDMuzTmO3iOJA4iHEsQdiIsNM12QsaBVjumYCnakcK3NHEKSRjjWYI4iNC2gE5CJODYvmNkfJd8MceNG5bwzPf2MhBNM9uCTGpGqgGSpBOc6N4jBPbAAKV2m+KVVxLPzhJISbPRYG7HDpJCgaxSZIaHcWwbe3CQ4p13nhUAvpwA82Idp+u6jIyMMDIyctrsz0qlcsapztkw3S/JSl5hNTw8zMjIyDlf2Z3Msu5s69ChQ+zfv59rr732lOMLy7IIw/C8nudUdTwTd9WqVacGy/QA6Dra3oCIHwM9j9AttKyghenYRPw9ZOdPQdcQagZUG22tQTPFC98KUlAHOXxkms7c/awe249lDwM5RLIJET2I9u45xUHPYzV/G3QDyFJxH0WrBrDiBTc9umeS2aNzLFlupgdhO+QH//oMkdtB+ym3vPkmHvn7x5mfrtOqdbBsi04rMKNVATWGqAdlHNsiiVKyJZ+g1gQ8LJmS4CNUhJXJkfEEYUdjWRqVRti2RxJ1aNUsVBLhZXNkcgI3lyNp1zn43FGGJwpopfDzFralyRZdbNci7gSsuG45+bxLsZjvay0tSyClMSrogaVtG2KLEArLMlZ3nmeTWIIgjNBRgutKI6nxHTqdmLGJEo16m4xIaTUTHKHQAhKlUJiusKPAJsHKZRGqiWV55DOGxNNuxxRcqLdifBRROyR1LbxClrwNc56P35gmFA4OsXELUhI9Nw/VAXSrhc5kUN1szDSKsHI5XKUYzOVQo6NEjQYtKZk7cIAwm8W79VbCyUmq1eqidYkvF8u5F4ucdL7Zn2fz87zUYb7CKpPJkCQvZD8uts6H9NPTNqZpesZ93cUiFx0v2xgfHz/5Fa7WiPDTyOgrgIVRTETmnyiDKCCDj6L830N0/gz0MdBZtBwyDNl0o7nfyUrPMWT9BzJjIYIaJNsAC81ShNyEdu96YZepFbL9B4j0B4ADKByhGMr8GSQ3gX3FCTdXSmOiFRWHdxxh8sA0czNzLL1xhBtvu55NrWepjg+w+vqVbPrmVnZv2ofj2jiuzWTDZ16voFRxUSJD2GhjWRJhO8goJk5cLBmT4ON7gijxyWQCwsQm4xmJhuMkpGGDXN7D8RIUGdqzU1ieT8lWTB9tkcumCOkgrZRiyceyFUKkuC5IaY5fiJ6bj8ayBEKY8asQvb2mMt9XKUvGy2x9+BlcwHEspATLFlz/hrV0Gh2yGZuBJUUe/4fHmJxtkhGKZqzIWRolNDqK8VxJpxni2prGsXlsqZFaEeLSCRIcKWgEhtDTiDUDnkaimN0/xdI1g9Rn6qTCAhR4GYJEM7ayiqgOGNOBcpl0ft7oMB0H3WigKxVku41yXbRSWNksWaUorF1L6d57CT3vrHWJL5cOEy5MqP3Z1tlmf54tYF7aYV6qfp3rSLbdbrNp06bFaRu5OKSf+fl5tmzZ0t/d7t+//+TPoXYgoy+DGDB7SzWNSKfR9lpI9yPSY6BqCPlJpNppAFW0QNloXKAIWAiaJz6uBoEg43YQzJkvIIEYwS5E3EA0J0lzHwA50r+biL+JTHogHACR6byERDR/gaTwabAm+rcfmhjAy3ps++5OZo/O0mg0WLluOQe/f4y169rUJmuUh4uUqgXWvfYKDm0/TNBRtCnTyS/FbsUoHFzHIrIzaC3JFAq0ZtvmeKSDIxRRoLDtAITEEglIm4xrMTBSJgnahJ0A1UpJI8NAJW1TGRsjX7CpTTWwREJhoIy0FGkqGF9dJVIxtk3/X6+zlHKho3Qc46XrOBqBQqIYXj6I51g055pkbAFCUsq7WJbk6htXGAlHmnLHu29m8yPPsvfpPViNDoECK0mIUiCMcCxNEMQUMhb1ekDOUqSJxJEC1dVctpXAUzGR5ZOLI5SQrL15FSMjJb7/2C6aew9TQzK2vMRtP3GzGT16HknXvSeJYwQYjWW9ji6VUPU62rZRnocIQ0p3341TreLACcSW43WJjuP039iPt5V7uQDmixHisJg6U/ZnLpcjSRLiOD5j4MIlwLxUJ9S5AGYv7WTdunWUTyO4Pt/nOV2dzOJOSnnSbluoGYy2sncFnwMiRPKs+ToCoWeQ4efQYimC/ZjOr4NAo/ER7DzxQXvvDUIiaBz3heMAW88gkkexmv+ZtPA3Zh4JiHQXWuQRtI39njkCUuVjiQAZfRnlLyStZ4tZ3vqzb+RPf+2vSKyE9a+/hhVXLWPm0CxzkzWGlw2y/cldFAbyVJaUGF87SkiePXMjDClNbbpNrpSnWC3iTHZIwhht5REpKKuIZ8c4+Qqd2VmUcPA9BVhYNqACWnWBlYaUhqvooE6SChwrpDRcJgzqSNujPJphzbXLac00EZZm6eohssUcujVLmoqun6ygN4U0HaYBS9C4rvnZSAEojUgSKktK+J5FJuOgwoB2PcAhRVsWotNBSEk263DFDcsYWlLgqS8/RXOuiW1Lok4HJUBFKVIKWu2YrAOdGO655zU8+tXNtI9Mk4iUKE5wbMh4NqmlWXHFEoTrUlk9xo9MVAmwYH4ea7iK6nRMXFc+D42GscFLElIp0UpBLodqNhH5PGm7DWlK8cd+DGd8/AXn5fN1iUEQ9FmhPcF8tVolTdOXBWC+FOtk2Z+Tk5P9/NszZX9eGsm+wup8/5DOBsi01uzYsYN6vd5PO1lsXagOszcGPpl5+6nSSrScwGgrIzMe1W00JQTTQO+1S0gPsm9HjJAelcGAXCmDtAoIvYsTgZDjOEPpcY/x/DL3EelGRPwVtHMXCImW4waIxbKuUYJhrJpuNmQBfLtPpzUz9SkGVha5dvwq8mVzxauUwnFtLrtxNTNH5tj+xC4QsP6u1/LQIzFlO6ET2qy97SraLYmIQwaX+widcmD7MeppgU6tReoU8EVEcWSUpDWHmy1TLKXMHGuTywuU0gwuHySoNRFS4skQL5fHkSnZ3BIybsSSFaMIN8IqC4pFF2Wl2HYKaDzP6D49j64Je8+wwHzsfW4JhdYg4hgNrL1xBU99dSPt2Q6WFGR9m+Flg4gkMTPcOGb79/ey4/Ft5gHQlEoeUZAwUXLJLSlz8Ad7SNFYFugE3CShuHyEH3mXy8bHd1HfexA745LLeuQcGF+/msGcNL+5NEVLiWNJqJZJwhCyWYgio/csFFCzs1AuozsdtBDoTMa4/gDC88jefDOZyy9fxJlt1itjY2N9W7l6vc7s7GzfAKMHrifby70U6uUA6lJKcrkcxWKRtWvXEscx8/PzL8j+7HWpaZqeV1bwgw8+yC//8i+Tpik///M/z2/+5m9ewFdz/vWqA8zzrcWe5L1dYblcPq3V3qnqQgDmmSzuTvkc1lJU5heQwSdAN9DWEOAh1LH+TbRSTB128LxZyoMp0hLEHQsv14Dn031O9dI1C2CqAaFBGFnHzsf+Xx596EGC8DJ8v8Pb/rcWS5bup8fQ1ThI0UELH+Xe1X/INE3ZvHkzjuPwzve9nUf/6XsEzRlUqhlbM8LQskEsS3LbO2/ihrdcy9xczBe/XOOqW0PSSGM5DpbjATZhkDJ3rM1zT+6hNFglP6DZ8/R+VBhiVwtMrCkydSAmCQPSyGZsZZlM1sXPWUwfmKVQyRK0O6AsdBKyZMUyxi8vUx0pMzhaQCnIZDTtdowQDY4cOQZ0UCpLNiuBDI4jEUJ3O0vRBU2BbSmEBh0ZswXimCXLh7jlbdcyeWAGT2jG1wzjSIFIEpTWdGbqbP32NooFhzRJcUpZwkaHu993K9lSHtlu8bX5FvPb99MKEmQSM7Z8ECk1+YE8r337a5g5NoLvuqaLSFNEs4nKZmF6GpXLobVGt9uoQgGCwACpbZuYrjQ1uZaNBqJQQLXbxrQgl0PVavg33ED2ppsWf4Iff4oJ0Q91bjQarF69mlar9YK9XLVafUUL6y9GHW+87jjOSbM/P/KRj/DQQw9hWRaf/exnectb3nLWkr00TfnFX/xFvva1rzExMcGGDRu45557uOqqqy74azrXugSYF6Hm5ubYunXrOek8e3W+I9np6Wm2b99+2jHw6UBZu3eQOreAboEoYc2/jQVkgzSBr95X5q73zpNEGmnbSJkidIIWJXTa6MogTlEa0hRO4G10G8U4gr1bHR7+x2Mk0SQrrkr5w0d8rrt9glvvyrL66n1oHJ7bMspX77ueRu0BLrt+JW/6mdt5btd2xsfHWbp0KQBv/pnXU5uqY7s2w8uHsKyFTiPF4fNfnCaKFHFi05qvcWx/Az/rMjA+zIEtR2g32sxPtgjqbaoTy5i4fJRDezvkiw71uYTLXjNGZXyYyd0H0WnKwFiJ5ZcP8sjnvodWMflSHtuKKQ0VWHvLKgbHSl0NJX0NZaXiAFWWLNHMzMzjODGNRpu5uUl8P0Op5JPLZcnlzJW7bXWvMuLI/EbiGNkFxcqSMuWBHEIpY3iutdnpJQmtVkjBEySJwpfaRHKhkNJCqhTtOGx445U8tH+aktVG+jmCZpvt39jMVa+7EtlooKREJomJ4krNfWi3jUNPEKB9v7vSbhnQnJ9HFYvoOEYphbIshG0brWUmQyoEOo7JrFtH/iRRXedSSqmT7uVmZmbOSVZxseqlssM8U52O9NPL/vzjP/5jPvzhD/P617+eXbt28Rd/8Rd0Oh1+93d/l7vvvntRz/PEE0+wZs0aVq1aBcB73vMeHnjggUuA+UotrTX79u3j6NGjXH/99ed1JXuuHeZpLe7O9jmE6bQ6tV009jbJ5iSFcmp2dcDoioioA4WSxvFC+g2sqrGYCVjvNlr315VoDUFb8Mxjhm0ppGDXMwJwOboXdm2VvO4dS1m6bpCPf6jM+MocleEsm779LHt27+Hnf/+nT/DALVYLFKsvlM2EoeKf/3mSJFEkiUVz6hjbn56kWMxwbDblyM5nibTL6ESFKHKoT9apT01TXjLEqitsqktHqY64FAYHqVSgPLSOgQFNHEM2qxlfPUjS6ZDJWbgZD510cLM+lrVgRGD8YHVfUymlwPM0npdlYCAHDAJhd1d3jLk5QTbrUCzkyVjSgGWSIJQyoKgUOk0NeIL5XCkDnkpRLPkEicYlomNJrHYbO+PgO6ZDRWtqh2dwbE2pUiaNU5Rrs3/7Eda99jJ0Lod19Ch6cBBZq6Ft2/zCwpC0UDC2gmA0l64LYQiVCun8PLJQQAUBqtFAFItQrxsgTRKscpnC2952wUaUzyf9HL+XO5msQkrZJw+9WK44LxdiEiw+2su2bWzb5oMf/CAf/OAHaTQaZyWNO3ToUP9CF2BiYoLvfve753TMF6tedYB5sU7SJEnYvHkzruty0003nffO5FwAs2dx5/v+SS3uzvo5dBvR+H3iY48xNNqi3RRMHrYZmUiwHXjDPTWE7A5JFSTdfVvPh51TXUB3vy7EAlju2OTz8ANlolCw9PI2Iys7rLupQXEg5TN/soTDezxUKpk+pPi3f4wY31jjyI6IpKOYuGoUKwudY/Gi0l2SRPGP/3iMQ4c6+H4GITRH98xRLvnYnjFCP7qviUaRpILS4ABomzhMGRwrsuyKy8kWXCzLMFm1hkJBE8eGjBOGgmtuW832J/ZC2kYnEVduWEV5wOm78yhlfGHTVPYt73qgads9YwKQ0iOfd5GyhJQpcRzRmJ1lLgrRSULB9/FdF9e2zchTKbSUiCgyOr8wRHdHtq5rccvbXsNTX3mKcLZBrpjh1jddBZ4LrRZCSoQlyQpFnGqypNTCmKxr9X5wKNc13WOphGg0ELZNmskg6nXSLhDqfB6VpmilUEmC9H2SJEFmMmgwJKBSiWRuDmtwkNK73404j73XC06vM4DR82UVPVecgwcP0mg0XpRMypcTYC5WVvL8jrmXvPJKqlcdYF6oOv6E77n2rFixgrGxsQvy+GdLLnrioafY+J1NXH3zOq6767pF3e9MgCnbH0OF30GlMVpb+DlNxk9RGjDTPsPS1D2B/ekOEjotyXNP+wQdwZqrAwaWJAgBxw463P/xIaSEJRMhl18TMrayTiar2PzdLMWBlCVLm2x8NE9jDoKOi1NYi+MdZG5yHjtrsWzNBDp75jchpTSf//wkc3MRluUghCAINEJKwsDCyQjixMLzfeJQEXcUjhuBleGa25dQGhkjW1BEERSLvXQq3SXlGNBzHIHjeKx/0xWQxnhZG8eRWBZdfaXxhTUdpepKREAp2dVgWl2dJX03H8sy54QtHLLDQ5AkJEFAo1ZjrlYj6HTIOg5+JkPWcZDdMay2LLMntG1kp0N1tMRb/t1tpO0Ay7URYYiOY/PLSxJG14yy68ndtCfnmEo1BR1y1V03Qqu1MN5NU0R3nq66b6SqUIBWC10uk87Nge+jpTRay4EBRL2OchyTd+m6qCDArlYp3nsv8gI7w5wtGD3fFef5mZTHs0IvVCbly8VcARbfYQZBcF6pKePj4xw4cKD/+cGDBxk/CVv6h1mXAPMcqscuFUJw+PBh9u7dyzXXXHNBr6YW22FqrfnYr3yCx/75ezi2w2Of+gFzv17j7e8/8z7odM8hoseN4boMKJRTmnXJn/3OKDs2ZakuifmF3z3EiisCAJIYLBssefx41aLPhtXQnJd84sOjTB9xQWgcV/NzHzjC+KoIP6f4qf84yWMPFXjd2+skMUwddll+RcAV6zvkiwnthk2uKGnVM1ihS36gQqY4RWumQ9xIaNc6vPvXf/S0b5Raax58cIqdO1sUCpkuwEsKBcnwign2b9nP3AxYIsL2C1x1yzh7np0FUtZcM8joqiU4jiZNBcWiJgwF+bym1ZJUKpoggHLZrA5dtweObjeOyxgRmOPrGRAsGBEYYo8mCITZBQvj6mNZPTcfYfaG2ix/dfdNrFIoGMlGp0MrDAnm5phrtZBak81k8F0Xz7Igisz+MAhASmzbsGa1lH3jABGG2LbN6951I4e3HyJqdRicqFL2AN+HRgMRRahcDjE3R1KpQLOJymQM2ce2UWFogp6TBOE4JoVkfh6KRaO5dByTaxkE5H/8x7HOEKd3LnU+3dvJMinn5uaYnp5m586duK5LtVplYGCAbDZ7zs/zcgLMs8nCPB9JyYYNG9ixYwd79uxhfHyc++67j8985jPn/HgXo151gHkhxiCWZRHHMbt27SKKIm666aYLThxYzHEqpfj2Vx/j8c8/Sb6Yx7IkaZJy/x9/kTf+1G1ki6c/eU8FmFprvv5X/4tOLcuGN0VYtuR/fmCEPdt8MtmUyYMuf/hLy/mj+3dRqiakqdlHKgFWn/GaAdqAJgoFT3yjyPRhh+GJiFZD0mlafOPzZd77y5MkscDPp2x4YwPL1jRrNtl8ChpsV3PXe2d54usldj+bx/Wz5CpZavUZRi8fJpyJee07N3DrPRsYWnr6N9+vf32G7dubZDIunY7CshyiyPw+hyZK+LkrmJ9sIB2X6ugQnu9xVXmoa0nXu0iiz1TNZg0oFouKJBHk8xAEgkJBE4aSQkGTpibk2fy8F+K4jIm6cartgWbPzcd0k7priWe0l1opLGWAkjQ1bkxJYrSM3W4vZ1lkh4epttvEWtOZmaFWrxO022SlxMvnyVuWefPrZk6KNEV7niH0ZDLIuTlwXZZdtsQAqmWZzjGOEZ5nxrxKkVYqJhS6VELXamjLIvU8Y39XLhtmrjRXUCKXI+kSg1Sng0hT8vfcg3PcvupC1oUcd1qWxeDgIIODg8ACK3T37t20222KxSLVapVKpXJWcoqXE2AuVirSbrfPy0fWtm0+9rGPceedd5KmKe973/tYt27dOT/exahXHWBeiNJa89RTTzE6OsratWt/KLuIXth01Irx/Uyf/WnZFkmc0pxvLx4w00PI4BMIPYW2ruWb/3Ilf/PhCD9fpToaMDgSsPtZn2w+Na4vrqbTlDz5zTzrb2uhNOSLKa6nEF5vTBuYfVViWK/NmsRyNHNTNsWBFCFSWnWLJAE/l9JpOlgWxJEJfrZdTZpA0LY4ut/Bz8ekSYJf1BSKB7nhuk285vaAeue9rHvTmc25v/OdObZsqeE4LkpJLEvgupJGQxgj9LqkNJjHypQoFm2CwKSX+L4gSSSep4ki47gTRRLPUyglMBMoo5kUQuP7Aq2NXCRJzE43igS5nDEiMDvPBTDsEX56naSRkdAf31qWAUuplSHyJIkBrShCdcej9BixYD7aNk4Y4lQqFH0fPTBA0GoR1GocaLVwowg3nyfnOHiO02e7ilYLlc0iGg10JoMIQ0QQoF3XkHzyeQOEYIDb86DTMUAYRQitTUB0N8JLNZsgJcr3TVcMSNcls2ED3pVXnt8fwBnqYv1N9lih4+PjKKVoNBrMzMz0R4mn82Q9vl5ugLmYkeyFMC24++67F82q/WHUqxIwzxQNdbqanp6mXq+zbt26H1qyeM/i7oorriCzxucf/su/ELRDPN+l0woYGKlQHauc8XGkNK47VvujoFogfEi+zMN/9z2UskkTxV/+/gT5QkCnKbFsTRrD/IyD1oK//L1x0lRz53tmeetPzlEZSmg1BK6ncT3NzDEL29Fk84rLX9Pm4QcqFEoJU4dsOi2LW++sYTuglWbJ0ojdWz0e/OwAb7q3Rn3Gojnv8+W/G2Dj43l0CvmiYmLNfgoVjycfHmbFNTWuu+WTqOYmtHcv2nnjAt32uHr66Rrf+MY0hYJHvZ5SKjlEkUZri2zWAGKxCEFgkctZ1OuQy0maTUmpZADQsgz7FaBQMFZ2uRwEgaRYVETRiR1lz2DAdJVgukrTDPq+QKkFIwKjsVTHfbQB3Xf1kX29jUmvEXGMkhIRhuYJosiwYdMUmabmzbgLUD1mle/7+I5DpVAgAYJjx5hrt0nn5rA9j6zrkrMsZA+tw9AwmgARhqhCATk9jbJtY0SgNSqfRzcapJkMSElq2wa8i0XDhs3nSdptY1LQ1Vp669fj33LL+f0BvERKStnXfsKCJ+uRI0fYvn37aSO1LmZSyYWuxYJ7p9N5Rbv8wKsUMM+ltNbs2rWLubk5BgcHfygRNlprDhw4wOHDh0+wuPvPn/olPvZLn2D60BxLLx/lF//nzy3q8Q48e5j53U+wZbrBp/4oy95nU9LYQ1h1mvM2luVgWTFH9ntoLOanBUlkAMR2NIWBmLf8xDw3vrFGZTBh5zM+aSLx8ymNmkU2l3LldS28LFyxPuBt/26ab3+xQhxL1t7QYunqkDQBpQQ6hn/9XIUvf2qQ7/1bkYHhhKnDDjPHHEoDCe2GJIklnZYkV1QsWZYwtb8Jt4QItQ/R+VPTzhrX4wAAIABJREFU+bhvOuE1btvW4FvfmqVQcLtg5WG0/jZhqJDSuC+ZhkmgtSCTsdFa4PuCOF7oErPZXsKEwRIhdBckBfm86t+m05GUy2ZMm8kYGYm5Pf0O07ZF1/rO3N/3DXgajOq5/Whs0ZWMdDs44ri/x0QIdBgaX9YuQUx1gVMBMgjM3jIMDXM2SUAIrCQhNzBAvtNBV6tEMzO0goAj09PIKMIpFCgohVsqGc2l1qbTzOfRs7MwNISyLGNM0NNalkroMESZ9hrRDQ8QmYxh6UYR3tq15O6888L8MbwE6/naz+dHah1vHP9iJZVciFpsh9lsNi8B5qUytPNNmzZRLBa58cYb+4kjL2alacrWrVvZt+kg+757hI3/uIM7//0bWLFuKavXr+B/fPv3SNOUT/7O/fzfd3wIrTWvf/ctvP8jP4Nln3iya6351Ifu51//7luMLJ/lwDabRs047ICFkIb1OTeZYrxjwfYEl1/T5rmN2S6zB970znlWresgBDiepjqSkMSCJIa//+gok4dcPvnEswhhOqQfubfGHe+ocWSfx8wxi3w5JYmhPic4uNvj0S+X0cDR/R5H9xs6v2VrgsAwWBFmv1mfg+kjsOIKB60tEHnARkRfPwEw9+5t8aUvHcPzbIJA4/sucQxCWDiOpNORZDKC+XlNNitptQwBKIpEd7RqnHV6RB/L0iSJpKeLMSu6Xl6lAUdDGlkAyyiS5HKKOJbk86oPnr3O0zBmF8BSCIltd7WadHeVPTefrqZN9eQjSWI6Sgxgaq2NqVJXe6kcxwCd4yDrdZRtWLEiNf6yKAVxjJfNGouzUok0iginp5lPEtTmzZDPk7Msco6DLBbN4wphzAcwOtCe1lIUi+h2G91sogsFqNXQxSIohSyVyN1991mFhL+c6/mRWmma9rWfe/bs6d+mJ2N5KXebZ9NhvpKzMOFVCphnM5LtjT8vu+wyhodNBuSFyMRcbPVcSjZt2kTzQMDf//a/kMYpGs3jn/8eH3rg11mxzpAnHvrrb/K1Tz6M5VgIBN/+3HcZmqjy7l83GZOT+6f5109/i11P7+Wprz2DVoq5SUPM0Mdbv6oX/vEmoSbomD1k2JZIC770yUGSWHDb22pcfXODLU/kSVPBs9/PcnBXhkxWsWuzxxXrgwVtpoDBsYjhpcYtyLahMqg5ss88ptYnPneaQNQxd5bC7DgBVKr56mdLLFlm8aM/VwSaIBaICYcPB3zhC8fIZh0aDUUu51KrpRSLHq2WIp93MBNEi2IROh1NoSBpNi1yOUGtZjE4qOh0zOg1SQyjNZs1YdqZjO6PY82O03zdMGJ7O02B75tdp+8b0M1kjAaztwP1PAOyti36hCLRc+ARoOPEnK+9MPGesXiamp0hGM2lEMgwNKPaJDG8q24XKsLQpIC0WuYHHscGNKVEtlqoTMb40VoWFpAtlfDDEK68kmR2lmaScGxmBnXoEGEmgzM9jT02Bl3QTi0L6XmkUYT0fVKt0V2tZTo/jzUwQOHd70achZfyK60sy+qPZ8EEMhw+fJj9+/fTbDb72s9qtXpWntMvRr2YO8yXer0qAXMxdarxJ1y8rMrnlxCCqampftLJn/zRJ9Cpws8brVO72eGrn/gG7//vPwPAxm9uRaWqT/yJg5jHv/h93v3r97B74z4+8LYP05pvccK1ggD0Qte08MUX1u4tWZZfEbJvu2uaTAnS0jz6YImxlQGPP1SiPmf3O04AIQVRKLBsje2Y9VgzMMSe2WMug2MRubxi+RUB+VJCbcYmCsUJoK01FCsJlSUR85MutVkbrSVxpPjy32a452efBHIo/1cAmJ4O+cIXjhB2Yp5+7FmmDs3h+VnWvfYq0pyHZTndZs3ucmUkjqNJEqu7XxSUy5okMWAZhmZkmiRGXZGm5rXlcgYkcznVB8MwNJ2kIQQptDaEIWNYYH62nqe739ekqfk+gOtqOh2TMSkk6KQ7du26+SilkF03n15cl1AKLYQBPNtGNpsox0G222YUmiSIOO7bKuk0RfRAUyl0Nous19GZDHJ+vt95yjBEZzI4nkfZ9ykXCiRac2TvXpq+z9y2bZDPk8lkyFoW1tAQotEwWkvzYkiDAKtaJX/vvchXmID9fMuyLAqFAqtXr+5rP2dmZti8eTNpmvbJQ+Vy+Yc+ul1sh3m+LNmXQ10CzJNUkiRs2bIFy7LYsGHDC66uLnT01slKa00URezZs6dvcZd2u41eCQRxtBDPNThurl47jQ5hxzi97NtygIf+9mEe+YfHaM61TvJEC4+2mNq33YxKtdLEoSH4KKXJlxRL14Rs/q6NtDVoyJUSPE9jd0eaaWxel59ThG1JcSDGz2osGyqDKb/18f381k+uJEkkcShJYvAymqGxkLf/zCwI02X+2z9VeOa7BZQSdNqSVA0gbYmIH6HWWc999x0CBE99YyeNY7O4+SJaJTz59S28/sdvIVvIEcc2nmfYsb6vmZlRDAwYHWSp1APH4wObzf+NgsN8NKNY+kxXM4YzYOm6EMcW2axCKdnXYho5iejuKkXf5cfITQxT1nZcA5JgiD7HWd8prZFxbD5GUd8Cj+5+U3dJOdq2jcdrd3QqggBtWQZIHWeBVRtFC+49uRyiVgPLMqzZer3/NZXLmV2pbVPM5/GqVYJOh3YcM9luk2zZglutkqnX8YpFRDaLDgKyb30rVleScakW6ngQOl77uWLFCpIkYX5+nqmpKXbu3NlPBDlf7ee51tl0mJcA81VWzWaTZ555hmXLlp3SZeJiA2YcxzzzzDMAXHvttX17rrf++zfw57/2SaLAgKHlWLzpvbf37/cT/+kdfPdL3+fo3ilznLZFYSDPp3/vc6e2qTvnEjRrFo6nsG34/jcLbH0yR3kwwXYVtqWpLEk4tMchWzRvznEo8bMK10/I5DTZgjK+tBpUCmPLI97/ocPc//FhvIym3ZCsv63JbW+vsenxAmFHYjuKN75rnv07POpzNiuvDMAaAZESNDby+a8eIUkUWlvE9SOMrpQ4ziwz0xVEJ+Xo/harry6SpgqlHBwnYs+eKTIZi507JQMDHkFQYHzco922qVYVYdjrDo0cpEfUWfDCNWBq5I09LaXodo7GzUdrieOYj8YCb0FraSzwBJZUOLYkjWOk56F6PrFKGcJO1/RcS4kIApRtGwDsGhPQBU7ZY9FalukkpUTbtjEd6GotVSZjRrRKISzLjG+jaIHiK6UBya7nq5qfR3ueIRG1WqT5PG4cY+XzFEol0iVLaNVqtKRk6vBhRLFI/i1vwR0cxH4Z2cC9WHU6lqxt2yfVfu7atYsgCCgWi33j+POJ0jqbY11sh1m9CEYUL6V6VQLmqU7Uo0ePsnv37jO69lxMwOzZ7K1atYojR46csGu9/d6bAfjqX30Dy7Z416/czVWvXcgOdDMON919HQ/+9TfxfJdcMYu0BFEQMzBSZubw7AU+WkEcWsQhPPagSURZubbDG941T23aYmRZTGU4ZeczWf7iQ2OsvrpD0JGMrQi4akObG+5o4OcUKhVIywj2r7qxzTW3NGnVbRxHMboiJF9SxJHAcZUhJAG5YortaO545zwibRBHWT77z69jshGAgiSqseaaSdO5SZdydZ6DO8sMDz+FamtkupS52dXMzrUZGxvFcTKMjUEYdojjFvv2TeP7FmGYZ3jYJwhcymVjrm7bdM0F6BN0DM4YGYjRWJ4Ioj3NpfGJlSe4+EgpkF2QVWmKI0QfJHt+sL1OsseU7UV66Z4EpGtth1ImUaS7z5RRZMg+PbODMET7PqLR6Lv3kKbmto2GAclWyzxemhobu07HMGS7DF1VLGLNzaFKJWO7JyVkMviehz88zPhP/ARq1Srm5ub64c69N/leduKrvZRSi7bZe772s5f72dN+9n6uxWLxolyYXJKVLNSrEjCfX0optm/fThAEbNiw4Yx/0D2nnwtdR44cYc+ePX3APnbs2AvIRbffezO333szQSvgz//Tp/jI+z6On/d5zwfeyec+8iWmD80SdSKiTkQSJyRhTLaU455fupP/8Qt/ThJe3FHyM9/J8/ofrXH961soBWki+Mz/t4RjBz2OHTRkhpVrO7RqFgd2ZFixNiCNwcuavd4jXyqza3MWy9bMHHWojsT4ecnlr2khhGB20iaTVUhLc9lr2lyxPqQx7/Dlh0ept69m7zMH2f30bqpjLZatSJmaLJHzUyxXce0tk9j5VWh8JDsJWx1WrryDVsvFdROiyKJUyqJUjrExTZomhGGLmZlphEjodDKUSlmCIEexaHacPRlIDwzNuNUQe+gGMQthZCQ98Ox1lsbyzuRd2o4ElSK1uSDojWRFFJlusceUDQLzMUn6qSRSdU0Nem72YECya3knuz6uIo4hSczOUwh0FCE8D8IQoTW6UEDOzqILBcTsLFpKUt83huqZDKQpqZQGtEslY0xQKJC2Wgil8O68E+eaa/pM2NHRUUZHR/vhzjMzMxw8eBCgT3B5sdJBXmp1rjpMKSXlcrkf2RfHMbOzsxw+fJht27aRzWb71n3n4+v6/FrMsbZarUsj2Vd6BUHAxo0bGR4e5sorr1zUiXGhO0ylFM899xztdvsEwD6d1+v/+o1P890vPYXj2bRrbf70//prBIJMzkNWctRnmrRrHQCisMbHf+Vvuemu63jsgScv2HGfrJJY8tHfnOCq61vYrmbfcxnmp3sXIOZnu/tZn7v/9xmKA7ER92ehPm+x8dt5HvlCmWIlJQoFg6MxO57Jced7IyZWh6hEYzuKf/nUAIVSyvBERH3e5h8+fyVPPrWSfGmKbU9NUqzkGai2CEOHyoDALYxQKswTppKM7TMzHZHNFhiuthDC7bJkjfFAu200lGEoKZVsHKfM6GiJNIUkaROGLRqNeep1QbGYQ8os+byDUgsayx54Gks9o7eT0vjBLshH6IOmMV5XWNoQe2ylDKO0d1GmlCH/dE3Se6xYuk4/mgXNpTze8afbfapMBtFsmr1kGJrOtUsQ0j02k9YmjcT3zc6yUEC324hudJfodpQ6ilBxjMpkzDEJgfu61+HccIMhE52kjg93hoU3+YuRDvJyyZi8UDpMx3FYsmQJS5YsQWtNq9VidnaWbdu2EUUR5XKZarVKuVy+YMbxp6pLspJXeM3MzLBt2zbWrl3bp3svpi4kSzYMQzZu3Ei1WuW66647AbBPB8w/+Poz2K5t3oxdSVI3vq0ZvBPdbrr/bc612PPM/uMzoC9aaSXY8mT+ZN8BYN+zHk8/luMNP1YjVWbMOXXI5hMfHmHqsIufU4ytiFh2WYhSkC+3+eLfDPC9f8tzeE8GrQVjK0I2frvApt3LcYd8ctkmG781S5rmKJSLzM9UWb7mAEEnYnzERqcOViqZn2/ienmktABjzec4PTmIpFQyI9ZCQXXN1emDaBDkqFaz3TzLiE6nRa02w9xcRKGQI019SiW/b5lnQPREs3UjHzEdJtDfjUplfs99D9YoMszW4zWXcYwSxoSd3nnRNTFQrotstQwoNhoGUJUy4NpNrBZx3De27Zmoy+lpA5LdfSaeh1CKtAvaSghzTJUKaa2Gdl0DSkGAdfvtBijPUgbx/Df5XjrIli1bUEqdkA5ytqDyconNUkpdFP/pfD5PPp9n2bJlpGnK/Px83/vWtu1+Z5/L5S74z+mSrOQVXLt27WJmZuaMIcsnqwvVYR5vcTd4Eibh6TrMXCnL3NH5vim467kolZLECWl6vKhy4b9hJ7roYHnqWnjiUjXlwU8PsmQ8ZtnlIU5GMTSWkM0r0IKwI5mbtMmXU370Z6eZPCDZ+GiBNBU4rkk6mTnqEJfLzOwc4MaxDqXxgJHlNkd3z7LqqhauLdj13DDLVgW02z5uZhWz9X0MFANst00U+tj+9YTBgiZSSt03IgDRtcJbcPHJ541spFhUhKHH4KBDmhpSTxB0iKIOhw5Nk8m45PM+lUoWpVw8b2HP2esspexZ35mRKgBxjOyOSnHd/s6QJDEjUyHMTlKIBWJPz4knSQwhp9Mxmstms29tJzsdQxAKAjOa7Z67orubFLWa2We224h2mzSXQ3Tde4hjVFfSIjyPtF5Hrl+Pd8cdiPMISO/V89NBkiRhbm6OyclJduzYQSaT6Y8YFxPI/nICzIstF7Esi2q12ifihGHIzMxMf69cKBT6nf2F0H5eYsm+QuvQoUMkSbKokOWT1fkC5vEaz+uvv/6UbwSnA8yf+8P38pH3/RlhJ0IIGFk1RBKn7N968NTsO+el8euenbQZnog5uNujWEkpVFJ+8O0cuZJi1boOB3d4NOZtLrtmjtveVmfHRh8pNbYlQAikpZhuDxJ1yvgZjfQscoWU5ZdPMzgk0LGFldGsveYo2r2cpLWP6SNHGBpdRTu9kZKj0LoKVpF83ljzZbOaKLLIZBRBIPt+sT1jAfN+Ym5nrOx031Q9ji3K5Sxa5/C8KnGckCRtZmamAIXve1QqOdI0i+/rroyk23nqtD8ORWt0FGFJie75wvbce7om6719Zl9z2XXvobsTE0qZTrFHArIsA5LttmHIzs4aQI1j+gwmKQ04O46RowQBemAAPTtrPGDBjHRvvJFmLsfo+vWIC7gfO75s22ZoaIihoaET7OW2b99OFEUn6BNPNmK8BJinLs/zGBsbY2xsDK113zh+8+bNp+zsz2bEfQkwX6E1Pj7OyMjIOd//fEayaZqyZcsWhBAn1XgeX6cD5vVvvJr/+sXf4C9/49M8+50d7Nm0H2lJioN50lidVHM5e2z+nI75QldtxiFbUKy4PGDJ0hDHhde/o8ba61vMTbrs3OJz30eXsPdZH61gZGmE42m0VlhSc2imzJyoULYVa29sk8sJ5mdd4tBieJmkNGAjZQwoknALxw4XiELJnH6W/PASgvgqHNfqAqNJFZHSgJ/WgmJREcemo1xw81nwhe1djBv/1wUQzWR01wLPRqkSQ0PF7sS0Q6fTpNWawbJsSiWfQqGA50ikEEY+Av1ED9UDL+h3lCKODVmndz7EsRm/djoG9ILAGKJrbTrKLihqKQ2I9khA+TyiXu8Z5BqzAd9H1mqk2ezCMYShAUulkGvWIG6/HVGpoDZufNEA6WT2cr0R465du06aTXkJMBdXQgiKxSLFYpGVK1eetLPvgedif56XAPMVWue7gzxXa7x2u83GjRuZmJhgYmLijCfimUKkNz/yLLt+sAfHtYk6EUopgmZAFCQvuK2QAs93SMIXfu9ClZACy7ZYtnaMuL2TW++cpdO0efAzA31Lu16lCRQHEjI+2J4mDMCyBd/8Qpn5KYeVV3bw8woBFCsp/+GDh/nsnyzhWK1Im0FWTbQZvUywZCIhjByyBYvBkTaJzpPJtKk3ythymnaQY3gkYWrSxrZimtNbyQ1c098l9pJI0rTfbHUt7cw4tlDQxLEB056LTxzLvstPz8puISPTgKfrGhcf31cIkaVS8ZFSADGdTpuZqaNoneJaFsVsFteysI4bv/a6zp7msmc6oLq7yB6AorVh1PY0l4D2fSMR6TJke+49Pcs8bNvcx7b7cV5plxmrulpL3Wqhr74aeeutiJeI8cDzR4zP1yeWSqWLJq240PVSSys5vrMH+p39rl27aLVabN++va/9PNXutdPpkM+fjLvwyqlXJWCeb53LSHZqaornnnuOdevW9Snhi3me0wHm97+2iSROsV27f3UdduKT7in9QoYo6LIuLwLxR5hpKates4x3/PROhob3Mz9tkyaC/TtcnvlOHpWaNwjXUwgBc1Mu1dEET2j2bfNJYsEV69s8+Y0iUSS566eOmWMVsOLKkPf+PzU+/+VhXhMdo17PkYZQr/sUS5pYZXAzMSLqkKYOhdwkzXqWSrlDo51neHSKZivPQO4AUesZMtVrumxWY67ebutu/FY/AbtvTNAby/Ys8HzfgGY2q0hT2bXAWzBhdxy6VnjmcYwLUFc+Yrt4roU9UEAlCUGzSbNWI2q1zC66a5reC4nWSWJkGlFkdpRBgJbdMOtuByk7HTNKPS4bsz+GzWYR9br5vmWZMW6XNUtvn2nb0OmgCwVUGMLQEOLd70acJL5u0R2c1gh9AKHbKDkO4sJb4z1fn1ir1ZicnKRer/PUU0/1u8+Xorn5Sz2tJJvN9iUqzz33HMPDw8zOzrJv3z6EECeVBUVRdM4a2/vvv58PfehDPPvsszzxxBPceOON/e/9wR/8AZ/4xCewLIuPfvSj3PlDTLy5BJjnUGcDmFprdu/ezezs7FkTjM7UCVdHK30WrJd1CVrhKYFQpQppWUCC6zmkiSJNTv8ahCXQ6eKQVVgSnSqe+95u1E8eZOqwycxs1S1uu7vG7i0+jXlzulWGY157V41WQ6KUIA4s6rM2g6OR6d4KKUFbImT3xWk4OpnlC1+5DK0l0rLJFWJiz8LzUoS0EEREkUZpH+IU28ngej5pmlLMd2i3MthCEYRVBkuP0mpczsBghiAwYc/GFF13XXwMCMax1d9dmgsCA4pSnuji07s9yC44LnSrxtzAkHyMjCTFcaRhvSpF1vPIVqtQqRA3m0zNzBDVauydnycvBH42i2/bWEliGLJd1irH/b+vtXRdM6IVop9a0nPvEV25icrlkHNz6FwOMTOD7tngdTqkq1bBzTfD8uWL+p2fsrTGTj6DlTwOSBAukfsf0fI8H/c0JaWkUqmQyWSIoojLL7+c2dnZvrl5oVDoA+hLwTghTdOXNGD2qsfmrVQqVComYzeKohNkQQ8//DC+7+M4zjm/pquvvpp/+qd/4v3vf/8JX9+6dSv33XcfW7Zs4fDhw7z5zW/mueeeu+gSmVPVJcA8hzrTqLRXPYu7XC7HDTfccNYnk5TytAYJP/WBd/GDf91Mu9HBdm0q+QyWYzF98ERHH8uxyJdyOBmb2mTD/LFagvQM09lswac1317Usaqk9/PQ3YgvSZqYLq00kDK+MmTb0zbD4zFjKyPe+pOzKAXZfIrjQHVJzOykw4GdHkm3E81kTSc6O5fh7z+/DttW1Fs+xXxEO8hSLEd92zqbiDjKkMl0mG9WKbohsXJwpU27baNijes7FMoKKVLyuQZx7OK6xj+2ULC72ZeKNNUoBZlMSpqaMWuSLICnlKbL6o1vPU91O0qFEMbFp+cL2/Oi7RsYWGZnKZPEEHp6XWEc4zgOvuNglUoUPI92p0NndpaZdhtLKQqZDBnfx1PKdJtdKzwRxwvMWM+DZtP8JnodZTbbB1mRpqbDbDRQhYKRk2QypG99K/qyy874ez5ThymTx7Hjz2CpbSixCi0ngBpO9EmizAcXdS6dT/WOz/O8E4wTegSXnnFCpVKhWq3+0Ea4L/UOs1cn27W6rsvIyAgjIyNmKuK6fOELX+DgwYNs2LCBO+64gzvvvJPXve51i2I2A6xdu/akX3/ggQd4z3veg+d5rFy5kjVr1vDEE09w6623nvdrO5d6VQLm+f6BLOb+x1vcnSvB6Ewj2cGJKn/y+O/z/Yc2obXm+rdcS7ve5ldv/50+6cdyJKOrhvnv3/qvZAs+M4fn+ObfP8q37v8Oe7ceRCtFGr/wOd7yf7yBd/yfb+ZT/+V+nnxw41kd97e+VOLtPz1DFEhsRzM/bXN4v8v4yoirb9HMHLWYnbLZ/J0CUQg3vKFBEgm+9MkqWmmCtsXSNRGr17VpNBz++SuXdVd6DqViRBB6lEoRjWaGbEbRaHmUijERoLRDKdciiDIU8y1q9SEKxSlqtTKVSp1WIKiUNKHI4zhGF9mztHNdQZJYZDKgtepqKTVCaDwv6Zqqa9LU7oOjEMcbtNO3wOsZFhg3H2NY4Dp6QTcJZqTa/djbWVrd70vXJeu65IaGIEmIo4hmrcbs0aN0koQS4BUKZIUwO08wXWdXkkIYGrP2bBY5P79grN51ThBJgi6VSG+/HbV27Yna3XMsmTyDE/81YK7EpN6D0hZaDCP09Hk//mLqZID+fILL891xcrlcv/s8X+OExdYPm/Sz2DqT8boQguuuu47169fz9a9/nUceeYRHHnmEr3zlKwRBwD333HNez3/o0CFuueWW/ucTExMcOnTovB7zfOpVCZgXu3oWd9dee+15LcEXQ04qDOR5w3te2/+8NFjgv337t3jg4w8STCYsv3KCt7//zWQL5kqvOlbhx3/1HXzvK0+D7j4HJwKmtAS2I1m9fgW/ff+v8au3fZB9Ww+a1ac2RBmtTj2q3fhonlbd4qobWtTmbL7/cAGtJNWRDvu2WQyOxnz1vgGWrYm44ZYWu7f4PPtklp/7wFFcz8g6Hn6gRL3u8LkH19FqOWgcLAlJauHa3TGopxBIMp4mDG2k6IVC21g2JCnkc5AkJaoDddqBTzHfot6coDwi6ISCbFaQJLrrDWvebC3LmBiYEa0ArK6Buu6mjaRdU4IEISxAYdsSs680mGT2lwtGBa4r0Uoh0wVXHYRYsLzrfq6SBNlju/YYsmmKY1lUCgXI5dBhSDsICKammI4i3Dgm63n4hQJeHJvRbJc4JI5z7+l5xwopid/8ZvS6df3Yr8XW6TpMqX4AwkFTAA4BEqGmQNoo+bzuVSns+K+x1GNAmdj+cSz1HYSeR1mvIbHv6eebWsm3sePPAw2UvJHYeQ/Ik+9EF7NjPZk7zszMDFu3biVJkn73eS7GCf8/e28eZtdZ33l+3vcsd99qlapKq2XZloRly5bjOAQSbIghBJokEAaeEJIZhiEhYWCyzBMP3QGGdodJ0gkJHUgP4GQahoFuHAIhYGzWDsY2NlqstSRZS6lUkmq9t+52lvedP95zbi0qSbVKsqXv8+gpu+6959yquvd872/5fr/zxUuFMGPE8pN0Os2DDz7Igw8+eMF9HnjgAYaGhi74/kc/+lHe+MY3Lv3JXgHcIMxlxHRP2nvuuWfJTh7zbf3OPn+z2eR3Hv6fLnn+bT9zK0d/chzf81tLQNKS2K6NVoryqGl2IToVAAAgAElEQVTr2bbFn33vT/jv//VHTI7XaNY8vvyX/0x9skHoz0Xm5mJ1dF+K0y8kaVQFtqvZ+fNlzp12OXfa5v5fOcfTTxTZ95TDnn/N4KY0b/wfR3jhQJJcKaRnfZP73zzB5790K56WhMohmw0YK+co5JpMTqbJ5zyqnoOd1NgogtDFtkOaQQoI8ZodJNwGStsk3CpKJchkAdlJqTCO5w2RyayjWoViERoNk4EZhjqaP8Zt18ibVQkSCVONmiUfcBwFqIgkA4SQppJ0QWvZiv+ybTGTLKOFnlaQc+Tco6O/tQ5D0zq17dZCj6hUjMl5GCKCwFSfXV20BwF+EFCdmGDkzBm8MCTn+7jFIplYlxlrLbVG3Xsvavv2lqnBskCPYQU/RqjjCF1Dy3aU3IBU/QiahHINvvvrMx7ieB/DCb+GxgJCkt6/Esrb0aKAHXwDdI3A/XVk8BMc/+8QagzBBJZ6Hiv4Fs3Uf0TLC9OEFkpE091xlsM4Yb54sRDmfJ+n53mXNT94/PHHF3z+3t7elsk8wMDAwEVTpK4ErkvCXImZRWxx19HRMW9P2sthIfIVz/NaFnsXO79Sim9+9jvs/9fDdK/v5Paf28Jzj+9BWhKBwHIsQOMkHO57o9lS63/uBT73kf9Ks+6RTCf4jQ+9hZu2DPGNzz7JmRcahL5i8GSC0Jt+JhMAXZ80LcpCyeeBXx3nsS8V8RqSb3+5RLXikCsGDBxNsu6WOomEYsyzKHYEJFIhjz1+E8MTGdJJzZkBh+4em3y+SbORIJf1qEymSKcUE+UUxbxHo2EhkTjCozKRJpGyqHuryWfOUK25FIsVfC9HLltFiyRJt4a0NLmcybY0msvYzUdQKOhW5Smlbi3uGJ6RUQi0TTpt5p2Oo6IECvNp27J0ZKEXLfpGA2MdhuYjRbyEM90PNorwaiWLRCkiol5vZVYSfdpvEanvY1sWxXyeYjptqk/PozE0xGgYYvs+2WQS6957ce++G5bo6DK7ghNqGNf7MEJNgA4RnEHqAC1SKHEbXuL30PLmC1q+dvgYmhQIG7QHNJDqOFoU0LRhhU8SqLdiB/+IUCcR1NEkAAfBKI7/n/ESf3LZ57dQzDZOqNfrjIyMcPjwYZrN5rJ5s75YCHMhWZjL+YEixhve8Abe9ra38YEPfIDBwUH6+/u55557lv0888V1SZjLhfjNOTY2xv79+y9qcbdYzFcvOjExwfPPP8/mzZtbOqq58In3fobvfelJvLqH4zr03dLD//H199HWXuIHn3uab372u0hL8isf+EVe+Zb7KA+XeeSDXyCRNFFhZ46e5U9//c94/3+ss3lHnlOHPdLZGrbtEHpzvfnN/G9sxOHTD69i7LyN15Bo7ZIrGFLY8bMVutZ6JNIhq9YoSh0+3/j+TQwM5pBCogXYjsPQgGDtzQGNGpRHErgpjUoKsumAatVl75M5AmVz85Y6fmDhuCOkU2W0lhSLVZqNDLlclWqtRKk9QT0skHNjwwEjA0mlTPGXyRgXH+P+I8jndRQYHZOhuSAnErTmmkpZZDIysmM1H3IMaSqUHyKFRochFqDCcKblHVMesjKSj8TB0ShlqkSTXE3ksmBCoCMilZWKcfyJyDZt22S6u2kXgnpvL2f7+hienKS5a9eym3Fb4eMIXUHLbvMNZaNEO6H9epS1FS27LvJIDSjQPmbmqYEaQksEI2hW4Tb/Hbb6LuCZ1xIajY0mg1Rn5j7qMhoXCCFa8orZxgnHjh3DcZwLjBPmi2tNh3kxzJfYl5pU8uijj/K7v/u7nD9/nl/8xV/kjjvu4Jvf/CZbt27lLW95C1u2bMG2bT7xiU9ctQ1ZuI4JM9YtLhaWZREEAWfOnLmsxd1iMZ+W7OnTpzl58iR33nnnJY2Pa+Ua3/78fzfyEikJ/IAzx85y9uh5+jb28I4PvYV3fOgtAAy9cI6P/cbfsOe7ByiPVEhkEliWxLIt/EaNP35zgNeoI6UgW3C5uKjTEBKh4PTRJJatCQNzkahPQs8GD8+T3PWKMqmMIvBtvvbYBl4YKlEbtRFS4LoW+XyTiXIeITwGjpfw64qTR/JsuKXObXc3GDiaZuSMxbafDmk0bCbGM/hNnzWbzMVYaEE6XQdsisUaTX8zmWI31aoxVfe82ApPtsjTkCOR9d0UeWazxhnIFGoxeU65ABnNpoXjRMtAKgAkyvchDAmCoJVzKaJcy7iiJPaD9TxIp83iTuxe02iYKjOqRlvuPfW6sbybmDAkqhTS8whvvZXwZS/DTqfpBXox1cLExAQjIyMcO3bsAqec+eACQtJVYOoCpkUKZAeh/UqEPoYMz6PkeiA6fvRYJbZh6Scx9Xf8GpdAxRCjHkZqU1UKFGCcmwQhmiRaFLCCJwmtzSCmQotX0ulntnFCo9Fo/S7r9Tr5fJ729vZLivun48VSYc7nZ1lqUsmb3vQm3vSmN81520MPPcRDDz206GMvJ65bwlwqhBDs27cP27Yva3G3WFyqJTt9Xrlz587Lvqj9ZjCzlRZlIoaBmvHBwWt4fPahL3DgR/1MnJ9Aa6iXTUyYk3Twm3E1ACCYGHPQF+X02e4+U/9f6vIptAWcG3A4ujfNxq0NvvH4Wr71RB9dPR7d6zRJCw7tTVMZsdlyV5Pzgxly2SZeKsVtd1TZ/XQ7q9YMM3w2hZsU2I5Ps+6Sy1TRIoPrVGl6edxEA4TEtgOQ3bjpHYAVtV0lmYymXpfk83FFqVBKYhYmRbQ1a/SaceUZBLEbENMMC+KZZRQejZHvqEDjCNGiBSUEutk0VneNhsm09H1klEpiwZRhQbRBqxIJIxFxHJNKMi21RCiFTiSMXV5fH/4dd8AcAeiWZbXMtoFWu7G/v//i7UZdxgp/AoQo+bILjqnkTgh/ALoGSAQ1ArkTt/kfkGoXYCN0GU0ahCCU9xDaP2+qUjoQTGDIUCOoEg/UJU00VcBBU4zuF6KxEIwgwiqOOoUjMjQTD6HlBvN0r6A1XjKZvCDYeWRkhBMnTiClbIn75zJOeLHEkIVhOK/N4Wq1+pJPKoEbhLko1Go1yuUyGzduZOPGjSt2nou1ZOczr5wOrTWNWpO1W/s4se8UylcgBU7SYeOda2eQ8vjZMuPny4ydHTfVwLQ3tt+YqQlVSkfcufAL1NiwQ+FsiNYCYcGegx0cOdlOeSTN+FCSMPDwGpJmI4nvCTwvpDJmR7FcmnROYlswPlairROGBnIoz0PYAjyLYqkBOOTzVTw/TTZdod4skU7fRaiyJGxDbqYihFzOBFhnsxrPk6TTU5WlMSwwM0xjWEArgcR14ySSqQ1bM7dUSGFmljIIzNKPUmjA0hrhOCZX0rJMiojW5vn7PgEYQ/XI0g5My1bH7j2JBKJSiXUsxnSgrw+1ZQt6ni5SYJxyYpvGuarPrg6bNcW/xRYT5gEiTcJ+44zXm7Jvx+PdOP6joIfROonj/TmScxAt9JhXiADtIsNT2OF3gAnAGLhrsggq0RGnE4mPQKGRaBwghyHWOpo6QocoHBz/EbzEh8zzuUqzwdnBzp7nMTIyMsM4YTmTQa4U5vv7vB6iveAGYS4YscVdoVCgq+ti85nlwVwV5nznlTHCIOS//cXX2PfDw+RLWTr7OlChomdTN7/9V79JU9ZnnCNdSFGbMGYFQlys2TrlwHNpXNyDL/AEp44muO8XJpjUaX58sJeBY0lqkxbKt9j7oySr1wR09XqceiGPFDX8MIUrfIIwiZAejapDftWrKRV3MTFSZfhcgu61YOclnasahMpGWoqEAEWGbL6Dht5MNmUWfPJ53ZpBAi3SS6XM91MpU0mm09MWeITAtqeWgeL/jw0NLEsg0EhppDexf6sIAlNRRkYU2veR0SxTWBbC92kqxUS5TFdbG4GUyEoF7TjIRqP1mxREZOq64HnofJ7gZ34GvYA817kwV/UZVv4erzFE2cvjOA5Jt8bq4g+A1854rLLuRAdfw1b7iDWYBtM/7GmgiaHOeP4Yvc6Ybc4x/XVjocmjZB9Sj4P2EHhAAphE6mMQDCLtvSjrZdeM+brrunMaJ+zduxetNZ7nMTExcc17387XkegGYb7EsdAZptaao0ePMjY2xs6dOzl8+PCyhUhfDLMrzPnOK6dj7/cPsOf7B+he22HM0R2LLffdwpt//5cAOHXq1AzCzBYz3PtLOzh5cAAVzPz9SEuiwvnLXAwE2+6Z5O5Xlfn+V4uEgeDUkQQqNPZtq7Zonty1huMHUhw7lMe1JQEWCUsShFAeB0HI6RdyrN1UZWw8T1upwckXSmgnS7K0Dje3mjt/7utofxzLCpG2a7SUQuJ7Lqm0S8ganOQrSGA+COTztFx84jbrlIsPkfHAVDamGy0IxbNJKXVc4LWMCqbCoSOdamxIEIbmjs2mMUKv11ua1nie2ahUOHv+PL2rV+NaFrrZbHm+hlHSSBzhJet1VFcXatMm9Ap9aEulUtiWxA7zJNNFfN/H8+ugy+zZs6c1y0ulUljBt7HCJ5lJlhfDXO+52d8z/y+iFqyX+CDK2kGy8W7ABX02at82o/t7JBrvp5n8a7RuN66B6gWEbqDkWhBXN0FjLuOEZ555ZoZxQty+vVLGCfOF2fye35bsSz2pBK5jwlwI5rK4W64Q6UshJvWFziunY3hgBMe1Wr6smUKaoRfOtW6fy37v3/ze69j/w8Mc23uSWqVO6IVREomMjAv0PKpLg76bGvzqb5/j3KCDCgWFko+zVXHiUJLAsfnrj2+lPOYANhKFUhYWAt+H82cS2K4gDFz699qUx1xyJcXpI0XOnS5y6/23k05LxscDiimbSj1PR2EEz1cIyyLpeoT0otP/AyoQBKGOtJQx2cVi63hhhxYpGt/XqY3Y2Ed2SpspIjN1cyxjT6qxpDF2iCvJ1iZs/NX3zd81eu1ooHz+PGOTk6zt7ERaVis4WiqFiA3SEwlUo4G2bRp3343q7jbPZQVbkEreBeEPEDRxHUnC1pw8v5XNmzfPkFps7tvHqnx9OcyC5kBAsvnbRoKC25KXCCaj2xNoUgjq2P4X0fpddGU+R6J5CLREiwxe4o8ji75rA47jYNs2t91221UzTpgvFiIruVFh3sBFLe6WGhE2HwghUErx7LPPznteORurNnbjeyEqVAgpqIxW2XTnhtbtc23iZgpp/vAf3ss3/v4Jjuw/RnM04NSBQcrnK2RLKUpdec6eGMayJY1ac5qP7IXou6lpPvEj+OkHJ/jJ97PoUCDTFi9UVxM0JAEJbEKEk0L7ka2asNChZngwTe+GOqMjKQaPW3AyRfvqHl71th3UVJ0wFGQy0GzY5PJZypMhbaUK1WqatpJPg1uQ0my7hqFpn2otCENjhWdkIkQWdzHxicjRR6CUboU9t0hxmjZTCHN7y91HA34kSo1N0qNKU0emAxrMtmsYcn5oiMDzWNvVhZDSaC1t2xCt75ug6CibUtxyC/T0YGtNGIbo6Gv835ZlRYS+PBdZZd+Fr38TO/xHICSwf5nz5dVsmDX7bJRHQD8688FLJE9NHrMx24gOZ2acily0NWtFusxE1NL1kOEucvaj5O0nQZfQIoWghuP/33NqNq8FzGWcMD4+fkEuZVzNX2lcKVnJiwXXLWHOh3gGBwc5fvz4nBZ3i83EXAgmJiao1Wrceuuti9Z3bv2ZW7jvjXfz1D//BIC1t/Xymne+snX7XITpewFHDx+jsCnD+3/7PaRSKc6fGqFWqYPWPPutvfzzpx4j25ZlcrTK+dMj6GDukrM+aWGKW01bV8Cb3jXM8WNpvvexjQRIwMIhJMTBQeHh4EiBdNMkHIHna4IwSXu7z8ljaVIph3JZ8vTXd7H2pzbR26vwwzzpZAGJIptJ4vsBmazNZPN28h3baTTj5R1DijFpxjNIo52MbVZ1i0Rjq7x4NmnuN7XkM0WiEdFqDUFUQUZVog7MdrKIdJU6iuhSwNkTJ3Bcl9UdHYZIlTKLPp43lWGpFOFtt6F7elo2dnIaKSqlWsQZ/x3DMGwR51LJM3ReRei8atp3np5xu2VZZIoPouv/DbR5jaG5sAOxQAIVlOf8vqSC2ZzNI6hj5qBmNqoRtLmfRxCAHkVqi5ANSObWbF4tXEqDads2HR0drfd7nEs53TghzqW8EnrE+VaY9Xqd1XPEwb3UcN0S5qUwH4u7lW7JxvPKdDq9JDMEIQSve9cDvOJXf5rAD8h35GZcRGcT5tjZcf7qd/+O8bMTZDJZyofr/Mr/9kt0re1Aa80//Lsvsue7+42ZwNFzOAkboY2kfC7seybNjlcmWX9rA60E5bLNpz69FR+JacMaEYFEE/oaSwi0trBtSaBtJBrh9DB2bgIpfaxElvZ2m7FRTXVojMNulr6+FE1+mlVt/YThJG4yg7A3MH6qwaEf7yOZsVn3svX0rEnTbMbLPDrKrZwiRSFEa8knDoE2frDmfqbSJDIqEDNJVoFUIcRkqVTL4k5HxKejeWYQhgweP06+VKJo24ZflGrlW4pI6KnXriVcs+aSfq/x3zK+qCmlWuQZV5/x/Zaz+pwBIfAS7yHV+D2gMYMctZamIpz+8lhy69bIUAL5Kmz1zeiACSTDgI8QIWZDN8DiMIH45aWecFmxkKSS2Dhh9ibzCy+8gG3brVnyQo0T5osbW7IzcYMwZ2G+FncrRZiz55VPP/305R80D2RLc7dLphOm53l8+kP/D5XhKus2r0VrzU+eeJ7NO2/ijp/fRnm4wvM/OEhbT8n8W13kdP8Q2WKG6kSVcI7WbOBL/uH/Ws2mbXWErXly/1oqVQtwsVD4JLBRKBJYKJA2rmOjgxA/lBTaUjQbino9AGGTyWdQ2saWdVKJPJs3dzA21kDrYfb1t7F69SpsP0cwMcpPvrOfdMpCq5DxwfPkfvUe8qVUFOdlZCNGThK3WU03NG6v+r6RmYShaMlJHCc2U6eluRTCGBQIAdoPDDlGLj2xwbqSEhkENOp1zpw6RXd7OynXNVVk7N5jWYhmE7V2Laq3d1F+r9OryrmqzyAIWvdZFvLUHrb/X7CCH6JRCGwMgQVokiASwPi0+7Pk6tPAic7hEhOmoAYiRGMjpp0ksO++2EGuChYrfZm9ydxoNFquQ7VajUKh0Lp9qT7WMRZSYd5oyV5niC3ubr311pabx8VgWdYlsyoXg4XqK5cDMWHGs1qvHNLVE20aCoE9LV9T66k6UghBri1LppimNj43WZo7GsOCAz9Jc1Z0EDoZpFQoZWzOXKFQIoGlQkLS9K4tIVM5HK2oVgPW3LoGv+ZRHfPwapOUxzWZbAMtXNbcthrLSrBqVQLLKuI4IeVyHa3LPPuDIzhWAE6aXCakUWkycuocpY51UWwX0zZkzbgxm43brfFsMrbOm/pqbofY5UdKgdCB0VwGsyrKyIiAyPKuUqsxdvq02YSNZptaSnNfIdBtbaaiXKaA4ytRfTref8IOv4tuuVdYKNGN0A0E5Qs7D9Nf0nrW19m3XwKCcSz1NIIQY53XaN2mtIsUTvT9DIJrS/e4XFrRZDJJT08PPT09M4wTTp48eVnjhPlivjKdGxXmSxzTXwRaa06ePMmZM2fmbXFnWRaNRuOy95svYn3lXH60K6ktk1JSrVbZu3cvt99+O6e3D7P7u/twUy5aaQI/ZNUGI10odOa57d6b2f/DQyTSCZp1j40vW2uiwi4BJ+Uy6BXxAwuhJUaZYmHmTpZxtrEcisUkGgfXkgShgxSKpic4d3yEbDFBM+HSmBiD4lpe+frbcDJt2LZpjyaTGiEkHR1ZLCtLqXAEr57BsRvUmg46qFGu1FCqASRbHuTJpFF9pFLGdD2bjY9nKshYm2kqzCmDAjPXBKGVucZHlaISwhgVMLUpq6NW2vjICL19fdhxBSqlqSg7OlCrVsEKSwrmU30uaHFIK+zw+2gKIKqgo0pEZFB0GY2ksWpgpiYzwuyX9IKqTx/B+LQ7KECgtI2gGS0LSTR1tLj2pBrL3RqfyzhhdHR0WYwT5nPtuVFhXicIw5B9+/YhpVyQxd1Co7cuhUvpK+PlopUY8GutGRgYYHJykpe//OU4jsNr33U/w4NjDPafQWvNff9mJ1t/5hbAvHHe8Sdv5onP/YCT+wdYtaGb7T+/lWO7T3Dm2DnC4MKLomVLzod53I52Nm5czeFnXwAniWUpPC8JyiPAwbWg0FXCqwXUylWUdsmVsuhAE+KScpNIxyKRSFDqSFLo7sR1abVVa7U4nsvMGDfv2MDzP9iLUC5J2cQutrH+lnbOnatg22dIJLK0tSWxrAzJpKmwMpl4NmkqylRq5nzTaDNpaS7RoaksVbTcA632qmg0TBxXo8HIuXM0Gg3Wrl5t+r6xd2wmQ3DzzStOlHPhUtVn/N/x/S5OoCJy4AkxXrE20ARdQwiFZ78PZa0h2fh9BKOXf1KLqj5nMqwAhFCAjaYNLdpwvE/TTN7Zyte82rgSbkSu67Jq1SpWrVo1p3FCXH3mcrlleS43rPGuA9RqNXbv3s2aNWvo61uYTms5Zpjz0VfG8pXlJswgCNi7dy+2bVMsFnGiNmC2mOHdf/7rTJwrY7s2ubaZ28FOwuHB35rampwcq5LOp+nZ1M3gkbMt0kxmk6xa38nB0wHdt9zMK990L5OTipGhMo2mIlvI05z0GDlTw7Yg07kav+7h+Q47XrkZK5lh9YZVHPzRIc4oCUKDcvCDANtNoDUtG7owhEIBmk1Dnp4n2LCth0TK5vzx06QyLrfcvY5cW45EQhMEnQhRo1JpUqmcwrYdSqUEhUKOZNJ8+o7br/GmbKzJbMlJ0Fhi2rJOLBuJ2rACUI0GQ0NDuELQu2qVieyq19H5PGFnpwl0vkYwu/qc/i/ucFxwYRUC33k7rv9ZADQ5NB0E8pUIrZD6BCiBphBVgwv4gDmLHLU2L4FL3cd8T6ERgIMWWbRsR+hRhJ5Ai+VLEloKrnRSyVzGCWNjYwwODlIul5fFOKFWq12gJHgp4rolzPHxcXbv3s22bdsoFAoLfvxSCbPZbLYcUy41r1zOSjZG/EFh3bp1FItFDh06dME5S6su9CQ9vu8U//Kfn6BWrnPn/S/jlW+9j2wpw+v/lwf46t8+xtotvQweGSKdT7F+21rO1ZP4I2XSmQRKQa02SW51Cf94mdAHy3GR1Gnr6SCRsghUgjCo4+k0W7b2Ui5rNm7fyPEDI1QnQoQoI6wst92zHq1FtOkau+5o0mnzO8xmzcLOhi1d9N3cTSZjyC82RTft2zSFQhql2rBtj1qtwfDweZQKyOVSFAoZstkUUlqRFV5sVGDOYUXmBfi+sbzzjPZSB2bpx282OXf6NOl0mmIuZ2abUhLcdNM1RZRzYTZ5gunElMtltNat2b1lWSjr9Wi5GhnuBkqgx3CCzxmDAZXDmA2MsCCynANiXtWnBi1NxiYCqIOuAwm0WPh7fKWwkC3ZlYDjOHR1ddHV1dUyThgdHZ1hnNDW1tZq784H9Xr9RoX5UkYmk2Hnzp2LNkJeCmFeal4513mWkzBHRkY4ePBg64NCo9GY1/HPnjjPpz7wDwgpcFybf/7UtwiCkNf8xit51dt/lvaeNk4dGqT/uWOcOnia0abL8fMKtCBRSHH27DBSWtzzmns4ufcEL+wfIZ218ZqW+Rl1rNe0yGYlzaYmmbSo6ywPvP3l9O89TyoBXetWU+rO4LqmkkwkFL4vCUMj/zDLSoaTtJ5a7InbrUaLKaaZD4BluXR0OCiVx3EUvt+gVpukXB7GdR2KxQzZbIZMxsG4+ZjfifY8c52OjQkio4JGvc7506dpa2sjY1lo1yUsFNAvwhlPfGEfGxujv7+f22+/Hdu2Z7RtQ+5AWjtwwsdIhH8fzQ8dBFU0deZnmbcAzK4+lUBrI1CqNlfh2DYJZ8hUpCLAc95/zbRjYf7+rFcC040T1q5dSxiGjI2NMTw8zJEjR6jX6wwMDFw2Aq5ard6oMF/KcF13SW2RxRLZQv1gl8tRKF5sGhoa4q677iKZTLaOP5+f49AzR/GbPh29ZqXdsiRPfe1ZXvMbr+S7/98P+edPPY6M7PeCZIEDJxpYWtC2rptMRwqlHPr6emg0NLfccyu3/pSk0ZAc/8kRfvzd46QSPkqkaevI0dbThWVZaC1JpWy0drht50Y8T1IsmtZrOm2qSq2ndJO2bb4qpVt5lpY1ZVSQTBrSNKYDxoggNl6X0jzetiXJZIpSKY2UGqU86vUaIyNnGB3V5LIpspk0qUh/oqPQZq0UQmsmKxWGh4ZY3d2N6ziEbW3oF/kn78HBQU6fPs2OHTtmfMCM27Vx61aGz0a6S0k0TUTQZN4+iouAJkFo/yyhfT/S/wFS7CMMYahyF+cnX0M6fzOltnWkrqEr3dWuMC8Fy7JaxglBEPCTnxgziukRcHMZJzSbzdY15aWMa+hl9OLCQolssX6wy9GSVUqxf/9+tNbs3LnzksYFF4ObcKYnfREGIelMgqHj5/jaJ79Fvj2L7dgMna3Tf05x/9teThjC+bFR0uks3d3d1Gohtu3QbCpSKYfDzxzmyLPHSdiKWtXm1ru7WL9jG6mMzeSkoFCwaTYFUlot27pYDlKvm7SRZtNUj5ZlSDGVMqQZL+qEYTyPNG3VWDcZ+8JqPUWujhMbEUAsG3GcBLmcixAlLBnQbDaYGB3lXKOBKwTZZJJ0MomtNWNjY9RGRujr60MUCoSZzKxe4osLWmuOHz/O+Pg4O3bsuGCOPntxSKgu0AKtE1GVqbg8WUoW1q6N9Zc5Avka/MRvgzTt1tB+NSfOPEWprZ1C3yacKO/z8OHDeJ43I+/zahLW1YogWyiUUjiO07JBVEoxPj7O6Ohoyzjh1KlT9Pb2LvpDwB/8wR/w1a9+Fdd1uemmm/jsZz/bagU//PDDfPrTn8ayLD7+8Y/zC7/wC8v9Iy4Y1y1hLnXovpCW7HznlRc7z1IIs9lssmvXLrq7u1m3bt0F554vYW772Q6l1IQAACAASURBVFt54r/8gPMDo1iWMWH/ld//JcaGJkx15thU6pr+8QR+s8FEpYkWDfL5Eo6TiAzrjcbR923Onylz+McnSGRSpCyLpAenjwyz49UujYZFPm8zPg6FgqBcFrS3g+cJXHfmsk8qZTZkCwWN7xO1WKcCnbWesr4LAkinDenG/rFTM1BaLj+xi098O4BtGa9WS7tkurtRQYBfrVIplxk/fx7f85BBQGnDBnRn5yXdeV4M0Fpz8OBBtNZs37798hdDXUXqs0h9HkOANmChSAICydmZd8cFksZsYAGEqXFRYhvNxN+CNavNKgTNoASyC4RoueSsWbOGMAwZHx9vtRqTySTt7e20tbVdcY/WFwthzl42jLWd040TDhw4wEc+8hEGBgZ417vexWtf+1ruv//+ec8/X/3qV/Pwww9j2zZ/9Ed/xMMPP8yf/umfsn//fr7whS+wb98+BgcHeeCBBzh8+PAVsQO8FK79v9o1ivkS5sTEBD/+8Y/ZsGEDGzduXDBRL6UlG59706ZNrF+/fs5zzzfmLFvM8L5PvovX/c/384q33Mt7/vKd3P6KLXT2mTfP+ITPwTMa1fTAdpB2QKHQRzqdoloNsG0LpQRKWaTTklrFx7ZA6QRaSYSVRIWaZkORTErCUJLLWdTrFoWCYGJCkslo4ihIyzKuO45j5pVxJdloGA3l9Has6wqEMI8LAhFtyoqWmsNsv9J6XFxxmpxLQ8LSYiphRClkEOAkErTl86ZbkEphrVnDsbNn+dFTT7F//37OnTtHECzz/O4KIAxDdu/eTSKR4LbbbpvXxd1ufAKp9qLErSixGi0KeOm/JUj9e4RIYypDC02agJehWI/Hq1Dko9umn8Pcd+awUgAZQrmdZuqvLyTLCBfTLFuWRXt7O5s3b+aee+5h06ZNra7PM888Q39/P6OjoyvuDw0vHsK83PNMJpO87W1v49FHH6Wvr4/f+q3fYvfu3bzuda/jy1/+8rzO8ZrXvKbVbbv33nsZGBgA4Ctf+QpvfetbSSQSbNiwgU2bNi2b69lScN1WmEuFlPKyRLOY/Mq5zrOYN/Hg4CAnTpy47LkXQuDZUob73/6zM77X0dfO69/3ej76v38Tz/cQluRlr7qZnp4+pHQYHQ1Ipx0mJ0MSCZfJSUWh4FBsNxdKqRoEZNBeDZkskUwnaDQk6bTxdU2lBFobjWW9bmQjlYqgvd2QYzpNq91qNmXNkk8yadq1xaKpPF13KrMSDLn6/pSLTypl5prx4pDJvZStDVkdhkitzawyCoNWjQaHT54k3d7OujVrAOjp7UUpxcTEBMPDw63WVWdnJx0dHdf8JmHsNtXT00Nvb++8HyfD59CUzCcLukGPIPRpwFQammyUOJJCiibK2oYSLwf/ORQWkpH4SGiyaNLR9xSaPFr2IvQ4ytoO4uIV4XxNPq5m9fliIcyFytnuu+8+7rvvPj784Q8vKGs4xmc+8xl+7dd+DTDXznvvvbd1W19fH6dPn17wMZcbNwhzBbCU/MrZWGhLVmvN4cOHqdVqSz73fFCr+Rw6K3n1O1/BgX0DrF3fTSJVQkobzwPXtanVmiQSbuSY41CvazKFDHe85k72PL4Xv1Ejncvx8l++g1pNks1KJiaslrYyn9etjdfZ5FmtCtradHQuovDnePvPkGo2ayrK2BLPdYlmooYkpyzv4g3aOCSaKbJEtwKfAWrNJrsPH+amm2++wEZRSkmpVKJUKgFm5X54eLj1miiVSnR0dFAqla6pC2etVmPPnj1s2rRpwYb/WhRA14A0rWG3quM0/0/MzDGLYhNCjBMm3opy3hBZ7u9C+t9HM4mgiaILTQdQxhevwKIfkKDL0YLP/Zd+HotwxYqrz/jvWKvVGBkZ4dChQ/i+v+yzzyutw1ws5kuYvu9fcJ2Z/vM98MADDA0NXfC4j370o7zxjW9s/bdt27z97W9f4rNeWVy3hLlSL9ilzCvnwkJasr7vs2fPHvL5PHfccceKvyk9L+DRRw8zNDTG6Og4m7esxbYzpFIu4+Mh+XyCkRGF49j4viaRcHBdQaNh5B0dfV088Fv3o0OJk3CxbRutJb5v0damKZctSiXN5KSgVJoyQ4epr4WCmWHm84Yc83lNEJgYLiGmSDaVin1jpzSZQCsAeookdbTtayQnWpmaB4zVnbIsRioVDh0+zLZt2+a1Sp9KpVizZk2rmhkbG+P8+fMcPny4lUbT0dGxaNH4cqBcLrNv3z62bt1KPp9f8OODxHtwGv8B9CigUXIztv8FoA7YCCYwKSMdINdEWkkIku9HuL+CUCewG/8pmmmW0eSo27+DVKdx9bfRwiW03wByw0WfAyyPjeTs6nO6zCKuPtvb2xe9FRpnl17rWEhSyaVs8R5//PFLPv6RRx7ha1/7Gk888UTrb9fb28upU6da9xkYGFhQx2OlcN0SJsx/fjdfLERfOV/MtyU7OTnJnj17Lgi6XimEoeJLXzrEkSNnGBkps2pVD6lUhjA0rdR8PoHnQT6f5Ny5STo6XMrlkHzeRQhFGFpkMhbVqiSTtZictEzah7aiBRxJLmes7kolU0mWSlMWeLGFHUA2a2aY2ezU9mwQmO1ZU3Gai2gqZcgyjueKjQziUOjYzWcqFFpjCWVMhoIA5bqcHhxkcHCQO++8c1EEN31tPxaNDw8Ps3fvXpRStLW10dHRQaFQuGJVSEwG27dvX3TLWNt34Kf/DBEeBpFFa4ls/nsgiSFKK9JltqPk2qkHCoG21qGtdXjWbcjwGUCgrJ8iIdtQag1euLMlX9GRQcTFPG+Xu3qb/veCqerz4MGDi64+wzBctP77SmK+FeZSjNe/8Y1v8LGPfYzvfe97M47xhje8gbe97W184AMfYHBwkP7+fu65555FnWM5cV0T5nJiOeaVc2E+qShxtXL77beTy+WW7dwXg9aar361n/37j+N5IZs2radeN7q7IJBIaUjTVJYByaSpMJNJm4mJgEzGpV4H27ZwHFNR5nKCSsUmk4FazYoCn0VL4lEoGBKM27H5vKkYs1kdzRyjBJVcPJNUBIGMXH3M0k/cZo1N1KWcIkeI9ZqxtavGFgoNBFqjLYujR49SrVbnlFgsBtNF4+vXr8f3fUZHRzl9+jQHDhwgl8vR0dFBe3t7y7pwuXExjeVioGUfWhqLSREeABRa9CD0ICbkGfzE/wqye+4DyE6UfN3Mb13GMH52WPZKaxyXo/q8lnWY03ElsjDf+9730mw2efWrXw2YxZ9PfvKTbN26lbe85S1s2bIF27b5xCc+cU1U5TcIcwkwgcNBS9S7EjPDS1WYWmteeOEFRkZGluRatFB87WuH+Na3dtPRUaJY7MKyXJJJ8H1JNuswNqbI5SyqVYVt2xgDHPPGSyYT0bzQplqFVMqi2QTHsaNjWBQKinpdtjSVhgxjneRUlmU2O+XiA1PaSzPLjGeWU5pLY20XzznN/Q1ZxstAcWi0QBISRN2HUCn27dtHMpnk9ttvX7HKz3Ecuru76e7uRmtNuVxmeHi4FdfU3t5OZ2cnmUxmyc8hfu2Uy+Vl+wAw4/hyM8q6HRn8JLKlE4TOr6Ldly/6mBczjI9JNP7XMlJYYVKa3S2oR7rPuPqcbjE3/bm81JZ+lkKYR44cuehtDz30EA899NCijrtSuEGYS4AQgueee+6yYdNLwcWWfsIw5Pnnn8dxHO66664lvwHnO/v55jcP8Z3v7KK7u4tMJo+ULpOTAZlMkjA0NnX5vEW9rsnnHc6cCbAsmJwMKRQSeJ5GCDuSbtgopZHSoVbTkauPIdfYyi6TMbPJ2JEHpowHTOCHuV9MrvHGLMQ6SlNZOk78fUOasTYzlpFArMkECFHR3DLeGl29evWCDfqXAiEEhUKBQqHATTfdRLPZZGRkhKNHj1Kr1SgWi3R0dNDW1rZgslNKcfDgQYQQbN++fWU+AAiLIPlBZPAdhBpCWzejrHsv/7gFYHb1efr06dZ8MAzD5Q/LvgTEHLrPeFY9u/p8sRCmUmpeBcD1koUJ1zlhLmWGOTExQaVSYdu2baxevXqZn9kU5lr6qdfr7N69u+XAsVTEv4fLXTifeOIg//RPz7F+/VpcN4XWDpYlCAKHINCEoY0QJv/QdSWeB21tSY4fL9NonGFkJEtPT5FGw6FQsCLiMuRZr5tK1Lah2YR8HnzftFunMipNZRmGmkQiJkdaFnmx9V3sFxuGZvkndu+JZ5RgyDKeg8ZfLStkujNNnBO6mK3R5UYikZgRFhzLII4ePYrrui3ZyuVkEGEYsmfPHorF4kW1ucsG4aCc16zc8afh5MmTMxyJViIseyG4VPVZqVTwPA+t9VV3HboUwjCc15y+Wq1eF1mYcJ0T5mIRzyuLxeKikk4Wgtkt2bGxMfbv38+WLVtasoXlOsel3rjf+tYe/umfnufmmzdQrUIm41Kthth2gkQCPM8inbaYmNBks4JmMyYlm40b+wgCQb3eZGhogjAcZmgow+rVeSCL69okk1NEFobM0FKa+aUhsriijBd5fJ/IS9a0WePvxws9MdEaF58pWQnQat0mEiGWNfOD0+joKIcOHWLbtm1XZC68EMx2XKnVagwPD3PgwAE8z2stDs2+GMfVcm9vLz09PVfr6S8rtNb09/fjeR6333576+edT1j21ao+9+/fTy6Xm7P6vJb8WK/EDPPFhhuEuQDM1lfu379/WYzRL4XpLdlTp061FjSWU1B9uTnpY4/9mO9+9xSbNt2EEDa5nE21GpBIuJTLAfl8CiEUQWCRzwuqVUE6LSNrOxnNI22kTJDNFtFa0mgEjI3V8P1BBgYS9PWlsO0cmYzdsrST0rjxxJrLIDBEaNq4UzpK016dmmsaI/aZ1nZxdRpvyiYSmkRCRQQ782ceHBxkYGCAHTt2XFWpx3yRTqdZu3ZtK21idHSUoaEhDh06RCaTaRkmHDx4kJvn0I2+WKGU4sCBAziOw9atWy8ZkQdzh2VfjepTa02pVGLNmjVoranVaoyOjs6Yfba3t1MoFK5q9bmQGeaNCvM6wELaUc1mk927d8+YVy5HiPTlIKUkCAL279+P7/vs3Llz2Rc0LkaYvu/z2GNP8b3vjbBmTW8Up2Vap2ZrU5BMOjQaCsuy8TyF69rYtlneKZUklQrkchajo5pSSVKrSVIpi2TSoacnF3m9GvK0rDOcPSvo60vgujnS6WRUNZrnk0gYWUmpZJZ9jJZyavZoLO9kq6I0OZi0Fn1SqTgPM4y2Z2f+vFprjh07RqVS4a677romtvIWCsuy6OzspLOzE601k5OTDAwMcODAAdLpNOPj4ziOQy6Xe1GI5y+GMAzZu3dvq7W8EFwqLDs+9kqS5/QtWSEEmUyGTCYzY/Z57tw5+vv7r2r1qZSa13vgesnChOucMOeLi+krrwRhhmHIyMgIGzZs4LbbbluRi9xchFmtVvnOd55mz56Adet6qFQCstkk5bJPoZCiVgtJJl0sC5SysCxBowGgEMIkm4ShJJWSeJ6grc1mYsIsBE1MCIpFSa0moixll74+FyjgOJrx8TpBME5/v09Xl00ymaVYzCCl0WZ6nqkUG424XRsbFcTLQFNt2FhWYtvGNi+ZDOcMEFHRJmwikVi5RZgrDCEEjUaDiYkJ7rvvPmzbbm3dVioV8vl8S7ay0o5QAGiF9L+JDPeiZQ+h+8sgFn6h9X2/tYi1VDH7xcKyYwKN398xcSyX08/FjjN79nk1q8/55nZWq9WrPuO/UrhBmJfBpfSVyx3uPBuVSoXnn3+eVCrFhg2XdjhZCmYT5sjICE8/vYcjRyySySRKCdLpBEEgKBSSTE4GpNMJKhWfYjFDEITRjNBUkJmMZHJSRAtAMqqSZRQMbchyfNyiWBRUKoKODh35xpqN1lWr0oRhht5ezcSEh5RlTp6cIJuFXC5DsZgBXLLZqXivOGkEaG3G2ra5MKXTilxOXTRAxPM89uzZQ3d3N2siT9iXAk6fPs2ZM2dmaCxXr17N6tWr0Vq3/G6PHz+ObdutC3U6nV6Zje/mJ7H8r2JyMjUy+CF++i9BzF8OFXd61q9fT1dX17I+v+nzT5hZfcbylbjqXEr1Od/Z4NWuPufbkq3X6zdastc74tV7z/Muqq9crnDnuTA0NMSxY8fYunXrJbVKy4HphHny5EmOHj3FoUMOluXQaJiFGDMXtAhDQ57ma5JKJSCZtKhWQ7JZY31njAgk5bIgmxVUqxbptIg0lZIgMD6xjYYxUS+XDWnG1nZamwQSIQRdXS6e18nq1ZpqNUTKCsPDIwjhkcmkKZUyhGGaZNIYFcSWeJZFRLABl3rPX0ubsMuFuLU8OTnJnXfeOedFTwhBsVikWCyyadMmGo0Gw8PD9Pf3U6/XZ/jdLqU1LcLD2M2/AzWKVP1o0QXCMuSjTiLC59H2jlk/gA/YF2SJxl63mzdvpr0wgfQeRYs0yn7FJQ3Z0WWEGkXL7kvfbxbmWhyaTaKw8OpzsbKSuarP2brP5aw+byz9XIjrmjAv9il6+rzyUm3QlWjJaq05cuQI5XKZnTt3IoRY8cih6XPSyckGJ0+mgCZBYKztJiZCslmLSsVY2zUaIclkMtpMNVutjuNSrSrS6QTNpo5ivATNpk0+D+PjkMsJ6nUZJYyYtqpSxjzduPcoJiclpZLZejWGA7QWeUolC88r0dFRJAw1SlWpViuMjp4nnXYpFNI4To58XtLeHnK5LuPY2BgHDx68JjdhF4t4EcayrAWZLCSTyRlBwbMdbOIL9YIqGXUGp/aHgAfaAqoIPYoWnYYMNQiCKSGPLuPU/wQZ7kbjEiR+B+W+HpjqtmzdupVC+jBO7d9iLPckWn4JP/3XM8lQ15DBj5DB01j+t9DCAhz81MNo+/b5/wwR5locmr00NN/Z53LoMKdXn/Gy1/TqM5VK0dbWtqTq80aFeSGua8KcCwvxg11uwgyCgD179pDJZNixY0dLH7nShBmHBbe3d7F/f52zZ6uk00maTUUYSrJZC88z7djxcZ9iMcn4uEc+bzZIhTCVpTEiEIBFo6FIJl2khDC0IrK0yGahXLbI5QxZxpZ26fSF1nemIp2yvoOp9msqBVrnKBSyOA74fhOtxxkf76dcDqjVOi7pinPmzBlOnTrFnXfeeU2t8i8FQRCwd+9eSqXSnGHh80XsKhRv08Z+t/v27SMIAtra2ujs7Lys360MngOaIHImzlJlgDLoHOCDaENZW1r3txt/igj3oMkAIXbzr/GtdYyW+zh65Fl2bMuSdr+BXfsbwEeLNhAJpDqJ9L+Ncn/RHEiXcavvRugh0OOAAN0BNHDqf4yXfRTE0qwG4+rTtu2LVp/TLfumYzkM4mdjJarP+RJ7tVq9UWFej1ioH6xlWTSbzWU5d61WY/fu3axbt26GRm65DeJnY3JyknPnztHb28fu3TUqlWY0mzVG6L6vsSwb2zaGAYVCgnpdkc06TEwEFAopKhVFPp/AccyiTyIhqNXMNi0YsnVdG9cVBIHVIsVCwcwg48zJ2AA9juMygdHmdjMPJQqC1i33nrhS3bDBJpnsADrwPI/h4WGOHTtGtVq9IE4r3oTdsWPHlVl2uQLwPI9du3axZs2aZTfSiCuZdevWEQTBDL/bbDbbWhy6wJpRzPzdakqAg5Y9aNlDkHg3iKm0FxnsBp0AKlF2piIsf4qhU/fy07d8AaGriOYExlxCIPQQmtVoAkR4DHQdRAqr+QWEOgMiDqHWCMpo0YagYUhUdC7b72ehspWVIMzpmE/1Ged9Lofn7Q1ZyXWC+EU7n3nlXFiupZ84K3Hbtm0rboQwHbFpe2dnJ888M8rAQJ1sNoNta8JQkk7blMuKbFZQq2nSaUOgti3RWpLLudTrinTaZXw8oFBI4nka23ZIpcDzJMkkVKtW5LJjEwRGA2nMBgS5nPGNTSanayrjytqYEphKVKG1RCmiVi5kMtDVFUZeslNwXXeGK07cXuzv78f3fTKZDFu3bn3JkGU8h70SGkvbtunq6qKrqwutNZVKheHhYXbv3g3QqnKy2SzKvg8tPofQZxDafLAM3N8kTP7mnMfWog2hjyOYxFSFGofn2L7+AIgkQteICdBAIfQZQGH5X8EKv42fehihzgFNk81G/P4MQfto4YAortjvBy4++5xOotONE1YaF6s+Dxw4QBAES5593mjJXkeY77xyLix16UdrzYkTJzh79ix33333FRPJx+c9d+4cO3fu5POff5ITJyYpFNoplz3y+TTNZhi1Yx0aDchmXUZGfAoFl3pdkMlYBIHGdc1LKJNJUKspEgmXalVTKDj4viAI4gQSJ/KPZUZupZSiZX0XzzSDILa+M+YESplt29hE3bZh7dqA+cQ2xu3FfD5PpVKhs7MT27Z5/vnnUUq1DM1frLrEiYkJ9u/ff1XmsEII8vk8+XyejRs3tir7F154gWq1SqFQYFXHe1mV/EOgicbG9v9flH032n7ZBccLEu/Grb8f0KBBaQfLSiIYB51nivxgBhEiEDTQysKp/1uUfBnQmHV0CyEs/NSHltyOXQimV59SypalpRDiqpgmzK4+gyBgfHz8gupzIR+8blSY1wkqlQrPPvvsovMrlzLDjHV/Qgh27tx5xRw9lFLs378fgLvvvpsf/vAkR4+OkUxmsCxJMpnA9xVSuniemUM6jqbZ1BSLCWo1QTptMz4eUiolqVY1yaQVGQQY8/Rk0qZchmzWolo134/1kXFlGbvzxNZ3nmfardP9YG1b0GzGLj+QTkNPT0hb28Ja1PF25U033URnp2nFxXFaIyMjnDhxgsnJSQqFAp2dnYsyNL8aOH/+PMeOHeOOO+5YVuenxWJ2ZT8xMYGs/w1h4KNJGFKQHnbzUwS8G7v+Jwg9gpJbCBPvwG18EFCgNUo7CKsToc9iSHHsMmevgSgg9BhSPQ8kmE6amgxe+hGwVj4rdi4EQcDu3btZtWpVSzs6n7iylcZ0OdH06nP//v1Uq1WOHDly2erzBmFeJ0ilUkvKr1wsYTYajZbwes2aNVessonnXF1dXaxbt45nnx3ge987guu61Go+xaKFbWt8326ZpzebIUpJpASlJMmkjJZzEkxMaPJ5m/FxRamUoFYzvxMTlWXj++C6xqigo4OIbHXL59WyzJZtrTY1zzSpI8adx7LiOC7BzTeHdHZe6M5zOYyPj3PgwIE5KzDHcVi1ahWrVq1qXeBjQ/NEIkFHh1kcuhaXggYGBhgaGmLHjh0rlpW5FEgpKZVK2Ekfy6+bb2rQSlCtHyfjvxMhQhBgqR9i1Z8krizN4z3Qpy9zlrg9G/3TVbTsiI7RmHXPEezmXxGkH17OH3Ne8H2/NV+eHu4+n7iyOH3lalSfTz/9NMVicc7qc3o3bLFOPx/84Af5yle+gpSSrq4uHnnkEXp6etBa8773vY+vf/3rpNNpHnnkEXbs2HH5A14BXNeE6TjOkra7FkOY4+Pj7Nu3j1tvvXVBbY+lLgpUKpWWhq2zs5N9+4b41389TqGQZXBwmGTSZXy8SbGYxfMUSlkkk5paDTIZi8lJky+ptcCyJEpJcrnYiMCJyNOhXBbk87EuzUFKkzxSq5k2bLVqNJe+b8jStk3aiO+b2eR067tcTtPbq1m1Kryo6cClsJBN2PgCXyqVuPnmm1uG5vFmaHt7Ox0dHZfdDF1paK1bQdYX01heSxBqhFb7VJguQiY1jtDR+2ZKUzLtQfM9+sxOg2AcrZJo0THnIWT4zIXfDAeQ4W6U3Aj2bTOPF/Yjw+fQZFHOqxak4YwRf0jdsGFDq7txMSw0LHslEW/IXqz6DIKAw4cPtwIAFvM6/IM/+AM+8pGPAPDxj3+cD3/4w3zyk5/kX/7lX+jv76e/v5+nnnqK97znPTz11FPL+vMtFtc1YS4VC136WegWboylbtadO3eOI0eOsH37drLZLMeOjfDYY4dwnLiF6qIU5PPpyFQ9Qa3mk04ncF3jC2ss7XTUZhVkMoIgkNH2rCCbtajVRMs3tr3dZnIScjkztzTJJVAoGNIsFnVkjaejQGlzMY3DoTdvDunr05c0HbgY4nDkiYmJRW/CTjc0D4KAkZGR1mboFbeUixBrLG3bXtEg6+WFD1iYtqqBYHImKc7usOvWHRcMwZCRk1wMJnAVANn4PI7358QVamj9PEHmL8xtwQ+x6/8OCBBItP9FvPQnF0SajUaDXbt2LWoZ62pXn7MlJXPNPs+fP88Xv/hFTp48yZvf/GZe+9rX8uCDD87brjA/bQmhWq22Xs9f+cpXeMc73oEQgnvvvZfx8XHOnDmzojGK88W1GcT2IsF8K8x4CzdeslloVXupNJFLIXZ8OXHiBHfffTfZbJaBgXG+/OXdOI5NuRwghGmxCmFFCzVxqLNNrRZi206kLZNkszbNpiSftymX4xmjRAizNZtMSsJwyjc2l4PJSbMBG5OmZRlSbDZNxVmriVZmZSoFa9dqfu7nAtatWxxZxrNhz/PYvn37shCabdt0d3ezdetW7r33Xvr6+lrz72effZaTJ09Sq9WWfJ5LIQgCdu3aRSaTYfPmzS8SsgQlt2IqTMFlGXD2XaZ1W5cDQk9gNT+JCI+AmsDx/mLacwMr/A7C/zYAduOvovOm0SQR6hTSf2Le56rVauzatWvBnaSLQUqJ4zi4rovrujiOMyP30/d9giBYNs325UwLbNvmda97HZ/5zGfo7e3lwx/+MOPj47zzne/kH//xH+d9noceeog1a9bw/7P35uFtlWf6/310tNqSZXmR49iO7TiJEzteEgKEsDSFhCXETqe/73faKV2GtJ1OYShlCgVa2gnQFNrC0LINFAoUypYQOytNgHyhQMsyQGLHS2zH8R7bWixL1q5zzvv7Q35PbMeLZEuy5JzPdXFxxZuOZPnc7/u8z3PfL7/8Mu677z4AwY3FWIvK3Nxc9PXNVJ6PDdIOcw6E0iVLjaINBgOKi4tndaOjTcoNiQAAIABJREFUwhzOzZ/neTQ2NkIul+OCCy6ATCaDyTSCQ4eaoFQq4PcDen0S7HYOSUlKWCweZGTI4fdzYFkGGg0Lj4cFzwOEKOH1EqhUcrAswHEy0Qc2JUWG4eHg//1+FgpFsFyr1wM+X9C1x26XidZ3Oh0ZNSoILvb1+mD2ZVGRgGXLBMylUTgQCKC+vh6ZmZlYsmTJ7H/QNDAMA71eD71eL1rKmc1mMfZt7FB/pFb9tJN7yZIl487A4hlG6AHrrwEEO4Lr8in+TibbTU62+yRTfD4sApD7/wQE3hjtpOVwds8gAyBAxjeBV1wJkBEEd8b04QUwZCSkR3E6nThx4gRKS0vH7aIiRSziysJxI2IYBiUlJSgpKcFPfvKTcZ/btGkTBgbO3fHv3LkT27Ztw86dO7Fz50488MADePzxx3HvvfeGfa2x5LwWzLmu0mfaYTqdTrE7Mysra9aPE+4O0+fz4fjx48jOzhaFY3jYg9de+wKBgACWVYFlg52qOp0KQ0N+aDQKDA15kZqahJERHjqdHEplUBw1GgZOJ4NAgABQgOMIGCYY+uzzyaDXBxt7UlIAp5OBTgcxuJla39EzzKBhQXCmUqUCFi0iWLmSx1ybPGkn7NKlSyNuyj0darUaeXl5ojn20NAQ+vv7cfLkSXGoPyMjY9aNOXTGcsWKFeJ5UbzDCL1QuP4NIK5RbVMi2IQzYasYSul14ucm23GG9WfMAYSHjK9DUCTJ6A8I7jSJLOg8JMgvBRs4CkKUAHgwjALCRM/bSXA4HGhsbERZWRm0Wu2MXx8JohGWHaot3kyJJu+8805Ij3fDDTdgy5YtuPfee5GTk4Oenh7xc729vXNOpYkU57VgAnNz0plOcOm5YVlZ2Zzn48IRTGrtN7YU5HL5sHv3MbAsC5eLQKuVjRoRyMDzgEqlxtBQP7RaOYaHGWi1WgwPc0hN1SAQCJqaJyfL4HIFfWBdruBqnGWVEAQGPC+DTsfA7ZYhJQWw21no9WODnM8GO+v1BB6PDAUFBOXlPCJxT6GdsNFa0YfKxCxKOtR/7NgxsYEiMzMz5DSQ6Tp84xUZ9wnknl+DIWYAOoBRBR144Dn7RXM4o4zM7nMEQBJ49kqw/LugosnLN0FQfBkAwKn/EwAg4/4OMFoEVLeCsMXT/tTh4WGcPHkSFRUV82YVF6ndZyyyMNva2rB8+XIAwXPLlStXAgCqq6vx+OOP4+tf/zo++eQT6PX6uDi/BCTBjDj03HBoaAjr1q071y5sFoR6VkoTTsY2Ffl8HGpq6mGzeaDRaJCUFCyvarUqDA/7odNpIAhAYWER7HY3RkYcsFqHoFRqRz0oU+Hx8NDpgvOYHMdCp2PhcAQbf3heDoCBUslCpTprfUfnK6m1XfBlIEhLA8rLORgMc35ZxOfc1dUVd56wE4f6fT6faGbudruRlpY2zq5vIiaTCR0dHXH3vKZDxv0vFJ47AeJEsNxpA0gqgoIUXGTNSSwnMuvdJw9ADkFZBY79GWR8PYhsCQi7dMz3acBpfh7ypQwNDaG1tRWVlZVx9fsKZfc5WeNQOFmYsxXMu+66Cy0tLZDJZMjPz8dTTz0FANiyZQvefPNNLFu2DElJSXj++edn9fOjgSSYEYTjODQ0NEClUonnhpFgph0mHTWw2+248MILxfIfx/F4/fUvYLW6wLIK+HwcVCr16KwlgU6ngtPJQadTY3iYR3p6GtRqHiqVEm63Bw6HB93dXQA0sNu1yMoywO8H5HIZkpJk8PlYJCUBIyPB0hbLysHzwc5Xlg12u9LMSp2O4MILeczQWR8yhBB0dnZieHgYF1xwQdzb3KlUKuTk5CAnJ0e066PWhElJScjMzERGRgaUSiV6enpgMpnidsZyKlj/awDxT/ioHYAWgPzs56LVrzRh90nAgBlbPRrzeYEtGY0FYyDINs7pYamBxJo1a2Lm1jUbptt9jo0ro+lF0faR3bNnz6QfZxgGTzzxxKx+ZrSJ77tMAuHxeMTh5Nzc3Ij+7Ol2mDzP48SJE1Cr1WLCCRD8Yzh4sBFDQ24ALFQqOVwugkBAACEsaBkqOVmFQICBXq+C3c5Bp1PB4RCQmpoChUIHllVAEAKwWv3o6joDhpFDodAiKysVgAyBgBxaLeByKSCXB+cqfT5m1EA9OIO5di2PnJzIGcjT8QqZTIaKioqYuSRFirFpIIQQuFwumM1m1NXVwePxQKFQoKSkJO4XAefCIDhGMva9SiDIliMQsEIl64qeWE5yKczY7Sb1NgAgkGS48SUoMPfLGRwcRHd3d8ItboBzd59j//N4PKJ933Sl2/MpCxOQBDMiaSA0Rqe0tBSpqZE3dp5qh0nnvGiOIYUQgjffbERDwxkYDClwu/1gWRYaDQO3m0dysgwOR/AMk+MAhYIBIQy0WiX8fiAl5ayZ+sgIgU6nhdFIwPMZYBgBw8N+9PQMQSbjIJPpkJmZAqVSDpksGOAcjOVicMUVHAoLI/ta0E7YjIwMLFmyJGHGK6YieL6rRVJSElwuF5KTk5Gamoquri64XC6kpqYiIyMjIez6OOW/QMn9DePrrmr4fA70WP8/rFj0FIJi6se5tdMowwDB250KhOhwqicXdsfHc5qp7evrw8DAANasWZOAi5vxjBVPi8UCk8mE1atXjzOOB84Ny5YEUyIsAoEA2tracMEFF0Tt7GIywaSOQSUlJTBMOBB8550WnDplgU6XBLfbD6VSBZcrgORk9egOMDhLabcLSElh4XQSJCfLRoVOBkIY6HRBn9jkZAVstgDS0tTw+zFqGaeGXh/s2HS5/Ojvd0OjMYEQDZYs0eCyyzQoLWXDtrGbCY/Hg/r6ehQWFsa0Ezba0BzU9PR05OfnA4Doxzo8PAyz2Yz29vbZBznHCCK/ALx8K1juwOhHVBAEAW7/YhTmZ0AIrIBMODkPV6aBIKsAZFoQJgO86kaUpGaBECLaIXZ2do7zVZ2pMau7uxtWqxWVlZVxv5AJB6vVivb2dqxZs0bsv5iY8wmcPeM8n7IwAYCZYXcV42Vg7AkEArMa9qVlQZPJhPXr10fV/LqjowMqlUrMyTxz5gy6uromNd3++OPT+OCD4M2VkOBYCMsGLex4nkCjCUZwBc9aGHi9QHKyEkNDPAwGFVyuoLm6IMjAMMEzSZZlMTISTCBxOGRISQkmkQDy0QxLBjIZsHbtCAyGfgwPW8VIIdoVOldoKkdJSUlMI9CijdfrRX19PfLz82ccPaJBzhaLBTzPi3Z9KSkp8bPTJl4o3D+CjG8Fx/PghHQo1Plg+eMI7iwZBBuCgrmX0UcBMHr4k54EYVdM+5Ver1d8fT0eDwwGAzIzM89pzOro6IDD4UBZWVnCHQdMB82QraysnLJZcWJY9s6dO3Hy5EkcPHgwxlcbdSb9g5IEcxaCSQfJjUYjrFYrSktLo7ri7+rqAsuyyMnJQVtbG1wuF8rKys4pAx071oMjR5qg1SbBbg/6wno8HFhWAZmMGc2dZOHzsZDJGCiVCvA8A4aRQy5nMTIC6HQK2O2AXq+A3y8Tsy8ZRg6vl4FaHXTxSUuTwe2WwWAAVq8G1qwRMPYIh958zGYzfD6fGKM1Gy/WwcFBdHZ2ory8PC5SOSIFHXAvLi4Oe8aSJq1YLBaMjIwgJSUFmZmZSE9Pn/cdD+f3oqt9FwypaqRnrIDS++PRI3MGIDwAJwANAFdUr4MwRhDGCEGxFbzy/44GSofG2MYsm80GjUaDjIwMOJ1OcByHkpKSBSWWZrMZHR0d04rlRPbv349HHnkEr7/+OgoKCqJ7gbFHEszJ4DguLAN1h8Mh3uQyMjJEr8hoxtv09PSA4zjYbDZotVosX778HNFpbu7HO++cBMOwYojzyEgAWq0aTmcAOl0yeJ6A4+RQq4M7RpVKDkLkYBgZ5HIFGIYZTQxRwGYj0Ovlo76xcvA8C5mMBc/LIJezcLtluOQSARdeiBndeXieh9VqhdlshsPhEG/uaWlp05790NzOoaEhlJWVJVxTxXTYbDacPHkyIgPutLRoNpsxNDQEhUIhdt3GeoHh97nhNf8IGbomMAwLwhiCDjn07UoIAAG84krIuC9GA6ADEb4KRbA0zL836h1LILDlCGgeAZjwT6FoY1ZzczM8Hg9UKlXcmPFHAiqWa9asCflvbP/+/fjDH/6AQ4cOJYyhRphIgjkZ4Qhmf38/Ojo6UFFRIQrkiRMnkJ+fH9WB+c7OTnR2dmLFihViWXYsHR0W7Nr1GZKS1OB5GWQyFoIACELQ2o5lFfB4eKSkJMHrFSCXK8CyMjidDJKTFXC5AJUqKIiEMKMpIwxcLhm0WhbDwyz0ehZ+PwuVSobly2W49FKC2VRax97crVbrlDFa1H8XAFauXLmgVvN0x1xRURGVyoTH44HZbIbFYkEgEBhn1xfNm7vX64Wp6/dYtmg/GGaiqwCLYMsEByLLhT/5FQAyyAL/D3Lfk2BI3+jX0F0ng6BDkA/B3agcM5dwVQAECOxFYEhPMCmFUYyKNBDQ/AKCYlPYz4sQgqamJigUCixfvlxcAFosFjgcjog4Os0XJpNJPN4J9dr37duHxx57DAcPHlyoYglIgjk5oQgmIQRtbW1wOp0oLy8ftytqampCdnb2OY03kcJms6Gurg6ZmZkoLS095/Nnzgxj167PoFQqYLP5odcnYWQk2OATjNAKNs/zPAuOI1AqVfD5hNHPE/B8cMdptwdjvAIBOeRyBiwrR3BsJFjGHR5mUVkpw6WXBt18IgWN0TKbzeK5nMFgQEdHh9gEk+gr+LF0d3fDbDajvLw8JjdXjuMwNDQk7u51Op24u4/k41MLv4tW7YWG+X84208ogDAZgCwNjHAGgmwFApr/AmRjzmsJD9b3LNjAkVHh9I1+ImhLFxRCBYKCOdXxiRxAMgA/iKwQjNAZ/BgzutAiHDj1f4BXfj2s5yUIAhoaGpCcnIylS5ee814c6+hktVoBQBRPrVYb1+9dOhITjlju3bsXTzzxBA4cOLCQxRKQBHNyeJ4Hx3FTfp4mpaekpGDZsmXn/AG0tLSI5ZlI09vbi97eXuTm5sLj8Yg2UhSr1Yk33vh8dGxECZmMhdPJISlJheHhANLStHA6eWg0KhDCIBAInklynAwcR5CcrIHXC3EkJOgDK4fDIYNazUAmk4MQGQoKFLj8chnS0qL7xx8IBNDf34/29naxY5E2Xcz3udxcIYTg1KlT8Hq9KC0tnZcdMyEEDodDvLlHqjGLNmSVlZVBr6iB3Pc0zqaACBDkGxBI+u8pv5/hT0Pp+hbGn2mOhpCr/gMK/wujJgQciMwYrIKQDgSbh8aiRLCxSI1gmZcBkAQ6c+xPegJEXhby86IzzgaDQexengm/3y82DrlcLuj1enFsJZ7ew1QswxmJqa2txZNPPomDBw9GbYMQR0iCORnTCabL5UJdXR2WLl06ZUrEqVOnkJKSEtExB0IIWlpa4PV6UVZWJo4WUK9FAHA4PHjhhb9DEACOY0btrVgAwbQQuVyJkREOWq0aIyMcUlOT4PMRAHIoFDJ4PDKwLAOGUSIQIEhKUoLjAI6TIylJBrtdhqVL5di4UQGjMTY397GdsDqdTnzeQ0ND57jhJBI0ckylUk16/jxfTGzMonZ9qampIQu61WpFW1sbKioqguelxD/aJdsIQAbC6OFPfmb8jnICcvfdYLnD44wGCGQA5OCU28Er/w9kQisIkwYiKwYYBgrXv48aqMsR3JFShyFm9GPBs9LgzlSFgPo/ISi/EvJrw/O82Ng3WyMSQRDEsRWr1QqlUjlubGW+GBgYQG9vLyorK0MWy5qaGjz11FM4cODA+SCWwBSCKc1hTgG1LSsrK5v2fDJUn9dQoYP5er0eFRUVosvG2E5et9uPmprPATDw+4OzkkNDfmi18tFZSsXoLKUKfr8wan0XgF6vgdMZzLhUqRj4fCzU6qB5utsd3IlyHGAwKFBdrUBOTuxWxNQ7deyoTFpaGtLS0s5xwwEg7oySk5PjRoAmIxaRY7NFrVaLphc0aWVwcBAtLS1ITk4Wu26nWqAMDg6iq6sLa9euPfs1jBKBpCfBCK0AAiCy5QAz/TktQ5zjXXkABAWPBRgtIMuAIBtfwSFMCs4mjagR9Kr1IXhLo8GaKnDq28Arvnq2NBsCNJIvJydnTqbfMpkMBoMBBoMBy5cvh8fjgcViEaPg6NhKOAuUudLf34++vr6wxHLPnj14+umncfDgwagYsyQS0g5zwg6TepSazeaQWqzpyEck7PCm2tE6HA50d3dj9erV8Ps5vPrqxxgYsCM5WQu/n4cgsFCpFHA4OKSkaEbjudQIBIJnkcFfsRxerwC1Wg2nM7jj9HiCQdEKBQOPR470dBYbN6pRWBi7xoXZdMLSspfZbB43LxfLG08oeL1e1NXVoaCgYE7xbrGGEAKn0yk2ZgEQd/d0gUL9biMR0i3zH4bCuwMMvMHHBwDIQZhF8GtfAZhzF6wMfwpK9/cB4h39gAYEGjBkEGdjuxTwJz8Hwq485/unwu/34/jx4ygoKIiqOQZdoFgsFgwPDyMpKUncfUbLj/bMmTPo7+8Py2zhjTfewDPPPIMDBw6cb2IplWQnQxAEBALBtvaxocuhdmb29vaC5/mQzzimgtrrTbajdTqdaG9vx+rVZXjttU9gtTrh8wGCACgUwVJq8I9MBp8PSEpSYmgoAINBA7cb0GgUEIRgqYrnAZks6CubmqrCyIiARYs0uPhiDYqLY9vhRzthCSFYtWrVrMSO53lxXm54eBharVbcGc1nxyKdsVy5cmXCl7B8Pp84FuR2u8Wb7dq1ayNmCcf6Xofc/xwAHwRmBQT5FeBV1ZOKJYUReiDzvx00UFdcDRAOCvfNYIgVAAGn/il45VdDvgaaI1tUVBSVnoSpoBUUevYpCELETSlmI5a7d+/Gs88+ez6KJSAJ5uRQwaS+rDk5OcjLywv5+/v7++HxeLB06dKZv3gKuru7xTfzZKtLt9uN5uZmnDkjQ0vLABQKFRiGgcslQKVSjO4kWcjlShDCAAjOVTocAnQ6JRwOAr1eBb+fQCajltMs5HIWGzdqsWqVKuZlTWoHZzAYUFBQEJHHpx2LdGc0Np8ylvOIkZyxjCcIITh58qSYgWiz2WKyMxp/ET7IfX+AjPsYhDGCU98Jwo4xLCYEIDaA0QVHSkLE4/Ggrq4OxcXF877AmWhKMdfO5r6+PgwODqKioiJksdy1axeee+45HDhwYEE5a4WBJJiTIQgCTCYTmpqasGrVqrBbpU0mE+x2+zkdrKE+9smTJ8FxHEpLS6d8M/t8Pjz11AG43SrodMlwOHzQarXgOAE8L4NGo4Tdzo/uJFmwrGxUGFn4/Qw0GjlsNh6pqUF/2LQ0FdasSUZFhQYsG/vzP+oJG+1Spdfrhdlshtlsht/vn5PbUKjQc73y8vK49HudLbRxSaPRoKioSAwtmLgzomfL0RqpULjvgIz7AGfNDpLh09YAstnvCOlIzKpVq+JOHGhnM21+o0HkY8vj09Hb2yuWzkMVy9dffx0vvPAC9u/fH3evRwyRBHMyRkZG8Pnnn0/qyxoKdCVYXDx9GvtE/H4/6urqkJGRMeMO6+23T+DIkY+Rm1sIv58Dy6rg8QjQ65Pg9fKQy5VgWRZOpwCtVgWnkyApSQFCWDBM0NpOLg9a223YoMO6dTrI5fPTKONwONDY2IhVq1bFtMwzcR4xGlZyXV1dsFqt58zqJjo8z6O+vh5paWnTHj0EAgFRPJ1OJ/R6vbgzishrTDioRtbjbLMPACgRUN8NQVk1qx85MjKChoYGrF69Gjqdbu7XGGVoELnFYoHb7YbBYBCDyCe+xj09PbBYLCgvLw/59X/ttdfw5z//GQcOHIiqGUsCIAnmZBBC4PV6Z90sYrPZ0N/fj5KSkpC/x+l0or6+HsuWLZuxseDTT0/j7bdPwGazYNGiPMhkCrAsi0CAAc9j1IiAR1KSBoLAwO9nkJSkwPCwAK1WjkCARVKSAiUlOlx8sQ4q1fw1xZhMJpw+fRrl5eXz2lY/mdsQbWqZza6QEILW1lYEAoEF5zEaCATEo4rJXKamgiatWCwWDA0Nzfk1BgAQflQw6YwnAKhGHXyuDfvH0TGm8vLyqFpbRgvqd2uxWGCz2UTXrIyMDHFHWl5eHvL78dVXX8WLL76IgwcPJsTiIcpIgjkZhBD4/RNT4kPH4XCgq6sLZWWhDUSbzWa0tbWhrKxsxjdlfX03jhw5AZVKhebmdmi1SWBZDdLT06BUquH3M5DLWQQCLAgB1GolAgFAJlNAoWDhdAJr16ZgwwYDkpLmb2iaEILu7m5xtRtv9mFut1u0kuN5PqyyInWC0Wg0kxpbJDK0y3fp0qXIzMyc088a+xpzHCeWx8NtapF7HwHr3wU6QkKYdPi1bwBMeIJns9nQ0tJydn50AUBds3p6euD3+5GTkyMeQcwkmq+88gpeeuklSSzPIgnmZMxVMF0uF9ra2lBZWTnj43R1dcFkMoU0rtLaOoDDh+sgCASCwEAuV8Ju9wHgMThoh1oth1yugVZrgE6nhccDsKwMLKuAIACrVqViw4Y0pKTMb2lQEAS0traC5/lZd8LGElpWNJvNcLlcYskrLS3tnGunM5ZGozGsRrFEgJ7rrVy5MuKl80AgIJbHadJKyCHOhIAN7APD/QOQLQKn3A7Iwrs+i8WC9vb2KZvsEpnOzk7Y7XasWrVK3OHb7XYkJyeLu8+J956XX34ZL7/8Mg4cOCCJ5VkkwZwKn8838xdNgdfrRWNjIy644IIpv0YQBDQ1NQFASCW7ri4LXnnl79BogsYDSqV69CySRSBAoFAo4XD4oFDIYLE4wHE8NBoNlEo9ysuN+NKXspCWNv9uOBzH4cSJE0hNTY1YJ2wsGRvgPNFtSBAE1NXVLbgwa+DsOXMszvXGhjhbrVYoFApxhx+NnZ/JZEJnZ2dYMVaJQkdHB0ZGRrB69epx9xg6V0vPPgHg/fffx8UXX4zOzk68+uqrOHDgwILq6I4AkmBOxVwEk57xXHjhhZN+ng5CG43GkIzEBwaG8cYbn4AQwG73ISUlGU4nD61WA45jwDDsaIeiHD4fgUajhNPJIS9Pg2XLBBBih1qthtFonFcbORqMvGTJkiltBROJsW5Dg4ODcLlcWLx4MZYsWZKQ519TMTQ0hNbW1nkrVVI3nLGdzTRGa67VCepyU1FREXfHAnOlo6MDTqczJJ9iv9+PF198Ebt27UJDQwO2bduGr3zlK9i0aZO0wzyLZI03FbRFfjZMZ403MjKC+vp6MTtzJqxWB2pqPoXb7YdKpYZOlwyPR0BKShKGhnxIS0seNVfXgJCgaXpqqhr/9E/ZyMk5e9N2uVwwmUyoq6sDwzDIyMiA0WiMWaPNfHXCRhOGYaDVauH3+zE4OIi1a9fC7Xajra0NXq93XIRWvJedp4LuvtasWTNvpUqNRoO8vDzk5eWJMVr9/f04efLknEwp6HjFmjVr4soEPRK0t7fD7XaHbOqvVCrF/7q7u9HQ0IBDhw7hwQcfxO7du+POwjGekHaYCK64ZiuYhBB89NFH2LBhw7iPm0wmnDp1CuXl5SGVOhwON1544W/geQE+H6BQyEejuWQQBBYKhQIOR0A0Uy8oMGD9+kUoLJx+Rejz+cRZRJ/Ph/T0dBiNxog5iEzEbDajvb193jtho8HAwAC6u7tRUVExTlCozZnZbIbdbodOpxPPixJlvKS3txeDg4Nx2ZQFnGtKQecRqZ/wdHR1dcFms6GsrGxBiSUhBKdPn4bH40FpaWlIf8+EELz00kvYvXs39u/fv6CqIxFGKslOxVwEEwD+8Y9/iIJJCEFHRwesVmvIOXMejw+7dn0Eq3UEHCdDUpIadnsAyckqcFxwhjJYimWhVCrxpS/lYMWK8N1I6IrdZDJhZGQEer0eRqNx0oaW2RDrrMdYMdbvdqYZy7ERWhaLBXK5fF7chkKFeifb7faEEhS6ELRYLPB6vZP6CVNBcblc55zrJTqEELS3t8Pn86GkpCRksXzxxRfxxhtvSGI5M5JgTkUgEBiXBhIuVDB5nkdDQwMUCkXIXrR+fwAvv/wB+vqGkJKSAp8vaESgUMhhtwfjuVwuDllZKVi3LgelpWkR2RlO1tBCzz3DFTsaR8Zx3IKbQ5zrjOXYM7lAIDDrcYpoQIPRA4FAQnQwTwX1E6bziLQj1G63QxCEkAUlUaDZqvT3FqpY/vnPf0ZNTQ327dsnieXMSII5FZEQzLVr16Kurg7Z2dkhnwFwHI/XX/87LBY7/H4ZBIFAqdQgEBBGS35Bw/RLL81DRUVW1G5otKHFZDLBYrGE5cFKO2H1ej0KCwsX1I2JmvEnJSWJdnBzgeM40cSc7vAj6oQTBrRzW6lUxlVG51yhHaFNTU3wer3jvG6jZdcXS+gih+d5rFy5MiyxrK2txb59+xbcUUmUkARzKuYqmB988AFkMhlWrlyJ9PT0kL6H4zgcOvQ5mpp6kZSUDEIY+HwClEol/P6gCcFFF+Vj7dpsyOWxXfmP9WANBALiWZFOpxv3B0o7YfPy8uaUGxiP0EzERYsWRSS6bSKEEHFObqzbUGZmZtQbbnieHzfus5CgCwG1Wo2ioqJxdn1j52ons5KLd2i1gxCC4uLikMXy+eefx/79+7F3715JLENHEsypmItgDgwMoL6+HpdeemlIZQ5CCARBwOHDx1BX1wmdTguHwwe9XgufTwDLKlFZmYOLLsqDSjX/DSMcx4klRafTKZ4VyeVyNDU1LYj4qolQc/hYzlhSE3Oz2RxVE3O6EMjOzkZOTk7Efm48IAgCTpw4gZSUFBQWFk76+bHHEBqNRpyrjXcDA3rsASAssaSJI5JYho0kmFPBcdyUoyFTQQ/d7XY7AoEA1q1bN2NHJBXLDz5owrFjp8EwCnBcMHLL6+Vw8cVFuOiiJUhKis+BaupNTwxzAAAgAElEQVRd2d3djaGhIaSlpSE7O3vesycjCTXjns+RmMnchjIzM2EwGOZUlvf5fGKg9UIzW6AG8enp6SEdiRBCxtn10QzKySop8w0VS4ZhsGLFipDF8k9/+hMOHTqEvXv3xmXDWZwjCeZUhCuYtKSlVqtRXFyMzz//HGVlZdOuUgkh4Hken39+Cu+8U4+UFB0CgeCOsqjIiMsuWwadLv7joHp6ejA4OIiysjL4/X6YTCZYrdZx3aCJGmtltVpFn994aYqgixSz2Sw2tNBdUTiLFLfbjfr6eqxYsSLsCLt4h+M4sXw+210zzaCklRS9Xi/a9c1n6ZZmkLIsG/JZMxXLN998E7W1tZJYzg5JMKciHMGkQdO5ubni2daxY8dQXFw8ZcmDEAKO49DU1IMjR45Do1FjeNiHysoCXHLJMhgM8V8qoecnfr9/0gFpj8cjnnuGa2AeD/T396Onp+ecGct4gja00FlEakox0ywi3TWXlpYuuMgm6rSVl5cXMUcpQRDG2fWNTQGJpfgQQtDc3AyFQhGysT8hBM8++ywOHz6MmpoaSSxnjySYU8HzPDiOm/HrhoeH0djYiJKSknHndvX19Vi6dOmkBgU8z0MQBJw+bcKRI19AEBhkZ6fjiitWwmhMjJsX3VHrdDosXbp0xj/ciSVF6oIzdkYuXqAzlnSwPVGMBoCz2Yhms3lKtyGayrEQjSRoibmwsHDOaSrTQVNALBaLOBpE7fqitRgkhKCpqQkqlSrkDm1CCJ555hm89dZbqKmpSdhKT5wgCeZUhCKYZ86cQVdX16RB0w0NDcjLyxuXTk7PKwVBQF/fEF577QPk5WXiiitKsHhx4pTEaCdsbm5uWHmIFEEQRBec4eFh6HQ60d5svsWJng0lSpLKdEzmNqRSqWC1WufV6i5a0EpPrEvMdDTIYrHA4XBE5f1MCEFjYyM0Gk1IC1T6PU8//TTeeecdSSwjgySYUzGdYNJSpNvtnnIH0tzcjKysLPEPd6xYms0OvPtuA9avX4GCgsRqtKClvOLi4ojclKgLDi0pKpXKmI1STISaTGi12pBvSokCdbg5c+YMFAqF+DrHuqQYLeh5bDSix8Jh4vuZnuNnZGTMejcvCMK42d9Qr+Ppp5/G0aNHsWfPHkksI4MkmFMxlWByHIf6+nrodLppzxBaW1vFTkba3ENf18FBO7KzE2/swmKx4NSpU1FtgKFdimazGYSQcedx0RQwv9+P+vr6qM1YzjednZ2w2WwoLy8Hy7Li+fLYkmK8uA2Fi9PpxIkTJ+LyPNbr9Yolcp/PF7YhPw0j1+l0k47FTAYhBE899RTeffddvPHGGxETy+3bt+PgwYMwGo1oaGgAEEyy+drXvobOzk4UFBRg165dC26kbAySYE6FIAgIBALjPuZ2u1FXV4f8/PwZS5Ht7e1ITk5GVlaWKLyJXN6jnbDl5eUxiwfz+/3izcbj8Yw794zkTd3j8aCurg5FRUVRPfeaD6hlGvUXnew9GE9uQ+FCU3DKysriPrtxYolcq9WKjUOTdTfPViz/53/+B3/729+we/fuiO4s33//fWi1Wnz7298WBfOnP/0p0tLScNddd+HBBx+EzWbDb37zm4g9ZpwhCeZUTBTMoaEhNDc3Y/Xq1ePOJaeis7MTcrkcWVlZYBgm4VbtFGq7RW+483UDnXizSUlJEc+J5nJN9IZbUlIS0u81kRAEAc3NzZDL5SHP6tFuUDrIr1ar43aQf3h4GCdPnkzI5iWatEIbh2jSSkZGBpKTk0EIEe0lQ3VeIoTgySefxAcffIDdu3dH5ffV2dmJrVu3ioJZXFyM9957D9nZ2ejv78fGjRtFM4UFiCSYUzFWMHt7e9Hb24vKysqQVmyEEPT29qK/vx9LlixBenp6Qu4u6ZlecnJyRHxTIwUhRLypW61W8aaemZkZ1u6Xzlgm4g13JujvLiUlBQUFBbP+3dGAbIvFEtMS+UzQUOtQ/ybjHdrdbLFY4Ha7wfM80tLSQg5sIITg8ccfx9///veoiSVwrmCmpqZieHhYvAaDwSD+ewEiCeZUEELg9XrR0tICn88XcswRbe7heX7cSj05OVlM/pjvTtBQ8Pl8qK+vR05Ozqw6YWMJvambzWYAEMVzunPWM2fOoK+vDxUVFTErMccKOrSflZUV0fNYWiIf68EaCbehcDGbzejo6EBlZeWC+90JgoC6ujqo1WowDAObzYakpCRxlz/Z8yWE4LHHHsNHH32EXbt2RbUSMJ1gAoDBYIDNZova488zkwpm/N/NY0AgEMAXX3wBg8EQVgIAbe6RyWRIS0tDWlqaOFxuMpnQ1dUFhUIBo9E4L52goeB0OtHQ0JAwDjDJyclITk5GQUGBuFJvbW0Vw7FpkwXDMGLW4/DwMNauXRv3Z3Th4vf7cfz4ceTn5yMrKyuiP1upVGLx4sVYvHjxOLeh1tbWWbsNhcvAwAB6enqwZs2aBWO9SKFWfhkZGcjLywNwNjXIbDajrq4OAJCeno6UlBSkpQVj/R599FF88skn2L17d8wXEFlZWejv7xdLsgvNXjEUpB0mIFq8hdoEQp17gJmbeyZ2gmZmZsJoNMZFWTAereBmCw3HNpvNcDgc0Ov18Hq9UKlUCT9jORm0eSnWC52xbkP0PI7u8iP5nu7r68PAwAAqKioSokoTDjzPo66uDkajcdqqgN/vh9Vqxa5du/Dss88iLy8PPp8PR44ciUmH8MQd5h133IH09HSx6WdoaAi//e1vo34d84RUkp0KQgj8fn9IX0ude2bT3EOF2Ww2w+/3Iz09HUajcV7Mnum560ItU37xxRcAgr8vWubKzMxcEDsVOloRD81LPp9PXBBOtsufDd3d3bBareJYzEKCimVWVlbIvreEEDz88MP48MMPUVpaivfffx+5ubnYvn07tm3bFpXr/Jd/+Re89957sFgsyMrKwr333ouvfOUr+Od//md0d3cjPz8fu3btSoiq1CyRBHM6fD7ftJ8fa0YQiU5YGptlMpliah9HRw88Hg9KS0sX3A3J7/ejrq4OixcvRk5Ozrgyl9lsBsuyyMjIgNFoTMghftotGo9VgYm7/Nm44HR0dMDhcKCsrGzBVQV4nsfx48eRnZ0dcq8AIQSPPPIIjh07hldffVVc3La1tcFqtWL9+vXRvOTzGUkwp2M6wRzb3COTySK+G6T2cSaTSRyjMBqNEZ+No92USUlJIZs5JxLUAWbZsmXIyMiY9GvocLnJZEq4IX6z2YzTp0+joqIi7rtFJ7rgKBSKadNsaFye1+udcoY0kZmtWD788MOor6/HK6+8suAqQXGOJJjT4ff7MdlrMba5JxYzlnSMwmQyiSG3tON2LuVE2glLd14LjdnMWE4c4k9NTYXRaIx5J2go9Pf3o7e3N2FL6BPTbMZmTwJBtyxBEEJuukskOI7D8ePHkZOTg+zs7JC+hxCChx56CCdOnMCrr766II4SEgxJMKdjMsEMp7knGtByoslkgsViAcuyYsdtODsM2gm7fPlypKenR/GK5wdq4zeXGUtBEDA8PAyTyTSn3Mlo0N3dDYvFgoqKigVRQp+YPSkIArRaLUpLSxdcgw8Vy9zc3JDjxwgh+N3vfofGxka88sor8/7+O0+RBHM6JgrmXJp7osXEVTrtuJ3uLIt2wq5evTru7cRmQzRmLMeOBlmtVrAsK77WsSyF0jIlPW+Ot13vXBEEASdOnIBcLodcLofNZoNGoxENExJxJz0WmtW5ZMmSkMd+CCH47W9/i+bmZrz88suSWM4fkmBORyAQgCAIEW/uiRZ0sNxkMsHr9Yodt2PP4vr6+nDmzBmUl5fH5QzoXCCEjGsQiebOy+v1wmw2w2QyieVEo9EY1XBsGh4sk8lQXFwct+/D2UIzVg0GA/Lz8wEEn/PYMSwAceM2FC6zFcvf/OY3aG1txUsvvSSJ5fwiCeZ0BAIBcVcZreaeaMHzvGhcTs/i6AIg2mIyHwiCgJMnT4JhGBQXF8d05zUxHNtgMMBoNEa0u5kacScnJy+46DEgvDlE+lq73e64DiIfCxXL/Pz8kIf7CSF48MEHcerUKbz44ouSWM4/kmBOh9/vRyAQiFlzT7Sgf6y0UUmn08FoNM7ZuDxeoA4pqampc/JNjQTUAcdkMmF4eBharVZ8rWd7Fkcj5TIzM0UHmIVEIBBAXV1dWA0wwLlB5FqtVhxZiSdxCQQCOHbsGAoLC8MyQvn1r3+N06dP46WXXlpw57gJiiSYU+Hz+fDNb34TV199NbZs2ZKwGW90BjE7Oxu5ubliaz89i1Or1WLHbSKeD9HnF4+etzSRgr7Ws7FEpM8vLy8v5AaRRIJa+RUUFMzJVm2yM2Zaup1PBy36/MIVy507d6KzsxMvvviiJJbxgySYU0HjdWpra3Ho0CHo9Xps3boVVVVVYmRXvBNKJyztuKUD/HQuLhEG+OmMZaJ0+no8HrG7mTZoTXcWR63uEuX5hYvP58Px48dRVFQ05YzsbJkY3BwJt6Fw8fv9OHbsWFjPjxCCX/3qV+ju7saf//xnSSzjC0kwQ4EQgtOnT6O2thb79++HIAi4/vrrUVVVhcLCwrgUz6GhIbS0tIQVrDuxkYW638Rjc4XdbkdTUxNKS0tj4qEZaQKBgNjI4vF4xp17MgwTV1Z30YAuBoqLi6NevZnoNhSpLNXpoGK5bNmykBc7VCx7enrwwgsvSGIZf0iCGS6EEAwMDGDv3r3Yu3cvhoaGcO2116K6ujpuDL3PnDkjDrTPthOWNrKYTCZ4PB6kpaXBaDTGdIU+FWazGe3t7aioqEiInfBMTAzHVqvVcDqdKC8vX5Bi6XK5cOLECaxatSrmz29slurQ0BCUSqU4Wxup8SC6c16+fHnIvqqCIOBXv/oV+vr68Pzzz0tiGZ9IgjlXbDYbDhw4gNraWnR0dODKK69EVVUV1q1bF/OGGjqj53K5sHr16og9/mSpH9SmL9YLBDoWk6juNjNhsVjQ0tKCtLQ02O12qFQq8dxzITzfkZERNDQ0YPXq1aKjz3zidrvF0u1Et6HZLAx9Ph+OHTsWVmKMIAi47777MDAwgOeee04Sy/hFEsxI4nK5cPjwYdTW1uL48eO49NJLUV1djcsuuyzqXXs8z6OpqQkqlQrLly+P2i5wovsN7UyMdjA2LYs7nc6ILgbiCZr1OHYxQE3iLRaLGAU3Uzh2vELL6OXl5XF5/RPdhlJTU5GZmRnywtDr9eL48eNhlZkFQcC9996LwcFBPP/881F7XxcUFECn04FlWcjlcnz22WdReZwFjiSY0cLv9+Pdd99FTU0N/v73v6OyshLV1dW46qqrIl5G9Pv9qK+vR1ZWVkzHDiZ2gdLyltFojOhuSBAENDc3g2XZBTmwDwA9PT0wm80oLy+fcuHh9/vFc09qTBHrRpbZYrPZ0NLSkjBldLowpKVbGgc3VTc5FcuVK1ciNTU15Me49957YTKZ8Nxzz0V1EVhQUIDPPvss4s1V5xmSYMYCnufxj3/8A7W1tTh69CiKiopQVVWFa6+9ds5nOPQ8aLo0jljhdrvFjluGYUTxnMsNkuM4nDhxIi5mLKPB2J1zOPFVk5XJ6W4o3nbfFosF7e3tqKysTEh3qbFxcBaLBQDGBWR7vV7U1dWFLZY7duyA1WrFs88+G/XfmSSYEUESzFgjCALq6upQU1ODw4cPIy0tDdXV1bj++uuRmZkZliDQTth4OQ8aCw0RppFZtOM2HOs4n88nziCGM9CeKBBC0NLSAkEQsGrVqlkvBggh43ZDGo1m2t1QLDGZTOjs7ERlZeW8X0ukGOs25HK54Pf7UVRUhJycnJAWPIIg4L/+679gs9nwzDPPxGSBU1hYCIPBAIZh8IMf/AD/9m//FvXHXIBIgjmfEELQ1taGmpoa7N+/H3K5HFu3bkV1dTXy8vKmvYFGohM2VkwWjD12hGIy6M55oc4gCoKAxsZGaDQaFBUVRWznPHE3RHf68zHA39/fL5rgx5PzTqRwu91iMLnb7Q7JbUgQBPzyl7+E3W7HH//4x5hVA/r6+pCTkwOTyYTNmzfjsccewxVXXBGTx15ASIIZLxBC0NfXh9raWuzduxdOp1McVxmbBygIAtra2uDxeBLSE3biCMVkwdi0OSQed86RgPqmZmRkYMmSJVF9LLrTN5vN8Pv9MQvH7u3thclkWjDxYxOhYjl2Dpie6dOAbGoEotfrodfrIQgC7rnnHjidTjz99NPz9rrs2LEDWq0Wt99++7w8fgIjCWa8YrFYsH//fuzduxc9PT3YtGkTrrnmGjz00EPYuHEjbrnlloQ/z6OlRBqMnZycDLVaDavVisrKyoRoDgkX6uubm5sb8zLzZOHY4XSBhkpXVxdsNltCLuhCweVyob6+fsYFHTUCefTRR3H06FFkZ2cjJSUFb7zxRkx33C6XC4IgQKfTweVyYfPmzfjlL3+Ja6+9NmbXsECQBDMRGBkZweuvv4577rkH+fn5uOCCC1BdXY0NGzYsmJktOkPa398PhUIBpVIZtu9qvEObQ5YuXRqyr2i0mNgFGolwbNrAROeA48HEI9KEKpZjEQQBd955Jzo7O5GRkYFjx47hoosuwne/+11ccsklUb5i4PTp0/inf/onAMFF0ze+8Q38/Oc/j/rjLkAkwUwE2tra8PWvfx33338/rrrqKhw9ehQ1NTX46KOPcOGFF6K6uhobN26MaZBxJJnMcIH6rprN5oSfPwTOnsmG00kZK6hxOT33nI2nMD2PDwQCKCkpSfjqx2RQu8Jw7CYFQcDdd9+NQCCAJ598EjKZDDzP4+OPPwbDMNiwYUOUr1oigkiCmQg89thjuPzyy1FZWTnu4xzH4cMPP0RNTQ3ee+89FBcXo7q6GldffXXCnP2FMmNJ5w9NJhN8Pp/YcTtbN5ZY43A40NjYmDBnsrSUaDabxQ7n6dxvCCHjskgT4XcSLrMVy7vuugscx4liKZHQSIK5UBAEAV988QX27NmDI0eOIDs7G1VVVdiyZUvczl7RnMe0tDTk5+eHdKOl53AmkwlOpzMqYc2RZGhoCK2trQkzsD+Rie43BoMBmZmZMBgMkMlkEAQBTU1NUKvVEe32jSeonV84DkW0DCsIAp544om4fG9KhI0kmAsRQgiam5tRU1ODQ4cOQaPR4Prrr0d1dTUWL14cFze1SMxYTgxrjrdg7MHBQXR1dS2YGUT6epvNZthsNiQnJ8Pj8SAjIwNFRUXzfXlRYWRkBI2NjSgrKwtLLH/6058CAB5//HFJLBcOkmAudAgh6O7uFsdVfD4ftmzZgqqqqqh6zk4HPc8Lx6B6JsamUFitVnF4PzMzc15mAHt7ezE4OIiKiooF05g1Fo7jcOzYMbAsi0AgAIVCIb7eiXqWPhFaSq+oqAh5hlUQBNxxxx2QyWR47LHHJLFcWEiCeT5BCIHZbMa+fftQW1uLwcFBbN68Gdu2bQvLlm0uDA8Po7m5OarneWOH98cGYxuNxqjfzAkh6OzshMPhWLAm8RzHoa6uDtnZ2Vi8eDGAYL4lfb3jPUs1FBwOh2gUH45Y3n777ZDL5Xj00UclsVx4SIJ5PmO323Ho0CHU1taipaUFGzduRHV1NS6++OKo3OhNJhM6OjpQUVER012I1+sVO255nhd3QqE2b4QKIQStra3gOC5uslEjDZ0jXbJkCbKysqb8mrFZqvTcM17PmSdit9vR3Nwc1rmzIAj4yU9+ApVKhd///vcJ8TwlwkYSTIkgHo8Hb7/9Nvbs2YPPP/8c69evR1VVFb70pS9F5Pytp6cHJpMJ5eXl82qTRn1ATSaTmPhhNBrn7HxDm19UKhWWLVuWkLuqmaDnzoWFhSHPkQqCgKGhIZhMJtjtduh0OnHeMx5338PDwzh58mTYYnnbbbchKSkJjzzyiCSWCxdJMCXOJRAI4P3330dNTQ3ef/99rF69GlVVVdi8eXPYc5CEEJw6dQoejyfuhtlp4ofJZBKdb4xGo9gBGs7Pqa+vh8FgQEFBQfQueB6h8VVzOXcmhMDhcIjnzDQOLl7MKWYjljzP47bbboNWq8V///d/x9X7WyLiSIIpMT2CIODTTz9FTU0N3nrrLeTn52Pr1q3YsmXLjCG5dNelUCiwYsWKuN51TRaMTTtup2vaCQQCogE3Pc9baLjdbtTX10fcdIHGwdFw7LHnnrGG5nVWVlaGfFxAxVKn0+Hhhx+WxHLhIwmmROgQQtDY2Ig9e/bgzTffREpKCrZu3YqqqipkZWWNE0Q6Y5meno78/Px5vOrwGbsTslgsUKlUok3f2PK0z+fD8ePHUVhYCKPROI9XHD3owP5Yk/FoMLFUThNtYhGOPVux/PGPfwy9Xo+HHnpIEsvzA0kwJWYH9Q2tra3Fvn37QAjB9ddfj6qqKjAMg9tuuw1PPPEEcnJy5vtS54zL5RJ3QjQuS6fTobW1FcXFxTPutBMVOlYRjrtNJKCJNiaTCQ6HY9JEm0gxNDSEtra2sMKteZ7HrbfeCoPBgN/97neSWJ4/SIIpMXcIIRgYGMDevXvxl7/8Ba2trfjqV7+K7373uygpKVlQNxSv14ve3l50d3dDo9EgKytL7LiN55JzuNDzvHDGKqIBna+liTZqtRpGozEi4dhWqxWnTp0KWyx/9KMfISMjA7/5zW8W1HtbYkYm/QNfeFPWElGFYRhkZ2ejvLwcLpcL+/btw6lTp/Dggw/i9OnT+PKXv4zq6mqsW7cuLjsjw8HtdsNisWD9+vVQKBSwWCw4ffo03G632HEbizJiNKF2fuGUKKMFwzBITU0Vz07pbr+urg4Mw4jnnuGKOhXLNWvWhCy8PM/jlltugdFoxIMPPhg1sTx8+DBuvfVW8DyP733ve7jrrrui8jgSkUHaYUqEzfDwMKqrq/HKK68gNzdX/LjL5cKRI0dQW1uLY8eOYcOGDdi2bRsuu+yyeR0vmQ0mkwmdnZ2oqKg4Z0cysYyo1+vFMmIi7ULMZjM6OjoSws5vbDg2NeUPJRybLnLCeY48z+M//uM/sGjRIjzwwANR+53yPI8VK1bg7bffRm5uLi688EK8+uqrKCkpicrjSYSFVJKViByCIEx7I/H7/Xj33XdRW1uLDz/8EJWVlaiursZVV10V98bkfX196O/vR0VFxYxCLwjCuDJicnKyWEaMZ5u8gYEB9PT0oLKyMuEWMxNHhKZasMxmQcDzPG6++WYsXrwYv/71r6O6AProo4+wY8cOHDlyBADwwAMPAADuvvvuqD2mRMhIJdl4Yvfu3dixYweam5vx6aefYt26deLnHnjgAfzpT38Cy7J49NFHcc0118zjlU7OTDcSpVKJa665Btdccw14nsdHH32Empoa/OpXv8KyZctQVVWFa6+9Fnq9PkZXHBqdnZ2w2WxYs2ZNSCVlmUwGg8EAg8EgZk2aTCZ0dXVBoVDEZTB2X18fBgYGsGbNmrgW9algWRZGoxFGo3FcOHZbWxuSkpJgNBpBCEFvby/WrFkT8oKA53ncdNNNyM3Nxc6dO6NeLejr60NeXp7479zcXHzyySdRfUyJuZF4fy0LhNWrV6OmpgY/+MEPxn28qakJr732GhobG3HmzBls2rQJra2tCX0eyLIsLrvsMlx22WUQBAH19fXYs2cPqqqqkJ6ejqqqKmzduhWZmZnzdh5IQ5H9fj8qKipmdbNkGAY6nQ46nQ5FRUVwu90wm804ceKEGIw9mzO4SNLd3Q2r1YrKysqEfk9RZDIZ0tLSkJaWJvoKd3R0wGw2Q6fTob+/P6RwbI7jcNNNNyE/Px/3339/QpXWJWKHJJjzxKpVqyb9+L59+/D1r38dKpUKhYWFWLZsGT799FNccsklMb7C6CCTyVBZWYnKykrcd999aGtrQ01NDW644QawLIvrr78e27ZtQ15eXszEkwZbKxQKlJaWRuxxk5KSkJ+fj/z8fPEMrqWlBX6/X2waimUwdkdHBxwOx6wXBPEOwzBwuVzwer24/PLLwfM8zGYzmpubpw3H5jgOP/zhD1FYWIj7778/Zr+PnJwc9PT0iP/u7e1dEKNZCxlJMOOMvr4+rF+/Xvx3bm4u+vr65vGKogfDMFixYgXuuusu3Hnnnejr60NtbS1uvvlmOJ1OXHvttaiursbKlSujdhPjeR4nTpyAXq9HQUFB1B5HpVIhNzcXubm54DgOFosFnZ2dcLlcSEtLi6phOSEE7e3t8Hq9MUuqmQ/ouSwtNSsUCuTl5SEvL098zbu6uuB0OuF2u+FwOLB582bceuutKCoqiqlYAsCFF16ItrY2dHR0ICcnB6+99hpeeeWVmD2+RPhIghlFNm3ahIGBgXM+vnPnTmzbtm0erih+YRgGubm5uOWWW3DLLbfAarVi//79uPfee9HT04NNmzahuroaa9asidgNPxAIoL6+HllZWeO6faONXC7HokWLsGjRItGwfGBgAC0tLREf3CeEoKWlBYSQiO6e443+/n709fVNeS478TU/duwYXn75Zdx5553Q6/Worq4WO55jhVwux+OPPy6e82/fvh2lpaUxe3yJ8JEEM4q88847YX+PVKYJkp6ejhtvvBE33ngjRkZG8Ne//hVPPPEEGhsbcfnll6O6uhobNmyYddMKTePIz8+fMroqFshkMmRkZCAjI2Pc4P6pU6fEBpaMjIxZdbISQkR/3/kKEI8F/f39OHPmDCorK0N6P8hkMlRUVAAAbrzxRnz1q1/F/v378Yc//AHLli3DX/7yl2hfssiWLVuwZcuWGb+up6cHV1xxBT7//HOkpaXBZrNh7dq1ePfdd/Hv//7v+Pjjj3HZZZfh4MGDMbjq8xdprGSe2bhxIx566CGxS7axsRHf+MY38Omnn+LMmTO46qqr0NbWtiAaNCKBz+fD0aNHUVNTg48//hjr1q1DVVUVvvzlL4c8eO/xeFBXVzenNI5oQxtYqE2fXC4X0z5CeZ6CIOrHB3EAABH6SURBVKChoQFarRaFhYULVizPnDmD/v7+sJqYOI7D97//faxcuRI7duwY99rY7fa469ym/Pa3v8WpU6fwxz/+ET/4wQ9QUFCAu+++G0ePHoXb7cbTTz8tCWbkkOYw44na2lrccsstMJvNSE1NRWVlpTiPtXPnTjz33HOQy+X4/e9/j+uuu26erzY+4TgOH374IWpqavDee++huLgY1dXVuPrqq6HT6Sb9npGRETQ0NETdYDzSeDwemM1mmEwmCIIgdtxOlvZBz2UNBkPCmeGHQ19fHwYHB1FRURGyWAYCAXz/+99HaWkpfvnLXybUQiIQCOCCCy7A9u3b8cwzz+D48eNi5eG9997DQw89JAlm5JAEU2LhIggCvvjiC9TU1ODw4cNYtGgRqqursWXLFmRkZAAAPvzwQwiCgAsuuGBeYqUixXTB2IIgoK6uDkajMabnsrGmt7cXJpMpbLH83ve+h7KyMvziF79IKLGkHDlyBNdeey3eeustbN68Wfy4JJgRRzIukFi4yGQyrFu3DuvWrcPOnTtx8uRJ1NTU4Gtf+xrUajVWrlyJo0ePYt++fQktlkDQFIJmcvI8D4vFgp6eHjgcDnAch+zs7AWb1wkEz/MsFkvYYvnd734XFRUVuOeeexJSLAHgr3/9K7Kzs9HQ0DBOMCViw8LsL5c4r2EYBqtWrcLPf/5z/OMf/8C2bdtEv87t27fj4YcfRmtrK2aoriQELMsiKysLK1asAMuyyMnJAcdx+OSTT9DQ0ACTyQSe5+f7MiPGbMVy+/btqKysTGixPH78ON5++218/PHHeOSRR9Df3z/fl3TeIe0wJRY0f/jDH/DWW2+hrq4OSUlJMJvN2LdvH372s59hcHAQmzdvRnV1NcrLyxN2PpGGWy9btgzp6ekAzgZjm0wmnD59OqJRWfNFd3c3hoaGwjJeoGK5du1a/OxnP0tYsSSE4Ic//CF+//vfY8mSJbjjjjtw++234+WXX57vSzuvkM4wJRY0e/fuxZYtWyYVCbvdjkOHDqG2thYtLS3YuHEjqqqqsH79+oTpSqYdvzOFW9OOW7PZDJZlxY7beDfCp3R1dWF4eDgs4wW/34/t27dj3bp1uPvuuxNWLAHgj3/8I44ePYrXX38dQLCx68ILL8QjjzyCe+65BydPnoTT6UR6ejr+9Kc/xaX/dIIhNf1IzI0dO3bgmWeeQWZmJgDg17/+dUgzZImAx+PB22+/jZqaGnz22WdYv349qqqqcMUVV8SVcfpYXC4X6uvrUVJSEtYohNfrFTtueZ4XcyaTk5PjUlQ6Oztht9vDFssbb7wRF198Me688864fF4ScY0kmBJzY8eOHdBqtbj99tvn+1KiSiAQwAcffIA9e/bg/fffR2lpKaqrq7F58+a4aRii4zGrV6+ecoQmFAKBgNhx6/F4kJ6ejszMzLgJxu7o6MDIyAhWr14dllj+67/+Ky655BL89Kc/jYvnIZFwSIIpMTfOF8EciyAI+N///V/s2bMHb7/9NvLy8lBVVYUtW7ZMWwKNJna7HU1NTSgvL4+ogNOcSbPZHBfB2KdPn4bL5UJpaWlYYvmd73wHl156Ke644w5JLCVmiySYEnNjx44deOGFF5CSkoJ169bh4YcfnjfRmA8IIWhsbMSePXvw5ptvQqfToaqqClVVVcjKyorJzdlms6GlpQUVFRVRPX+kOZMmkwk2mw1arRZGoxHp6ekxydBsb2+Hx+MJy//W5/PhO9/5Di6//HLcfvvtklhKzAVJMCVmZjrD+PXr1yMjIwMMw+AXv/gF+vv78dxzz83DVc4/hBB0dHSgpqYG+/fvB8/zuP7661FVVYWlS5dG5WZtsVjQ3t6OysrKmJ6rEkIwMjICk8kEq9UKpVIpBmNHuuN2bLLKbMTyiiuuwE9+8hNJLCXmiiSYEpGjs7MTW7duRUNDw3xfyrxDCMHAwAD27t2LvXv3YmhoCNdccw2qq6tRUlISkXKmyWRCZ2cnKisr530sxOVywWw2w2w2g2EY0aZvrjteQghOnToFv9+PkpKSsMTy29/+NjZu3Ij//M//lMRSIhJIgikxN/r7+5GdnQ0AeOSRR/DJJ5/gtddem+erij9sNhsOHDiAvXv34vTp0/jyl7+M6upqrFu3blbjKjS6qqKiYlapJdGEBmObTCYxpNloNEKr1YYlXFQsA4EAVq1aFZZYfutb38KVV16J2267LSZiuZC7xSVEJMGUmBvf+ta3cPz4cTAMg4KCAjz99NOigEpMjsvlwltvvYWamhocO3YMGzZswLZt23DZZZeFJH6z8UydLwKBAKxWK0wmkxiMbTQakZqaOq2QEULQ2toKQRDCCgv3er341re+hU2bNuHHP/5xzHaW52Pz23mIJJgSEvOJ3+/He++9h5qaGnz44YeorKxEVVUVrrrqKiQlJZ3z9V1dXbDZbCgrK4t7sZwIz/MYGhqC2WyG3W6fMhibiiUhBMXFxWGJ5Te/+U1cffXVuPXWW2NahpUE87xAEkwJiXiB53l89NFHqKmpwdGjR1FUVIStW7fiuuuug06nw7333ovLL78cV155ZcJa9lEIIWLH7dDQEJKTk5GZmYmMjAy0t7eDYRisWLEiLLG84YYbcO211+JHP/pRzM8sz/du8fMESTAlJOIRQRBQX1+PPXv24K9//SsCgQAMBgOeeeYZLF68eEE1sRBC4HQ6YTKZ0NPTA5ZlUVBQAKPRGFLnLxXL6667DrfcckvUXhupW/y8RxJMCYl4RhAE3HTTTXC73Vi1ahUOHjwIlmVx/fXXY9u2bcjLy1sQ4kkIQXNzMxQKBXJycsSOW0KI6HE7mSGDx+PBDTfcgK1bt+Lmm2+Oi9dC6hZfsEiCKSERz9x8880wGAy4//77wTAMCCE4c+YMamtrsXfvXjgcDlx33XWoqqoKq5M0niCEoKmpCUqlEsuWLRv3HPx+v9hx6/P5xF1cYWEhfD4fvvGNb6C6uho33XTTvD53qVv8vEASTAmJeKa3txe5ublTft5qtWL//v2ora1FT08PNm3ahKqqKqxduzYhzjmpU5JarUZRUdG0osdxHKxWK+677z787W9/g1arxZVXXonf/e538z5aI3WLnxdIgimxsDl8+DBuvfVW8DyP733ve/9/e/cbU1X9wHH8fRCWrTnzz7iyawgkoGLO7Yo2p3ILrrjUg64J95I6QOOqW2YLN53T2QOnq7X5xAfpA+VJuZSL+gDlkhPNshgVaJT/Nl1qiDpYA8x/99qDfrKR/PSAXg7g5/WIe+CMz9nYPpxzvn9Yt26d3ZEiprW1lcOHDxMIBGhoaGDmzJmYpsn06dN7Zem67npUli+//DKvv/665fP+/vtvfD4f48aN4969e3z33Xe4XC5WrlzJtGnTIphYXnAqTBm4QqEQKSkpVFVVMXr0aNLT0/nqq6+YMGGC3dEi7u7duxw9epTy8nJOnTqFy+XCNE3eeustBg8ebHc8wuEwDQ0NvPLKKyQlJVk+7/bt2/h8Pt599138fj+GYRAOh6mpqSEmJgaXyxXB1PKCU2HKwHXq1Ck2b95MZWUlAFu3bgVg/fr1dsbqdQ8ePODkyZOUl5dz7NgxUlJSyMnJYfbs2c+0DVhPhcNhfv31V4YMGUJiYqLl827fvo3X62XRokUUFxf3y/e10q91+QfX957diPTAtWvXeO211zo+jx49mh9//NHGRPaIjo7G7XbjdrsJh8P88ssvlJWVsX37dhwOB6Zp8s477zBy5MiIZwmHw5w5c4ahQ4eSkJBg+bz29na8Xi95eXm8//77KkvpM1SYIgNUVFQULpcLl8vFli1bOHv2LIFAgLy8PAYPHsy8efMwTTMicz0fleWrr77KmDFjLJ/X3t5OXl4ePp+P5cuXqyylT+n7Q+tELHA6nVy5cqXj89WrV3E6nTYm6lsMw2D8+PFs2LCB77//nj179jBo0CCKi4vJysri888/71ii7lk9Wohh2LBhPSrL/Px8laX0SXqHKQPCgwcPSElJ4ejRozidTtLT0/nyyy9JS0uzO1qf9vDhQ27evMnBgwc5cOAA169fx+PxYJomkyZN6vZ0lXA4TH19PSNGjCA+Pt7yeY/K8r333mPZsmXdvQyR502DfmRgq6ioYM2aNYRCIYqKitiwYYPdkfqdv/76i4qKCgKBAOfOnSMjIwPTNHnzzTefugB8KBTi9OnTjBw5stP75Kdpa2vD6/WyePFiioqKnvUSRJ4HFaaIWHfnzh2qqqooKyujtraWadOmYZoms2bNemzd11AoRH19PbGxsU9cfOG/2trayMvLY+nSpRQWFj7vSxDpKRWmiPTM/fv3+fbbbykrK+PEiROkpaVhmiYej4dwOMzq1avZvHlzt95ZtrW1kZubS0FBAQUFBZELL9J9XRamBv1IRF25coXExESam5sBaGlpITExkcuXL1NaWkpycjLJycmUlpbanFSeJCYmhrfffpsdO3ZQX1/PRx99RF1dHZmZmUyfPp2hQ4d2a55na2srixYtorCwUGUp/YbuMCXiPv30Uy5evMjOnTvx+/0kJCTg9/uZMmUKtbW1GIaBy+Xip59+0r6C/UhbWxs5OTlkZWVx7949KioqGDJkSMd0FYfD0eVI19bWVnJzc1m2bBlLly61IbnIU+mRrNjj/v37uFwuioqK2LVrF3V1dezfv5/q6mq++OILAPx+P263G5/PZ3NasSIcDpOdnU1hYSH5+fnAvyNuL126RCAQ4NChQ4RCIebOncv8+fNJSkrCMIyOsly+fDlLliyx+SpE/i+t9CP2iImJ4bPPPmPOnDkEg0FiYmK6XJnn2rVrNqaU7oiKimL37t2dBvgYhkFSUhIlJSV8/PHHNDU1ceDAAUpKSmhubiYjI4Pjx4/z4YcfsnjxYhvTi/SM3mFKrzh8+DBxcXHaaPd/EhISeOONN5g8eTJTpkyxO06PPGk0rGEYjBo1ihUrVlBZWUkwGMThcJCZmRmxsty3bx9paWlERUVRW1vb6Xtbt25l7NixpKamdqw3LNJdusOUiKurq6OqqooffviBGTNm4PV6cTqdVFdXd/zM1atXcbvdtmW0w7Fjx3plTde+YNiwYaxduzaiv2PixIkEAgH8fn+n47/99ht79+6loaGBP//8k6ysLM6fP//UeaUi/6U7TImohw8fsnLlSrZv3058fDxr166lpKSE7OxsgsEgLS0ttLS0EAwGyc7Otjuu9GPjx48nNTX1seMHDx7E6/Xy0ksvkZiYyNixY6mpqbEhofR3KkyJqF27dhEfH4/H4wFg1apV/P7775w5c4aNGzeSnp5Oeno6mzZtYvjw4Tan7T2GYTB79mxcLhc7d+60O86Apvfl8rzokaxEVHFxMcXFxR2fBw0axM8//wxARkbGC7sU2smTJ3E6ndy4cQOPx8O4ceOYNWuW3bH6vKysLK5fv/7Y8S1btpCTk2NDInmRqDBFbPBoJ5XY2FgWLlxITU2NCtOCb775ptvnaCcbeV70SFakl7W3t9Pa2trxdTAYZOLEiTanGrhM02Tv3r3cvXuXS5cuceHCBaZOnWp3LOmHdIcp0suamppYuHAh8O+2ZPn5+cyZM8fmVP1feXk5H3zwATdv3mTu3LlMnjyZyspK0tLSyM3NZcKECURHR7Njxw6NkJUe0Uo/IiIinWnxdRERkZ5SYYqIiFigwhQREbFAhSkiImKBClNERMQCFaaIPKaoqIjY2NhO80Obm5vxeDwkJyfj8XhoaWmxMaFI71NhishjCgoKOHLkSKdj27ZtIzMzkwsXLpCZmcm2bdtsSidiD83DFJEuXb58mXnz5nXsYZqamkp1dTVxcXE0Njbidrs5d+6czSlFIkLzMEWk55qamoiLiwNg1KhRNDU12ZxIpHepMEWk2wzDwDC6/CdcZMBSYYqIJQ6Hg8bGRgAaGxuJjY21OZFI71JhioglpmlSWloKQGlpqfaflBeOBv2IyGN8Ph/V1dXcunULh8PBJ598woIFC8jNzeWPP/5gzJgxfP311wwfPtzuqCKR0OX7BhWmiIhIZxolKyIi0lMqTBEREQtUmCIiIhaoMEVERCyIfsr3NTNZREQE3WGKiIhYosIUERGxQIUpIiJigQpTRETEAhWmiIiIBSpMERERC/4B4uQT4C79oJMAAAAASUVORK5CYII=\n" - }, - "metadata": { - "needs_background": "light" - } - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAHBCAYAAADkRYtYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9eYxdWXX2/ex9pjvfGjyUx7J7cLux3fRgOy/N0A7Q+aQODUiRSFpEgEDkJRGJiECIRBBCQhAQEeVV+IMkygAJ6gQpikKDQMrHpwZeCFjN0HbZbg9dnmquW3Xn4Ux7f3/sc06de32r6s417Z/U6nLVPcOdznPW2ms9i3DOIZFIJBKJZG3oRp+ARCKRSCRbASmYEolEIpG0gBRMiUQikUhaQAqmRCKRSCQtIAVTIpFIJJIWkIIpkUgkEkkLqOv8XfacSCQSiWSnQZr9UkaYEolEIpG0gBRMiUQikUhaQAqmRCKRSCQtIAVTIpFIJJIWkIIpkUgkEkkLSMGUSCQSiaQFpGBKJBKJRNICUjAlEolEImkBKZgSiUQikbSAFEyJRCKRSFpACqZEIpFIJC0gBVMikUgkkhaQgimRSCQSSQtIwZRIJBKJpAWkYEokEolE0gJSMCUSiUQiaQEpmBKJRCKRtIAUTIlEIpFIWkAKpkQikUgkLSAFUyLpE+973/vwyU9+sqt9nDt3DpFIBMlkEqlUCk888QQ+//nPwzTNHp2lRCJpFSmYEskqOI6z0acAAPjyl7+MYrGI2dlZfOlLX8K//du/4ZlnngHnfKNPTSLZUUjBlEhCHDlyBF/4whfwyCOPIB6Pw3EcfPOb38SJEycwNDSEc+fO4cqVK8Hjr1y5gnPnzmFoaAgnTpzAN7/5TQDA3/3d3+HrX/86vvjFLyKRSODZZ5/t+tzi8TjOnTuHb37zm/if//kffPvb3wYAmKaJj3zkI9i/fz/279+Pj3zkI0EE+tRTT+E//uM/AAA/+tGPQAgJtvve976HRx99FADwz//8z3jDG96Aj33sYxgeHsbRo0fxne98p+tzlki2E1IwJZIGnn/+eXz7299GLpfD5OQknnvuOfz1X/81FhcX8cwzz+DZZ5+FZVmwbRvPPvssfu3Xfg0LCwv4m7/5G7z73e/G1atX8Tu/8zt497vfjY9//OMolUp44YUXenZ+hw8fxunTp/HDH/4QAPAXf/EX+MlPfoJf/vKXePnll3H+/Hl89rOfBSAE88UXXwQAfP/738d9992HH/zgB8G/n3rqqWC/P/3pT/HQQw8hk8ng4x//OD7wgQ/IKFYiCSEFUyJp4A/+4A9w6NAhRKNR/Pu//zt+/dd/HU8//TQ0TcPHPvYxVKtV/PjHP8ZPfvITlEolfOITn4Cu63jzm9+Mt73tbXj++ef7fo779+/H8vIyAODrX/86/uRP/gR79uzB7t278elPfxr/8i//AkAI5ve//30AwA9+8AP80R/9UfDvRsEcHx/HBz/4QSiKgve+972YnZ3F/Px835+LRLJVkIIpkTRw6NCh4OeZmRmMj48H/6aU4tChQ5iensbMzAwOHToESle+RuPj45ienm7pOJ/73OeQSCSQSCTwoQ99qK1znJ6exsjISNNzHB8fx8zMDADgda97Ha5du4b5+Xn88pe/xHve8x7cvXsXmUwG58+fx5ve9KZgu7GxseDnWCwGACiVSm2dl0SynZGCKZE0QAgJft6/fz9u374d/Jtzjrt37+LAgQPYv38/7t69C8ZY8Pc7d+7gwIED9+ynGX/8x3+MUqmEUqmEr3zlKy2f3927d/Gzn/0Mb3zjG5ue4507d7B//34AQvieeOIJ/J//839w8uRJ6LqOJ598En/1V3+F+++/H7t27Wr5uBLJTkcKpmTHwjlfd43uXe96F7797W/je9/7Hmzbxpe+9CUYhoEnn3wSv/Irv4JYLIYvfvGLsG0bL774Il544QX81m/9FgBg7969mJyc7Nn5VioVfP/738c73vEOnD17Fs888wwA4LnnnsNnP/tZLC4uIpPJ4M/+7M/w27/928F2Tz31FL785S8H6ddz587V/VsikbSGFEzJjoQxBtM0kcvlUCwWUavVYNv2PY976KGH8K//+q/4/d//fezatQsvvPACXnjhBei6Dl3X8cILL+A73/kOdu3ahd/7vd/D1772NRw/fhwA8IEPfACXL1/G0NAQ3vnOd3Z8rh/+8IeRTCaxd+9efOQjH8Fv/MZv4Lvf/W6QCv7kJz+J06dP45FHHsGpU6fw+OOP1/V/PvXUUygWi0H6tfHfEomkNcg6d9iyRE6yreCcw3Vd2LYNzjksywIhJIg2CSFQFAWqqkJVVSiKUrdGKZFIdgRN11OkYEp2DL5AMsYCkbQsq04QfeEMfy8opdA0TQqoRLJzkIIp2bk4jgPHcYIokhACxtg9gtnIagKqqio0TZMCKpFsT6RgSnYenHM4joOXX34ZJ0+erKtcbUUwm+1vPQH1BVkikWxZmn6B1UGfhUQyKHxB5JyjWCz2RMQaxdAXTsuyYFlW8JjGFK4UUIlk6yMFU7Lt8KNKx3FACOlrytQXQkVRgmMDQkBN04RlWSiXyxgbG5MCKpFscaRgSrYVjYU9gxamRgGtVqtYXFzEyMhIXQTqV+GqqioFVCLZIkjBlGwLwu0iwL2p042iUUABca62bdedqxRQiWTzIwVTsuXxBch13U0jlGvh93r6+CnksIAqihKsg0oBlUg2B1IwJVuacGHPemLpPybMIIRoPfu9ZoVEruvWtcGEI1C/ElcikQwWKZiSLUm7hT2+UcFGrWm2u00zAbVtO/i9FFCJZPBIwZRsORhjsG27rcKerSwo/nP0bwqaCWi5XMbo6KgUUImkj0jBlGwZuins8SPM7UAzAX3llVfw+OOP1xUZhXtBpYBKJN0jBVOyJehFYU8zwRxEmrbfQu2/HqqqBsdjjKFWqwWP8QXUN5aXAiqRtI8UTMmmhzGGqakpEEKwe/fujtcFmwlXv4VjI4Sp2RqoL6D+a9C4Bir9cCWS9ZGCKdm0hAt7TNPsqmWkmWDulChrNQE1TROmaQKQE1kkklaQginZlDQr7OkmtbmRa5ibbe20mYByzu8RUGkoL5HUIwVTsqlYrbDHH8fVKRslmFtBZFYT0LChvBRQiUQKpmQTsZYPLKUUjuN0vO9mF3fXdVEoFJBMJmUKMsRqE1mmp6dRrVZx+PBhOZFFsiORginZFPhR5WqOPb1OyRaLRVy8eBGRSASVSgWapmF4eBhDQ0NIpVJSQEP474XfyuK/Nv5EFqD5GqgUUMl2QwqmZENp1bGn25SsfyzOOe7cuYOZmRmcOnUKuq6DEALTNJHL5TA3N4dr1671VEA32xpmt6xmKN84E1Qayku2G1IwJRtGO449vYgwLcvCK6+8gmg0irNnz4JSGlzgDcPA3r17sXfvXgBoKqBDQ0MYHh5uS0C3k0is1bPazFBeTmSRbDekYEoGTmNhTyvi061gWpaFCxcu4Pjx49izZ09wHquxmoDOz8/j+vXrUFW1IwHdKbQzkUVRFOlGJNkSSMGUDJROBzx3KpiMMVy/fh3lchmPPPIIRkdH294H0LmAbidLvm5ckdaayOIjDeUlmx0pmJKB4a9VtjKKq5FOhKdcLuPixYvYu3cvRkdHoet6u6e8KmsJaDiFG4/Ht41g9pK1JrIsLS3BMAwMDQ1JP1zJpkIKpqTvcM5RLBZRLBYxOjraUfqyXcGcnp7G7du3ceLECaTTaUxMTPRVuFYT0Ewmg3w+j1/84hdbPoXbT9/dsKF8uVwGpRSMMVSrVWkoL9k0SMGU9BV/wHOxWMTi4iJ27drV0X4opS0JnuM4uHTpEgghOHv2bGBIDgy2WtUX0KGhIdi2jYcffhjZbFaugbYA5zxoXwlPZJECKtlopGBK+kJju4iiKH23tsvlcrh06RKOHj2K/fv3t719P/CPq+t6XQRqWVadgCqKErSxpNPpTSmggxrA3ew4zUaarTWRRfrhSvqBFExJz2lW2NOLtpDV+jA555icnEQmk8Fjjz2GWCzWdPvNtJbYTEBzuRwWFhZw48aNLSGg/aIVYV5rIouPNJSX9BopmJKesdaA536Zp9dqNVy8eBHpdBpnzpxZ0/hgM5uv67qOPXv2BC0vawloKpWqa9kYFH6qdBDHaZdODOWlgEraRQqmpCc0pmAbIwS/iKNTmgne/Pw8bty4gYcffhgjIyNtbz8IOk1htiug241uxawVQ3nHcaAoChKJhDSUl7SEFExJ1/iFPWu1i/QywnRdF6+88gosy8KZM2daahfZ6hfC9QS0Uqng5s2bfY1AB7mG2WuaCWgmkwFjLFjvlhNZJOshBVPSMa36wAKtV7muhi+YxWIRExMTOHDgAA4dOtTWBW0zrWF2S6OA/vSnP0U8Ht9UKdxOGYQw+58nv0DI/2z4hvK+WEpDeUkYKZiSjmjHBxbojXl6uVzGxMQETp06hUQi0da2G10l228opU0j0MXFxUBAw20snQjoRlbJ9vs4jYbyqwlo4xqoFNCdhRRMSVusVdizFt0Ih2VZuHz5MhzHwRve8IaOLvabrUq236yWwu2lgPaLQQmmf7PXjNUmskhD+Z2NFExJy/gXDNd1217f6bToZ2lpCa+88grGx8cxPz/f8YV9pwlmI70Q0O0YYbZTXCQnskikYEpagjEWlOd3UgzRrmD5pumFQgFPPPEEKKWYm5tr65jdHL+XbEah3swR6FYR5vUmsgCoS+FKN6KtjxRMyZr4F4GbN2+CEILDhw93tJ92in7CpumnT58GIQS2bXddNLQRbJULZCsCCgBDQ0NwXbevAroZUrKdsJah/PXr13Hs2DE5kWWLIwVTsirhwp5eVLm2kpJtNE1vd/u1jt/s/OUFqznNBNSP+H/+858HEajvRNRLAR1URN5vI4awgPqG8r6ASj/crYkUTMk9NCvsURQlaPjuhPVSomuZpreyfStsxtToVkHXdcRiMSQSCezevRuWZSGfzyOTyeDVV1/tuYAOylFokJHsan640lB+6yAFU1LHaoU9vYjwVmMt0/Tw9v02b+8H27XYSNd17N69G7t37wYA2LYdjDPrVkAHGWFuZHFRO4byUkA3B1IwJQFrOfZ0m5JtRium6T5bVTC3E2sJjKZpPRPQQUZ+g4hkWz1OK4byciLLxiIFU9KSY0+3XrCNtGqa7tPtBXQ1wRzUxXmnsZ6AUkrrprE0VptuhSrZVulUmOVEls2HFMwdTquOPb1w6vFpxzS9V8i2ku7pRmDaEdBeV6+uxlarxm1lIovruqCUBobyUkB7ixTMHUpjYc96X6xeRJicc1y6dKkt0/ResdWmlWx31hLQUqmEl19+OegD7XUVrs+gUrL9qsZtJqCLi4uoVqtB+5c0lO8tUjB3IM0GPK9Ht2uYxWIR5XIZhw4dats0vVdsl0hvo+hnRBYW0EKhgJMnT6JQKGBpaQmTk5MghPRcQDd7SrZd/JtCPz0b9sP1K9x9AfX/kwLaHlIwdxh+VLnWKK5mdJqS5Zzjzp07mJmZQTQa7dj4oFuaRZj+c5frmJsLzvmqVbi9FNDtJpiNx1rPUB5ovgYqvwurIwVzh9DOKK5mdJKStSwLExMTiEQiOHv2LH7605+2tX0vWcu4oJ+R53a6+GzkjcVqKdxuBHSQKdlBvW6MsXt6mH1WM5SXE1laRwrmDoAxhvn5eQwNDXWcgmlXWHzT9AcffDBwi9lIZFvJ1mK9z2gvBHS7R5itIA3l20MK5jYmXNjzyiuv4Mknn+x4X61GmI2m6ZFIpONj9pJmgmnbNiYnJxGJRDAyMrJpznWzsplT150IqBTMe5ECujZSMLcpjYU93dJK0U+lUsGFCxfqTNPD+KK1EV+wxmP67kL79++Hbdu4evUqTNNEKpUKLqyGYQz8PCW9oZmA5vP5OgGtVqvIZrMYHh5eNY3ZCwadku2lOK81kaVQKMB1XezevXvHTGSRgrkN8dcqGwt7uvnirhdhrmaaHsYvHNqIYcW+WHPOcevWLSwsLOCxxx6DqqrgnGN8fByMMRSLRWSz2WBgdSqVwvDwMIaHh6Fp2sDPezOxmSPM9dA0Dbt27cKuXbsACAF96aWXkMvlcPv27SAC9Y0Ueimgg4ww/T7MfhG+nlSrVbiuC9d14ThO8JjtPJFFCuY2Yq3Cnm6ju9WqZNczTW/cx0auIzqOg5///OeIx+OBu1DYUJ5SinQ6jXQ6jSNHjoAxhnw+j2w2i6mpKbiuG0SfQ0NDfY1KJP3Frwx98MEHAaxEoMvLy8Eou14J6KBTsoO6IfWPFX5u4WUg/1rz/PPP4x3veMeqPtFbCfmN3yas5QMLrESInX5xm6VkWzFNb3YOG0GpVMLMzAxOnjzZchGS7z4zPDwMQNy9+wJ6+/ZtcM7rBHQjIudBs52ihTDNItBeCehWWsNsB9d178m6NDOU/+53v4unn356IOfUb6RgbnFabRfpVqzC27djmh6mFxFmu1Ey5xyvvvoq5ufnsXfv3q4qdhVFwcjISGDn5zgOcrlccFGllAYCmkqltp2A7qQq414K6FZew1yLVgaJE0JQqVRavkZsdqRgbmHacezpVjB9sWvXNL3ZPro5h3bwz3VoaAgPPfQQMplMx8duhqqq91xUs9ksFhcXcePGDaiqiuHhYbiuO9ALWb/YymuY3dKNgG7XCLPVY1UqFSQSiQGcUf+RgrkFaTbgeb0LWS/SobZt42c/+xmOHz+O0dHRtrfvlWi3ctFeXFzEtWvXgnNdXl7ue4SkaRr27NkTRLGmaSKXywUFJrquByneZDK5Y8VnO9AooH62IZvNBgKaTqcxPDwMx3E2nYj1glYiTEAUB0Wj0QGcUf+RgrnFWG3A83p0I1au6+KVV16Bbdt43ete17Fpei8izPUuCH4faLFYxOnTp4PWkI0QJ8MwsHfvXty5cwdnzpxBrVYLCohKpRIikUggoPF4fNML6E6OMNejMdsQFtC5uTksLi4in88HfaD9Khjrd5VsmFbFeS33oa3G9ngWO4T1CnvWolPBLBaLmJiYwIEDB5DL5bqaMNKtgft6glutVnHhwgXs3r0bTzzxxD2vz0avwUUiEezbtw/79u0D5xzVajVoayiVSojH48EaaCwWk+LUZ/r5eWgU0HQ6DUJI0wi0lwK6GSPM7YQUzC1Atz6wQPuCGTZNP3XqFBKJBKampto+bphuZ2quJZj+jM3XvOY1QVVrK9tu5NivWCyGWCyG/fv3g3OOSqWCbDaLycnJYN3Hj0A3Q0pLRpidwRiDpmkYGhpaNYULoM6JqBsB3UwtLBt9k9prpGBuchhjmJubQyKRgK7rfTMeCNNomt6ru8hepGQbt2eM4erVq6hWq2vO2NzoHtD1IIQgHo8jHo/j4MGD4JyjVCohm83i+vXrqNVqSCaTgYBKF6Lu2cjK1bVSuL0W0H7RTvp3u9xobb53QQKgvrBnamoK9913X1cXyVYFs5+m6b0q+vEpl8u4ePEixsbGcPz48TW/lJtdMBshhCCZTCKZTOLw4cNgjAUCeuXKFViWVedCNAhkhNkZrdhTNhNQv+f31q1bdT2/m0VAW0nJbofq8DAb/6pL7qGxsEdRlK4rXNcTq0GYpncrWuE10NnZWUxOTuLkyZOrWvH18tgbDaUUqVQKqVQqsPErFArIZrOYnp5GuVzGtWvXAhOFrWrjN6j3aJCfBc5526KhqipGR0eDavSwgIYjUP+/jRDQVm6gtlOFLCAFc9PRrLCnFy0ha+3DN03fs2dPU9P0MN360XabknUcBxMTE3AcB2fPnm1ZGLZbZOSbJAwNDeHo0aM4f/48du3ahVwuhzt37gQRyUZeUDthkBNEtpKZwFoCeuvWLQBCQP1ah0G93+u9hpVKRQqmpPesVdjTzwizFdN0n3750baK4zh4+eWXMT4+joMHD7Z9Hls5wlwPQsg9LkThC2onA5YbGYSYDUowO4n6OqUfacnVBHRubg4vv/zyprlhKpfLiMfjG3LsfiAFcxPAGINt26s69lBK4bpuV8doFMx2TNPD++hnW8hqcM4xPT2NfD6PEydOYGxsbGDH3qo0XlD9+ZCZTAavvvoqFEUJ1j9TqdSmWWcapGAOMsLs97F8V6lIJIInnnii7oYp7Hs8aAGtVqvbxhYPkIK5obTq2NPrlGwul8Ply5dx5MiRtiYI+PvotGq2k+fhOA4uX74MQgh27drV8ZdvpwlmI43zIS3LQi6Xw/z8PK5fvx5ccH0XomYCut0izEEJ5qCi2XAku1YKt1cC2sr3aTv5yAJSMDeMQfrA+vuwLAuvvvoqMpkMHn300bY/yP3so2xGoVDAxMQExsfHceDAAUxMTHQsejtdMBvRdf0eG79sNouZmRkUi0UYhhEIaCKRCD6fgxDMQbAZPVf7eZzVBNQ3zuCcB0YKrQhoqzccUjAlXeNHla069vRiDdN1Xdy9exdjY2Ntm6b7DColyznH3bt3MT09jUceeSQwbu5G9KRgro1hGBgbGwvS3dVqFdlsFnfv3kWxWEQsFkOlUkGlUumqH7gVBiEug44wB1XI1Opr162AttqDKdcwJR3TqWNPt2uY8/PzuHnzJkZGRnDs2LGO99PLEWGrYds2JiYmoOv6PaYJ3QqmpHWi0Sii0WjgQlStVnHx4kXcvXsX165dQzwer3Mh6tXrO8i2kp0smGGsUgnF6WlER0cxev/9ANYW0HQ6Dc55S0szlUpFCqakfdYr7FkLSmmwztkOvmm6ZVk4duwYSqVS2/sI0++UrD+Q+v77729a2CMjzI3Bt/EzDAPHjx+Hpmkol8vIZrO4ceMGarVaYOM3NDTUVRvBdmwr2UztK5wxVBYXUZqaQmluDvnbt1HL5WCkUnj0f//v4HHrRaCu68J1XWQyGaTT6VXbu2TRj6QtGgt7BuEDC9Sbph86dAjLy8s9WQft1nig2TlwznHr1i3Mz8+vOZC62+M327YX68M7hfASQiKRQCKRwKFDh+ps/K5duwbTNDu28duObSUbuS7r1GooT0+jND2N4uwsilNTcE0TajwOq1wOHnf4V38Vyho9zY0CWigUcOPGDeTz+aYRqC+g5XK57VmY73//+/Gtb30Le/bswcTEBADgT//0T/H3f//3QdHa5z73OTzzzDNt7bcXSMHsI5xzLC0tIRaLgVLa8YWgnTXMsGn6yZMnkUwmAfRGGHoRYTZub1kWLl68iHg8jrNnz655Eevm+KtFmDLq7J5mNn7FYhHZbBaXL1+G4ziBjd/Q0NCaE2+2Y5XsoHBdF6xYxNKFCyhNT6M0M4PqwgI459BSKdQKheCx4c998sAB7D5xou3jxWIx3L9KCvfq1av44Q9/iEgkgtOnT7e13/e973348Ic/jPe85z11v//DP/xDfOxjH2v7PHuJFMw+4a9VXr58GY899lhXBuatit1apun9dgtqhUbRWl5expUrV1r2rZUp2Y2lVZGhlCKdTiOdTuPIkSNgjAUtDVNTU3BdNzBRaCwo2Y4RZr+eD7NtVGZnUZ6eRmV2FnNXr6K8vIzq8DC0dBpmPi8eSCnsWi3YTkul4JomIqkUAODIW9/a9rEbi34aI9Bjx44hFovha1/7Gn70ox/hn/7pn/D6178e586dw7PPPrvma/KmN70pcC/abEjB7DGNhT2KonR9oW6l6Gc90/TNIJj+9pxzTE5OYmlpqS3fWimYWxNKaZ1JvOu6TXsCh4eHoarqtlvD7BV2oYDK9DQqU1OoLiygOD0N7jgAACWVglMui2JCTYMdqlfQUikw24YWjQKMwa7VwCwLlmli14kTSB440Pa5rNePnUwm8c53vhMvvfQSPvrRj+KNb3wjfvzjH+PnP/853v72t7f/5AF8+ctfxte+9jWcPn0aX/rSlwY2dCCMFMwe0qywR1GUnrv0NB6zFdP0btOp/j66bSuxbRsvvfQShoaGcPr06bbu8vslmNsxPbeZURTlHhu/XC6H5eVlLC8vw7ZtTE5OBi5E/RhSvNnfc84YavPzQhynp2EuLaGysAB4n2ElmQzEkkYisIvF4DmpiQS4d83hjIm/uS5ceNGlZYl9aBoOnTvX0fm1WpHrV8nG43E8/fTTePrppzs63u/+7u/iU5/6FAgh+NSnPoWPfvSj+Md//MeO9tUNUjB7wFrtIr2I7FZbw2zHNH0zRJilUgkzMzN45JFHgjFG7SDbSjaWfolMeLRVoVDA1NQUkskkFhcXcePGDaiqGkSgvbLxG1SE2ern1alUUPOix9rMDKxCAWY2G/ydxmIrYhmPwyoWvT9QKNEoqGFAYwzEdWHlcsFjtVQqEE+q6zBDkefYr/wKjBYm/TSjldFeQO+qZPfu3Rv8/MEPfhBve9vbut5nJ0jB7JL1HHv6FWG2Y5q+2j46OY9OBIsxhhs3biCTyWDv3r0diSXQfYQrU7KbH7+/r9HGL5vNYm5uDteuXYOu63U2fp0I30bY1YWPbWUyqE1PozY1hZq3rmv5a46EAKHKYi2VgukV7BBdBzUMRBQFzLYBVYXlCatdKoGEhFWNxWB6wkoohZZIQHFdwHWhaBr2/6//1fHzalUwe9WHOTs7i3379gEA/vM//xMnT57sep+dIAWzQwbtA+uLbiem6b08j3b3Ua1WceHCBezatQvHjh1DJpPp+PgywtxYBpXGbDyGruvYu3dvEGXUarWggKhUKiESiQQCGo/HWzrHgfZ7ui4qN2/CnJlB7e5dmDMzgGHA9gVSUcDDBTSplCjYIQRqNAooCvRkEsw0QSMRWMvL4oGEAKGKYxqLwa1WgUQCiq5DiUQQUVWRuiVERKze9+fgs89CWaNauZXn1cq1p5O2kueeew4vvvgiMpkMDh48iM985jN48cUX8ctf/hKEEBw5cgR/+7d/2+mpd4UUzA5oTMGu9cXrZYTpN/YfPXq0LdP08D66od110IWFBVy/fh2vec1rMDw8jGw2O1Av2lYolUqwLAvpdFqK6iaglc9HJBLBvn37sG/fPnDOAwG9ffs2yuUyotFoIKCxWKzp+9rPlKyTy8H0osfK7duwLl9G5oEHYPtRoqqCeeuPAKAkErDyeRBNgxKJAIRAj8fhVqugmjMt5coAACAASURBVBZEkERR4FSrwXaNwsrLZRjJJDRNqxdWADQeD8Qyvm8fRruM0FzXbam/tpOU7PPPP3/P7z7wgQ+0tY9+IQWzTZoNeF6LXkV25XIZV69eXbOxfxDn0YpgMcZw9epVVCoVnDlzJui760XRUK8Ek3OO27dvY3Z2FtFoFNeuXUMkEsHIyMiaF9qdzEZFmOs9ttHGr1KpIJvNYnJyEpVKJXAh8sdf+Z+jXqRkuevCnp2FNTMDc2oK5vQ03GIRNJWCXSiIm2pVhRNaO6SxGNxCAUo0CqLrok9S18EsCyQahZ3LicfpOmx/rRLe2mWhAKrrUA0DjBAYnrAqmgYnl4NiGGCJBHiojUT1U7qEQItGceitb+36fWy36Ge7IAWzRTr1ge02wqzVarhw4QI45x2bpgO9EZtWRNcvRBobG8Px48frvpjdnkOvXHl8v1p/dqAfbfiG45OTk6hWq/dcaCX9p1tRJoQEVZkHDx4E5zyw8bt+/Xpg40cI6eg9dUsl2NPTsGdnYd69C2t2FtxxQFMpOF4ESQ0jaOvgnAOeSCuJBIimgdm2aDerVkFUFa4nijQarRNIEomAF4tQYzFQXQdzXaiesCISgeMLq6bBKpWC105LJmHm86CaBjUSASgNhDU9Po7koUMdv77B69DiGqbjOGsaVWw1pGC2QLc+sJ0K5vz8PG7cuIHjx4/j6tWrXd0R9yIyWC8lOzs7i8nJSZw8ebJpIVIvjA+6Fcx8Po9Lly7hvvvuw9jYGBzHCd7XWCyGWCyGAwcOBHZvy8vLgR+vb/01PDy8qnfmdmerzcNsZuNXLBZx69Yt5PN5LC4uBi5Ew8PDdRd3zjnchQXYU1Ow5+Zg3rkD10+PhgSSRKNwQkLHdR0UENGe64LMzIAwBl4qAfE4XM+STonH6wSSUwqiKFCjURBNg2uaUAgBr1TAFSU4huK1kQTPMRIBL5VADQP60BAABMJKYjGYvrCqKvb/6q/25HXtZi7uVkYK5hq0WtizFp2M5nJdF1evXoVpmnUpzY1mtZSsb/Ju2zbOnj27qphsZErWr2a+fPkyXvva1wZpotXez7Dd2/j4eJ1bzd27d+ua7YeGhnbkxaMf9DvtSwgJBHLXrl0YGxtDoVAQs0Bv3gSbm0OyUkG8VoO6tATif/dTKbi+QMZidQIJRYESj4MqCriiwC0UQBwHzDTBFEXsg3PQRKLOUIBxLlpCNA1E0+AUi6COA1YsArEY3EpF7D6RWGkjAQBVBXEcqJEIqK7DMU2olIJXq6BAUExEdR1W6Hi7z5yB4Qlqt7Qy3ms7VqVLwVwFzjls24bruh0JpY+iKDBNs+XHh03TH3744U21jtYswiuVSrh48WJg8r5eL+hGCKZfWey67j2Wga3S6FYTbrafnJyEoigYHh7GyMgIksnkwGzXthuDtMZDPg8nk4E+PY1d8/NIz8+DOQ5M00SZUlSXlgDOYQwPQ69UEIlExGdYVaEkkyAAoKpwvOpT12sHCQwFUik4i4vi+VAKlzGo8Tioqgq7ukJBGArUaiB+qhXClCAQSELgui7UsLCWSkKQGyJWeKlg3bthpYYBt1KBFo9DSyQw9uSTPXv9Wk3Jiqewea5h3SIFswmMMSwtLWFubg4PPvhgV294q2nI1UzTNxONz8XvBT158iRSni/lWvR7PFgzisUiLl68iPHxcZTL5Z5FguFme2ClV3BmZgbFYhGGYQQFRNvxTrtf9EswuePAnZ2FOzUFd2oK/OpVsFoNFb+AzmvwJ4QgOjoKrVzG0L59cDmHaRiolUooFArgigIjm0U0EoERi4Ho+oqhQCpV1yrCGIMSj0MDoKXTsHM5kbXy2kh8Q4HG7RzbhppIgCoKiKLAyufrhdW7AVcTiTojAhciDWwkEiCqCrtaBWEMbrmM/U89BaWNqTHr0dIosW34uZeCGSJc2AOIgptuv7ytFP2sZZq+mfAF0zeVB9BWL+igU7K+oJ86dQrJZBK3b9/u+Njr0dgr6BcQ3bp1C5VKBZcuXaobuCxpTs+qoItFuNPTYHfvgk1Pgy0vw7EswLth464L4h8rkQjSrdA0wDCgKgrgOFA1DWo+j7iuA9EoHEJQLRRQqVaxZFmAF3lGkknEXBdqKgUwJgQrlwOvVgHbFi0l3vFoIhEIpF8EpKXTIJyDUwo7nwev1cAUBS4hgbCqqVRgbkAohes40PyIVVFAlpag2DacQgHUK/IBgOjevRh57Wt78rr6tBJhmqa57YrlpGB6NBb2qKradf8ksH6EuZ5p+maCEALTNHH+/HmMj4/jQJumzb2edrIaruviypUrQQq2VUHvJeFWB//1Wl5eDuZFrlZostPppN2DMwY+Pw82MwN+9y7Y1BR4rSa+v76najIJeK0WJJEAv3sXJBIRFayGIdYATRMwDLh+/6KigIcGt5NEAiSfRywWQ3xkRDzWtlErFlG2bWSvXQOlFJFUCoaqQtc08XmNRoPzgK6Duy60dFr8TlFg5/NwIdYcXcdZEdZ4fKWwSFXh2jY039lIVWFns2CeyHJVBbNtce1KJgOHHwA40IM2kkZaiTDL5fK2Gh4NSMFctbCnF4YDwOoRZqum6T6+WHT7we90H5xzLC4uIpPJ4OzZs227dwCDiTDL5TIuXLiAgwcP4uDBg5ti/SRcqRmeF7m8vIzp6WkwxoIK3MZxVzuNVj4fvFoFpqbA5ufBb98Gn5kBh2d64AtkKgX4UWMiIQppVBXEMMA1DSQahUIIFF2Hu7QkHqcoYKHvKkkkwPJ5gFKQaFQYBCQSgGmCaxrcfB4UQDyRgFGrAfv3w3VdVClFcWkJlmmCRyIgjCGZSEAnRGxXLILDq64NDXEmkQi4L5CRCBhj0D1h5SFhJZoWTP0BRFGQWSiI77Z3vdG9dfT4oUNIjI93+7bc+x60cGNTqVSkYG4n1irs6ZVgNmsracc0Pbyfbku5/aKbdkXEtm1cunQJnHPs3r27I7EMH79T1tt+bm4Ok5OTLfvrbhTheZFHjx6F67rI5XJBCpdSiqGhIYyMjPTMbHwrUff55BxYWgKmpsAXFsBv3gSWl0U1KgB4yyd1AhmPgxUKIoLUNHBFEQ46pgkoimgNqVREKtarRPW344UCqKaBR6MgAJRYDLxWEylQrz2DxGJwQ2uHnFLAEystnYYGIJVMgtdqyFUqqOZyyFWrMBUF1LYRiUYRjUSghw3Vve+UnkqB27ZoIymVROQZjcIOCSuNRlcqdj3x1FMp0FwORjoNK5eDC4ApCva84Q09fGfaY7uZFgA7WDDXc+zpVZN8Y1tJu6bp4fNppzJttX206tDhk8/nMTExgfvuuw+JRKKrwa69KPpptr3vLFSr1XDmzJlN2SO51o2Koih1w3dt20Y2m8X8/HxgNu4XEPlN99sVbprQ5uZA7twBMhnwyUmQahXML5TxMkE8FlsRyFgMrFwW9m+qKto1VBWo1cB1HdwTOqgqmC+QnAOJBLhti0kgXqpU0TTAtgHDEFWoAEg8HpgLAADztieGIczOXRckGhXFOJYF5q0dKqkUkM0iEokglU6DGwbMYhFVy0LOcWDNzEBXVUQoRVRVQf3ZlolEnTMQV5QVYfVEVk+nRTWuqq4UDFlWXX/m6OnTMLwRahuBjDC3Aa069nQbDYX347pux6bp4f0M0jzdt46bm5sL7PhKpdKGesE22943d9+7d+89zkJbFU3TsGfPnmBN2/dKvXPnDkqlEuLx+PYpIMrnQaemQKamgKUlpCcmhBil02CaBuJVhPJEAtwXhmgUvFYDTSbB4U04YQwol8FTKRBfSFUVPBRB8lgMqNWgJBJivc91oRAiok1KhbEAIFK4/s+EgDMmei29NU9umqCqCm7bYJWKWPsE6tx+QClcb82UGgaUkRHAtqGkUohYloiQLQu2bcNUVWRmZmDbNjRdR9S2YRAiCo5SKXDOReRZq4ETsmJgEI0G/rQAAtEHxKSSPa9/fY/frPaQa5hbnG4cezrF78M8f/48jhw50rZpeng/gxJMy7Jw8eJFxGIxnD17Nrip6EUfZTc0CqZv7n7ixAkM9aghezPSaDZeqVSwvLyMGzduoFarIZlMiguvabZkiL1huC7I/DzI9DTo9DSQyYAsLorqUELAIhFRYUoIeDIJ4gkkMwzAcUDSaVDG4DIGWq0ClgUkkytC59nN+bBYDMRxQGMxURRTKoFYFmBZ4JYFwhhgGCDJZBBBckLEsQwD1DBEhFougzImBMuygiiXpFLBmiNUFW6lAqIooCFhJZSCui5YPr/Sn5lOw87nQQDokQg0ShHbswdU02BrGiqlEnLFIuxKBXouB0NREI1GoQ8N3eMMFIzySiTAczkYXkp395veJAR+A5ER5halF449nR73zp07KJfLeP3rX9/Vh2dQEWY2m8Xly5ebVu32Kk3dKb5g+gVTpVJpUzkhrUWv+gvDXqmHDh0CYwyFQgFLS0u4fPkyHMeps/Db0AKiSgVkdhZ0ZkbYwy0vgxSLwUWeRyJBawdLpYB8XhTvRCLi9UqlQBxHiJAnFCyVAvz1PEUBC5mM82QSxHVFmhSitYT4n9d4XAgsACSTQqjTaREJ2jZoPA6iqkJYCwXhzuO6wpbOE7qgCAhiLqVbLoMYBhTDAFdVkGpVrHfaNtxqVVTvOg7I0NDKPnRduP14g58RjYqI1YtkNctCilKk0mnQQ4dQWlxEtVrFQiYDZ2kJuqKIKt09e0AIgZ5IwDVNEZVXKnAKBRi7d2P40Uf79ra2OumlWq3KNcytxnoDnvtFrVbDxYsXkU6nA4/SbujGkza8j9UEj3OOyclJZDIZPP74401Tfb3wcu0GQggcx8FLL72E0dFRPP74422/n43C1Y+RYY308zPnFxAZhoHHHnsMrusGFn63b98GIaSugKhvPb6cC0FcWACdngaZmwPKZZFS9StXDWNFLL0WDU4IuPdZI8kkSLUqxlx5kRtPJoXIAmCUBlM4CIR4Um/9kHMuxMzffzy+IpbJpKiSFS+YaMWIx6Gk01BiMZBsVkS2mgY3VGmLWGylatUw4JbLUDxhZZRCKRZFOpYQEaH6xzYMcE+cua6L9dWhIdBIBFzToHnCCseBs7wc9IYq3oQTQBTzOJUKDMNALJ0WfZWWJVpY8nnM3roF1zQRMQzER0ehhtzE9r7lLSB9LBRrtQ6iXC5LwdxqhNsxOm2naHe7sGn66OhoV0OTffo5z9I0TVy4cAHpdHrNiSi9WtftlHw+j0wmg8ceeywokGmHtXxjtwuKomBkZAQjXrGHbdvI5XJYXFzEjRs3oKpqUECU9Hv6OsGyRJS2uAg6PQ06Py8iMs4D/1UejYr1Qe9nks+LdcVoVKQT02mQWg3QdVCvMMdVFGjlsqhYpVQYiMMrfEmnQVwX1Furo/m8WF+EEGBfsJBMgnsC6SoKKKWg6bQQUFUFslkopRJILCaEzdsHi0QAbzsSicC1LCiplBBnALRYBC+XQeJxUTzkR8degREgCoScSiUQVrguVMZEdOtPJvG2I7ouKne949nFIoiqQjEMkEgE1DTBajUQ14WTy4G7LnQA0UOHYBUKYJzDNE1UymVUCwVYrotKOg0znUbEcfqWXWi1+LCTWZibnW0vmEDnF/p2ex/7aZrerzXMTCaDq1ev4qGHHgps3lZjoyJMzjleffVVZDIZjIyMdCSW4X1tJ4FcgYOwWyC8BE5GwKlYK9c0Dbt378bu3bsBiJuj5eVlTE1NoVQqtTRsGQBQLCIxNwf60ktQpqZAcjnAa5onnljwWCwouOGGISLISEREloyBJBKBcFAvtckjEcD/OeRqwyMREYWaprjZ5RwslwuiRpZIrIhlSCC5poGoKmgqBdi2mDfpFwt5aVRgZexWMDcyFhPFQ56wOpyDlkqi0jZcBARhmh6IXjIJZpqiIhYAB6BwLtLGyaSIeqNR0d4iDgxAmBJYpZKYTKLr4gYCokoYjMFeXl45RmitlGiaaDEhBHo0CmP3biRME2x4GNN37uDA008jm83i5s2bQXZheHgY6XS6Z9mFVozXARFhjmxglW4/2BGC2Sl+L2YrH45+m6b3eg2TMYYbN24gn8/j9OnTLRWLbMQapmVZQfR78uRJ3Lhxo+N9DSL9ulHH3ZX4BVQ7B0ABgQtH+TUw9bF7HmcYRl0BUbVaDQzkgxmgqRR2EYJIsQgsLYHOz4NUq9g9PQ2lUgHxo8ZIZEUgNQ2kXAaPx0XxDWMgXtM+CAnSqlzXV6pYARHdUQoejYIZBkitBoVSKIzBzWZBPAF1k8mgYpYlEuClknhdPTFSkknANMGiUXBvBBd0PRBS/3z9VhQ7GhXriKkU4DhghAiBhBet+j97RUA+xGvnUNNpkQa2LFCvkIik03B9cSYkMFMnhICmUnArFWF84N38at6EEaIocPztUF/M48/IpLouvGA1TUSe1SqI44jI0xtRZzz8MPYdOxbsx88uZDIZvPrqq8GAgOHh4a76e1vtB6/VajLC3Ip0esHyBXOtvr5Bmab3cg3TH0o9OjrasnECMHjB8QuQjh07ht27d6NSqWzYeLDNDOFLGIpfByevBQgF5zYU9/8DU14DkNVvhIIZoITgMCHA0hKsO3dgzs6iWCgg77pQEgkkISp1HU1bEUtKRbVpMikE0nFAbBvENMFisRXxUZR6gaQUXNdFdEepWLNUlCDFqlQqIIYBFhbjRAKkWBTbGUYwTgvVKrimgflWdqsJpKIAiQRACBTPUIAyJlKsilJf7UopWNgOL50GGIPqpYGZV53LIKpdgzVVRakzQSDJpIhw43GoySS4bQcTRmgqtbKmSoiww/NQkknY5TKUWEwYKFAKzXWF+CqKKBjyI89Eos4ZKPr443Xvb2N2wR8QMDc3F/T3+gKaSCRaFtBWU7JyDXOHsZ7bzyBN03sVYWazWVy9ehUPP/xw2+mSQaUyOee4desWFhYW6gqQNmo82KaBcxA+5aVdR8GpqGLmzAQHBYh3wSOaV31qA2gQTMaAUgl0aQk0lxMFL6YZpFUVwxBRQSwGpmkwl5dFH2ihANNxsGhZiEWjiEQiUMplYRMXiQQCCUpBQ6408C768NKOJJcTUWO1Kp6PL06GAeK1hLBYTFS4xmJBKpPoOqhlCSH11jtZg0AywxCRnmGINVPGREtJtSrWKr39k1RKCHUqVV9pSykwNCQKiTRNRG6lErjjiHRqOg3uPzdNq3P7QSoF6rewMAanUgEcRzyPdDpodyGKEpiiA6J3061WoSaTIJSCuS4oIKpzk8nVI09/zVPXoRoGEk88gfl1enIbBwSYpolsNovp6WkUi0VEIpEghbuWQUarRT9yDXOHsZZgtmua3u3aWbeC6Y8sY4xt6lYM27aDHtDGAqSNHEDdLb04ruK+COr+DAAFAeCo/w+YcgKcjMB1oyB8GRwpEL4ERvYBiIsoJ58HzWZBcjlRKONFdoCXIvXXIBUFJBQZQtcR2bMHEdfFEKWYuXoVcUpRLpeRu3MHCqUwPPGMeEV1LBYTgqgoIhXrrXXCMxX3U6xBERC8SLBSAU+l4DAGVVGgMAZSqcBNpUD9SNPrifS/Rdzvz0wkwDVNOOVomoh8vXQnADG6y9+H16vJIaIyJJOgti2KkRwH3Bulxf3tfDHV9bqokPgtLJyL0Vv5PMAYGIQgB5Z9igJWKgnnIYjI0xdWAHCqVRC/LzSVWhHhUEoXEO4/dqUC1Ys8GaXQGAOzLKjJJOKnToG2OY3HMAyMjY1hbGwMwMqEHd8gIxaLNV3fbjXClNZ4W5Ruhj83Cma7punh/XRTtdZN0Y/vXatpGsbGxjatWPo2fA888EBwFxymF9Z6G0FP+i/ZIqj7c3Cyz0u7WlCc/xeMHgOIgZncU9i3fw6ksghe2Q9efBha/jxIpRKsLwLeWqMvJISI6k5CRCsEpaKK1HHAVTXoffR7DAmAWCyGKKWiipQxFAHki0UsWBZURUGiVEI0EoGm6yJi81stotEgMuS6Dtg2uGcNyW0blHMRATIGtVQSrSKaVi+QkYg433hcnF+tJgqPymWR4vVvAsIpVkURFa2KIgQyGgWp1UAUBQoAls0GxUPh6loSjQaOOkTXgURCCLK/puoNjeYQqVG/0ja8nf+8lUQCmq6DA8IDNiSsfvsJ0bQ6I3aaSoHVatBSKSGergvKuYg8E4m6yHPXm98MBnSd4QpP2PENMvwConK5jEQigaGhoZb7MKXTzw6jUTA7MU0HepdOtUNrK60yNzeHV199FSdOnEA+n9/wlGSzymN/HXh2djaw4Vtr226PvTWxACihtKsunHMKy1CKNoZma6DW/YAzLqpQK2Jdj1MarDuCc9H6QSlgGOCEgDiO8E5VlJVUangbQAgrF4OPWSIB4jhBRDdkmoAnfBYAc3kZuVwOFUIQN01EolEYySQ0xsCHh4XguK4QcMsCj8dB/WMpivi9V4DmO/VAVUX0WyyC2rYwJ49EVqLkBscdXq2CGIZIA+s6lEpFCK3jiNFdjInn4KVwgZChujeZhBsGFFUVhUaaJvolPXg8vrKOGI8HUSFRFCAaFTcL/us8Py/6NlVVrGv6whqJ1AkricWguK7YB+dwvLVS1zRF2jYceYauA7GjRxF/8EHk8/memvSHDTIOHjwIzjnK5TKy2SxmZ2dhWRaq1WoQgTYLHPwisu2EFMw1CAvdzMwMbt261dEkjF5MPmlXdF3XxSuvvALLsnD27FlomoZisbihxgPASpTo3w07joOJiQlomoYzZ86seZfcC8HbqoLJyQhgGSCVPEglJv5fSIOQm2CKgni5HAgXQqk8QESVwVqgZ9fGGQMNNbuHt+GKAlKriahT10F8gVIUYUnnp1U1bWUgczQKvViEnkohsXs3uGcJaRYKWCwUgOlpGIYBfXgYccsS7zOlQZ8mIASSRaNg6TRYNCrWWBkT7j+xmBB2eGYGnkAyVRXuOp7xOqdURMaeoQAPFckwTQv6Hp1IRKwv+oVEqgoFEPsiJJiJyQkBC38mQyYIxDDELE1FEZGipsFdXob/CeNeqwohBCSRWDFwJwQkEoEWMnLwB0xz3Bt5uqHIU0ml4NZq0L3Ic9db3iKeW5tDFdolPKLOryVIpVLIZrPBdcaf8ZpMJhGLxdpOyb7//e/Ht771LezZswcTExMAgOXlZfzmb/4mbt26hSNHjuAb3/gGhoeH+/U012VnzQ1qE1VVYVkWXn755WAOZCdjo/rt0tNIqVTC+fPnkUwm8eijjwZVvhttbQfUi16xWMT58+exZ88enDhxYt2UUr8izH6najs6b8/qjGYyUO/cgXrtDsj1U1DuRkGXykAxBUaOiegv9J5yVRXCEYuBxeMgnIMAwlPVa0W451C6DjAmWju8alIYhti2VhP/OQ5cRalz7SHlsqiQjcfF2mAiAei6MCKoVBB1XaRHR3EglcL+/fsRTybhFApYWFjA9Ows5mo1lCFaRlgqBVosQqlWhamAaa70XKZSKwYIXkUuUinxn7cGqZTLIJYl0r7++qGqrpgZJBIi8kwkRI+mokDRNFDLErZ02Wxg1B6O4JBMilSvpoEmEiCqCjUeh6IoUAwDbHkZrFAAtywxrcR/z1MpYczOOeD1hqqpFJR4HGoqBZbLgeXzYIWCmMEZaiOpizzjcSjRKLRUCmoyKdLLpgm3UED8vvtgePUT/RbMMP7yUiqVwvj4OB599FGcPn0a+/btQ7Vaxac//Wk88cQTWFxcxH//939jyZ83ug7ve9/78N3vfrfud5///Ofxlre8BdevX8db3vIWfP7zn+/HU2qZHRFhdnpBNE0Tt2/fxrFjxzo2TQd6YzrQ6j788WEnT55Eymum9tkMgumfw9TUFO7evYtHHnmk5bTNtk7Jui5IrQZaqYj1QtP0RKMA8Bo40QCSAFMeEalU1+tJ1HXAcWDruogC/SIVxoTg+GuIlAYCFKwhxmJ1rR1BYU7I1i0oAtI0qNWqiDo9ISKxmNhGUeoKc0j4gu+LiGHAGBpCxHFE3yNjMDMZ1DIZFEwTTNOQgMg4uLFY3Zorh2jv8IuJFL9YKBoFKRYDP1oerqJOJkXFrBeJcccRE01KJfBUCqoXkftFQAGJRFChS7xjK4YhqoFjsZUeT89sPXievkkBIaBej6eaSoFmMtDj8WCWJggRr7+/XXiUl7eWrKlqcM0y8/ng+VHPWB0QVbLDTz0V7GfQgtl4cxue8fqXf/mXKJfLePrpp3Hp0iV85StfQbVaxYc+9CG8//3vX3W/b3rTm+4ZH/hf//VfePHFFwEA733ve3Hu3Dl84Qtf6PVTapkdIZjt4vuqLiws4MCBA12JJdC7lOxa+3AcB1euXAHnfNXxYZtBMAHg8uXLoJTizJkzbRVCbRvB9NopiGWJqM80RaUkYytVpACIOwPKboIrDNRkYMoBuNr9ojIzGl0RN9eFxtg9kWbQM6mqIoL0b0yqVXER9tKIJBw1hqtkazUxEsvrk+S6Lh4bLiJS1TqBDIwIDANM00QFKqVCSLy0IwBQTUMsGkUsGhXRcDaLWq2GnGWhnMlAV1XENQ2RaBSRQkHY00WjdUVAjNJ683bXDYSVeT2hME1RXOSnNcMzMYEg8qSJBKBpwoiAeCO/wmuj4SpZIPCZpV5PKSBGavFaTRTw+ALpOHVtJCSVCswNiK6DqCq0dFoUWimKMCLwH+xlCIB71zyHX/96MRvTo1WDlV7QijjHvSj8z//8z0EIQalUwnJoHbhV5ufnsW/fPgDA2NgY5ufnOzrnXiEFs4GwafoDDzyAWmgaQqf0e9JIsVjExYsXcfjwYRw4cGDViLpXfrSdtsiUSiXk83ncf//9OHLkSNv76PV4sEFBICItxTRBqlXhDOOtzfkpUk7pigcrpSDVEgi5BTeSAHEBbgDUXQDj+0FcbeVx3n4cQoR4ch5EZYjHhYA5joguLUsIXGgNMlwxy11XmJZTKowEXFdcSgo77gAAIABJREFUyCkFrVTEiCtFqS8I8vYDwxB/q1aFQDIGpVRaWePU9fqK2XxeCHE0Ck4I6PAw4qaJgqJglIg5tWXGULxzB0uWBV3ToI6MIAaxVMLTaZEy9lo4SK0mXlcALJ0OnHqgaSvjv4Cg7YXF46DDw2DlMhR/5Fd4EkokUieQPBIBvCHVXNdFxOq1sJBIpE4Ew8Om3UhEROGUilYSQoSRgWmKitpVIk+aSAiTAnh2e56FHoEYIp08fbruPWjVfacXtNJW0vg989c/u2GQwzNWY0cIZqsvcqNp+sLCQteRIdC/oh/OOaampjA1NdVSarOXBu7tfjlnZ2dx8+ZNpFIp7N27d0M++AM7puuCOo7o0zNNHKYURqEAGhZFQlZ+BgIxgydWiKggtg4CBcTxhEZhoI4JTrQVD1dCwFVV+LBGIkIMKQ0KeriqrhwnLHaEiGOFKj5ppSKqOzVtpXLVbz3xL4C+EYGmiedQKomIz4t0gzXSUIENNwzh1BOJBOulga+soqz4yuq6ENlUCqqmIWUYQrwVBRXDQK1UwlK5DLdahZ7PI+bNiSQjI8HzYrpeJ5D+1BICiOdbKIAwBq1cFmuhfrFTPF4vkIoiinp0XQh7rSZuOjwf1+AYsVidQPqTSohhgHg3Bqo38BqUrqRmNa3On5amUrB90dU0EE2D7tnwQVFg+6lgACNPPw3a8P0bZEq2nWN1+53bu3cvZmdnsW/fPszOzrbU895PdoRgrodvml6r1eqa+nshdEBvhKpxDdOvLlVVtWWXoV5Guq0KJmOsrlp3YmJiQ9OijccuFouYn5/HyMhIZ9M7vGZ86qdTXVekIb1jhUUxEBPPvNsXSPgXdAghpa4LcA2MRkBqJYBEAVIDbA1MTQB6RIhqNCqOSQh0v1VCUVbWDQkRosq5iIr8ylQvbVqXVg1lUkioYpYZBojrgkejsPw5kV57Sp0RQWjtkhuG6P+MxYK+ToR9ZUProo22eWAMPBIBS6VEdW4iAWLbiDkO4pQCySScAwdgLS6iVq1iLpuFs7CAqK4jEo9DT6dBOYfiVZzyUCtVeOSXG42uGLbDi9bjcVBFEWuhxaIQq1pNpF/9SDxUJcvhZQ/8Hk9NA7dtEQF77Si0XBbFRo3FPNEoWKFQF3lqnlECiUZXBNJb1/SJjI8j/tBD93wMGWMDm33aqnFBL3j729+Or371q/jEJz6Br371q3jHO94xkOOuxo4XzLVM03u15tfrNcx8Po9Lly7h6NGjQX6/1X30QjBbFTy/b3Xfvn3Ba7uRI8IaU7J+gdS+ffswNTWFYrGIWCwWjL9q2g/KubBc4xzUWzckoapKHhbF0HvOvFSp+BOvF1U/LRu2igPAcBxEvwFKsuBwAOWwMFZ3GEi1BqqJizvCa2SegHI/AlRVsX9FCaJGTsiKqPrnKl4gYT3nuiLFyrnYhnNwzqH6YomGgiBVFf6q3g0Ht20QSsW6bMNaat16JyEraVlPtLmui5uPSmWl+CgerzM9IKUSDMOAkUohFY+DWxZqhQLKpon8lSsAIYhEItBHRmD4TfbhiSYQ65/UH91FKbi/fy81GryP6XQwNBqEwLUskGgUVFXF40olEZWXyyAh84S6Yh4ATFHE6+lFnmAMir/mGY48VbWujYQmk3UzMkfe+lY0Y7NFmJZltW2Q8txzz+HFF19EJpPBwYMH8ZnPfAaf+MQn8K53vQv/8A//gPHxcXzjG9/o5tS7ZscKZium6aqq9izC7JVg3rp1C3Nzc3jta1/btu1UP2dqNrKwsIDr16/jxIkTGBoaanv7fuALJmMMV65cgeM4OHPmDBhjOHDgQOBusry8jBs3bqBWq2F0ZASjIyMYSqWgKYoouHGclYgw9L5yr4UDAJgnVhxiJqMCEY1wIBBLP9IEZ6D8Dji/CUJUMO0BcOwDsQhAjgH8Z6CWDfDbyGYuY+L/6nAtHXvGd+GBJ+4DFAWOroNFo6K1QjzZVfssg0hOVUWUx5gQXtcV2/jvj9dED4g1PBqyewPnYs2PsSAVS0wTLBIRvZre40hINKAoIlryXYDKZRHpWpbws7WsIJoNTAk0DSgUhChHo2CaJh5Xq4lz9wpJopTCGB0FiUbhMoayqqK8uIjlWg1E12EwJjxwFUUMcZ6ZEdGtF1EGJJN1LkHcskQ7iaKI553LieesKOCmGfRL0lRKuPh4rz1zHDEPMxIBHRkBLEuIrGmCqyqYJ4okGq1L6RJ/aDUhQlgphZ5KgZsmosePQ2/igAVsfJVsI5VKpekQ+rV4/vnnm/7+e9/7Xlv76Sc7QjAb02ytmqb3QugAEWF24tITxnVdFItFJJNJnD17tqMvRy/Eaj3RZYzh2rVrKJfLTT1rN7JSlRCCWq2GK1euYN++fTh8+DAA8Xnw/+67mxwdHweBaC0qFQpYWlgA5xyaoiARiQhnEy/a5ISI9BznogcSCMTFf0xA6LkzRfEEdgrgd5CbMpBbyELX/y/2HjoEop8CYdPgrAKzEkE5X0Ehn8HY0RRmpvfhxvUFRJIxHH5oDAQIrOLA+b0Vs35LiKKsGBF4lbLhIiBfWOvs9Hxbt2hUFL/4TkC2LdKvfoTbYLzOPUMAUCq28atkq1UR5frHikQCX1lXVUUaMx5fMWynFMQ0wSmFEjIU4K4b3KAgnRbzN70UZ0LXkYzHgVoNtq6jMj+P0tISMt5yguu6cGxb9GT6JgjezYM/bJp5w6b914OHK5Hj8TphdatV0FhsxdXHWyNVajWgXA56NEkyWSeQvn0g1XUxN5NzaPG4SOOqKmwv8qSGgXSojaSRzSaY23FSCbBDBDNMO6bpvVrDVBSlq2pbf8yVpml4+OGHO95PL9Kha+2jVqvh5Zdfxp49e/DQQw81XQ/cyNaWWq2Gq1ev4tSpU4FbSLPnQgkRrQUADF1HxJvq4rouqoUCipUKFpaXoQBIxOOIRqPQKV15vqF9ckA4yBACl1LhB+o5vPhVndTNYuoaw7XzGYBwVIomxsZu4vE3l+Cqu7B0J4v8MoNj1xDXCQzDQTq5hPGDeSSiy6DsIXAeDY7LNE2IoucPS2xbtIJwLszYrTIouwWulkHtBBg5CK57VnOKIgSSc8BbP4TnK6t6LSKksSDI+5lFoyCaJn4PBL2ZwEpUCqDeeF1VhYAmk4CqiikfXvsK5xw0tJZX50bkuf1wwxBOPYSItcBaTTz/0EQTpVYLqjR5KgUzk8F8tYqFSgVWpYKIriOmaYiExpLBMFYmkwBANFrfYmJZoMkkKCFCWHM5cQPhrSP6KV03Hl8xNPBSulAUKJGI8L+1LFC/2lbXV2z2vGkkPsnXvQ7KGkV9my0lux0nlQA7SDC7MU3vlk5Fwu8HzWQyePzxx/GLX/xiQ84jzGpRaiaTaWls2EZEmP7rWCwW8fDDD69rraX6FwPORVRBiEiRcY7E8DASEBdE1/PTXF5aAjNN6LoOzTCQ0DQoui6GDzMmLNk86zVwDtu0sXhnCSocjOwhUPUyJn9Zhh51YbtFJIZcLC5RZJamYag1cIdj1x4KI1IGbBULMzoO3DeHKHWg6jaKSz9B9nocy6++Bg+cvQ8xf93O++wGa6SqClIuQvn/2XuzJ7myO7/vc87dc60qoKoLQGPpfSHZTTa6e7ipKUuihhETcgwjZEseh8JvI4/e9DYhRehNT9KDHubBoTfpD6Bs2WGGZzwem0Gbox5y2A2A6BXoxl6oQlVW5Xb3c/xwzr15sxpLoaoa3ZzGL4JBNFCZefPmrfze3+/3XdS7aDFGTAV4d8Av0PIb5mcrlm2TEDSZoGDmPWv/Xvu+6bCrG4Bmd9n4Qq0MBqq/10VhbPxsl1hZ2Wkp8azxOo0OFDCuRcOh0ZJ6nhkDuy4yTSmDAFkBZBAY44HqtcPQMGNdF2WfN1hcxNve5tiJE+jxmCxNmZQl65cvo5UyFn5HjxJabaOyhCWn10NoTVlpSq19oGrIZ0SrZcg8YLrrOEaurppsS7vP1UqZdJaimHWenc58XJjrQpIgXRd3aYnum2/e95p9lEQceDD79XGH+VtcRVHUFmwPY5p+mB3mwz5PmqacP3+ebrf7mZir/dbnoQfVWvPxxx+zvb3N66+/ThDcO7AYHj1gVnFh7XablZWVBzIJpZCUGozJuapjmbRSddeprYuO67p0ul06tpPLsozpeMzGzg5amZiqThQZYgmAUqTTlLd/+g46jlk9fQedTzh6sk9cZHTbGi918NwArRxUNkY4E7bWPY49dYts7DEeOrR6O7Q6GWkSMhoHDG5qjhxJuHTxNr/4ySY/+AffxAu8OfarFoLp5jZJvE27ExNFfQQaoTSOvgXxUyDceelJg7ikw5CskoXYGwhpMy3BdpC2VBjOnH/siBprLIAQpouzHbBsjictqUhgQJYkMaYD1pRdSAlpinLd2fOH4UxzidV7ZpkhEgWBGbFWJutKGfarUgZY7eP8IMBtt+lZolPs+0wnE3aSBPKcsN2mpTVBGBqjg+aNQUM+I8IQlabIKttSCLO7jmMDjkrVO2/R79faTSxRCimRVm+pyxIvCFBpSu+73zX70PvUo+ww91L72WH+NtRXAjA9z+OVV1556BHBYX25PyxQVWPj559/vk5LP4w6bJZsmqacO3eOxcXFPd+IPMqR7HA45MKFCzzzzDM88cQTvP/++w94hEDI6ldC49Rtyq6doCV91B2SFZQHUhLaL7ZSKbLJhCRJiOOY9evXiTodbry/wXSccvyMy/IpSTpV6HTE6eckH59PWey7JFNJWWYsLcHOVslonKCvtEALtJI8saBotX3a3Ra/+WVK5HtIJ8dtOeQbCdu3d1g+ecR8TvZL6+rF61z55UcICrJ8wjdfd1k5GaAliFTVY1S0NuBn9ZZ1l6c1viXbgAWKCiytzhIhjAxFCEMIqti5TblJs4tqMoLbbURZknc6qH4fJ46NfjKOTYfa1HQ2oq1U5WIUBEY/Wpmux7EhXlX6zAZLtoRZ9+15ht1bFMaUIE1pOw4t64mr2m2mGxtM45itwQAVRbSEIIwivMVFhNY4dudZgjkPaQpRRDmdmtgymB/peh75eIwThmZ36XlmB5rnxs9WKZTdC/snTxK9/PIDrtsvJ2A+7jB/i6vdbj80+B2W0H2vHaZSikuXLrG9vb3nsfHD1GGOZLe2tnjvvfd44YUXOHr06EM9/lF0mDdu3ODq1atzbOIHvbaUs18Hyew8KaWMgB4rCWl2nRVoMK+zlEDY6RB2u0yShOWlJYo8ZzIc0GrHSJHjB3fod0HKghdey3GU4PZNj7Cf8q2zQ8JFuPqpS6kg9F3iiYv0UlTiIx2FFgpPa/wgZ5q5xLEkVpIyiNBRZEhAZck0znnvz98lS3KUMiu/9385YOmJLk6UUXpPoYOuGbnGsenkrDNQTQiS0shosNIOm7OJBU7d6Rj2quvO6yybHWRTZmM1kToMDTvXmia41rZvTt/ZAEgtBMLmYWrbaYosQ+e5AesK0Hu9WaKJlMZZR0oDXK5rnItsDJcYj2f70WbYtN3/tlotWq0WemGBMs+Jp1PGwyHxlSv4Shn7vuVlZJrORsHSJMIIy3Yt4xinwbYVwyE6ScxoH2rDeKfXo6hkJELQu4eMZHd9GQHz8Q7zce2r9gJUSZJw7tw5lpaWHmps/LDHcVCwEkJw48YN4jjeF6h/3h3mbslIcwR7P8AUQgICpYzmECkAw351q2ljk/G6S2eplTJ7JyEMkFZf+FrjOw6OlAStEWdfv8L2eoofKAIvNowgDwQZz/9OixfRaKaIzEcVIePtnOHtkOUjKVG3QCIodZ88+D5Sn+fI07dZ+xQufxAR6JKlo12OHOvNdJZac+XCVZJxih95DCc5SeqQ4RO7q7TLHsgn6k6yNmhvGCBUu7cyCAx7tfKVtQzhOZ1ls4Osnsvzahci7bqQ5zWYg2XT2j8Xnmeew459teuafaeUBrS3tsy5T1Mzqq2Yts3Iryo02sZv4XlmfFwUBjjHY2O+3umYUXFj51j7zPq+cSMqS2PCnudmLJzndIHuiROUwyF5nhMnCZu3b5NPJvi+T3D0KFGeI3q92thexrHpqKOIsumc1GrNXt9xTFfqecgwJHzuOfw96qwfFWA+jAb7cYf5uPZVD+owNzY2+PDDDx9ImPmiK8sy1tfX6Xa7vP766/uWthxGpuXdbijiOObdd9+tJSO7f+Zer22wz7HfYQLPY8b01POgWGkp0dowSoUJV5YN84EKLOdHuQmy+CvCfkZXQpEMcYMIxxUIkUHho7VHrsApHZT2mIy6+P4Oru/z7l8FuEGJKyRPv/oC3h2PI0e+z8IxzXhym97tS6weO8Kpl57E9dw6D1IFAaOdmERIigK6bY8yl3iOix+8hFaf9ZXVjlOnmSCl0RpaLWntHgRzpgT1+7UWfdp1TefXapnRqu0gwe4nKzBupps4jiFI9ftoOxqWDa/VWjID82YGlbOO7eBwHJzh0OhCtTb2ffZzUJ0ObG6aa8P3UePxrPOMIpw0rZm/ZaW5xOwcawODBrB6noe3vEzP/lw6nTIZDtm8fdskr0QRo9u3iaLI3CxaGQlYQ/XJBKfdNjtK10WNRrW2s/3d737mWr1XPSrA3OvrPAbMx7XvuldX9SDN4t1qv8bnB63t7W1+85vf0O/3WV1d3fcv52Eljuw+BxVL9+WXX74nC/begOmCHaY5zuy5hVZIUeGeIf1U7E8xe3A9TgPmx46AkJJCCJSMkWWJkIpuX0MrQuiSsnRIxuC5AihIkh6TQcFkVJJlm+AGvPRtxa9+FjDZ8BAILv36OpffucE3/9YLLB1bQLqSJ84s8vQrz9W6Pm3dZGSes7TYZudoh8HGmEJrtIKVZ4/jVmBZGRG0WnXnLCrjdZsZWWLTQXYbr7vubN9p7eCEUiYRpbqJaI5KmxZ6Fljp9815cxy8q1cN27YhQwHLtK0A0vMM03ZhwQA0mLDpNDWdbJbNOuUgqLtQFUUwGhnCT6eD6HZxplMDkGVJubk5k+bYeDAAgmDmM+t56G7X3BTZc6RGo5rME/T7uEVBv9UizXM2h0PyLGM0HFJEEeFkQqvXMyNeIQxATyYQBJR5XgN069vfxtkVz3e/+jIC5hP3MFn4ba6vDGDu94u62tkd5GK8W4c5nU45f/78fTWLd3ueR5lKAAagr1y5wtraGt/61rdYW1s70Ej1oCPZ3Z9jJRnZ2tp6IEv3bteAUgKtHdtQaowaQ1cNJBoHRJ1QZV6zvEvXKQQKjBepJaJUXafjODjqNloNiaeCMhsR+j6uB+PRhHTig3BQquT6B4pnXnboL5eoRBEPC25dDRneAReBdCVbd0YcXenw9p//BifyccoSrUqSseTr33l2BhZ2F+kGLpvrY5wiI8k02nHRCFQYITFdWz1+tU469oTNTAm0RlW+prazlpOJAZiK3VoBZBMU7R5TW9cbbe3wRJaZoOlqHGn3jNXrzmk1rUmEXlycMW13dowUJQxNB1kBXYMZrCyJR1jWaqV9dePY7GMbwcaqqRNttw1BSEqENWuQeW6A1XFQg8HsZ63/KxgCUdMOj14PN885srqKVooiy0i2t0k2NtiSJoc0jCLCMCRst+uu2+n1aH/72/e8ju9Vj+JGeq/ylccd5le0KrA7CGDuBom1tTUuXbr0Gdu4vTzPo9Rb5XnOhQsXCIKgdhc66B70MDMtm5KRs2fPPvRnpBQUhbkhsisziqLZaVbdZDkDS6WMPR6W6GO9R4U2/rDVl5ZufN55ljO5s87apktvcQvXgUxnXL7Y5uO/XqAsHNq9gjMvbHHymRjXhSxOcJWPdOCTD0qk8ElKkEogNEyGKapQ6CRlYSFC6ZLR5rtMbl2nd3SF0n0akcDO5pj3fn2VoNciHkLgOSAFo5ub3HzvGidePlkDTDxJ2bpxCwfN0vFF3H7HjAqFoCwKvM3N2mC+OW7Wvj9v5D6ZmA7X88zNhQVTLeXMGECIOQ/civ2qpDSEIAwY1ZmdTaZt07Bd6xlYVvmR/b7x+C1LXBvdpbrdmq2r7OPqp+h0YDw2BurWpN7RejaabQCr7nRmj42iWefpOOheD6eKUisK0tEIOZ0aHWivh8wyQyBqt1kMAnLLoh4rxcbly7j235a+8x2zD/8S1l6bh8fGBV/RqgDTs8bZ+6kKZKpUlDRNefPNNx/6Ob8IScZug/eD2usdVoe5WzLyMI+tqiwFRSFRSs+PYoVGyprviNAaZVSLs3QKawwg7JdH1WmCHZsrk1OZTNf44Ge/poinKNVhcVHzze9mjLYlF/4Sul3QWrF2NccVXb71/TGbGyVbaxGgWVhWeEFA0I5w8pLR1oR2ZLqhyTilHTrsrI84/eKIlZUpN6/G0Jqiyxt88F8WuXN9h+2NMd22i9sJyAuFU+Q4nsPO5ognbVc4GiX8/H97F53nSAFhO+A7P/waQWTWBHMG803j9Wrf2W7XMhtho82048zMDJquQMy6UB0EdTC1trs8IRqJJmF4b6ZtBV628xQN2UvZ79ePU1KiGgxW1ekYMk6nY8hNWpsbA2v+LhruQnPXaqdjtJtCGKP1KDKZmPbclJaQVOlOdVGY68Tzau9YMPZ4uiwJFhcJgG5RoFotiqIg7Xa5FQR89PbbtNttFhcXWVpa+tJoGh93mF+R2u+4Ynes1n6rLEvefvttjh8//plUlL3WowDMZsbm3QzeDwPwDvr4mzdvcvPmzYc2oG8CplKQ57aDFJrqplmpykimGstqqOQmejZpqDpNsABZlmbcaFmy+D5S3eSjX76DIxXhgs94sMN0J+TGZRjcTsknXYaZIi0ylFZsbQkyrdlcdxGEgGayM2J4x6XIC6aTlHZkxsd5XiIkTJIC6cDCExMm4zZ+6LP2SUygBmxeG7J1R+CUimRS4niSPCvwfIc4VXiLfSMNcRwu/+VlIqloHWmhNWxvjrnx4S2efvV07SsroB4368qmzYY3k6bGiKARSF2NGMEyYZME3WqZLjRNZ5FfFSkIKBtgXD0/YBiknQ6yKGpzAmH/B6bzq/ekjgPNXWvVqVoTCQYD3KJAjseofn/OE1Y1u97KiN33EUGAchxku206Y9dFW19bYC5XtIry0lobH9xuF4oCaS8wNZ2ajhtLJrLH6rouR//hP8SzQQCTyYTBYMCHH35ImqZ0u906Sedhk0AOq/a6EnosK/mK1mEYsN+8eZM4jvn2t79N7yEW+bvrsMD7XsShoii4ePEiUsp7mtJLKSmaJJeHrIOMZJVSTCYTtra2PiMZedjXrsDS/LeiLCWzHaZlyErdGD/NGxk0LfN0WSKseYGuvhi1hvJjskmAF2SAQGUBKYr33hEkY5dcKzQ+8aSg2+mglWZ7Y0Qr8ilyhRtkbHwSkWcSVZbkeUFZCKTjUGQF/bYxRU+SDF9GKFeSZTlikhEsgON6CKEotSJOSvJJTssT6HZIb6XH08+v1HvHZJzguua9piVEniBLcgNOmK5MxbEZjzaSROoczd0A6fum8wxDQwiygFsRaeaMCJppHRUARpFxDLKWeaIokJPJbE/aas3JWSpphgZU5SpkuzIxHOLa35uyZyU3QqB8f94lqN02x9np1DcGjvV51WE4Ix1JOZ/+0sjIFL6PjiJcz5vlctqdpwaE7TyBWkZSVfC1r+GdOFFfq5X/7cmTJ1FKMRqN2Nra4saNG5RlycLCAouLiw+11jlo7XU99bjD/IrWQezxiqLgvffeQylFu90+EFjC5xsAPR6POXfuHKdPn+aE/aW9W31RI9lKMuK6Li+++OK+wnIrwMxzSFNRr6IqDeb8KBYci5DaOBZQCu5vmdfUaWL+3FqQrL+X0eoURIuSOzdbDDcn9HttwkgzHacEnk+eCZJpyV/+dIlWWyDdHETO+rUAxxHkmaLXN3fsaZITtYzlnFYaqeH6pYDTz6dMpxO8SHJr3ePazZKFdgCBi18qKBVoRTZJ+eTCVSQpz549Q9DpcPzJPu/dHpBLD1UW5KXg6JkVQ9CJY2Pm3iQBwQw0tDbG61rXyS1yPJ7pJatMTixANk3Ns8yAq01S0RsbRj+pNc5wOJOitFr17rIZPK09z3S7RWH+pzVyZ2cWFN3rzSQlYYgej+vdM2FoOmTXWgJadyHGY7M/bTjzqAawiW7XSExc17hAuC6uzeUkCCi3tsxYdjqdM50XYTgf5dXrmb13FJmknL/9t+957Uop6ff79Pt9nnrqKcqyZHt7m8FgwKeffsp0OuXy5cssLi7S7/c/N8bsY8B8XPet/QLmaDTi/PnznDp1ihMnTvCLX/ziwMdyWLmauwHz5s2bfPrpp3zjG9+4ay7o3R6/39pPh9mUjHz66af77lAN2Gvi2EEp8z1mzF6qjtL8nOnANWUpKmlh3X3t7jTnLPOscTlSmq7TO82Lb95gezMkHSq21iBLS6LQrclFZaoQriDNC4o4x/MdSu2RJppWuESrY8avEQ2v1rxABA7SkWwPpziO5OOPfDZ3BMuLPnnmsLnm4aqEMstBwDQuWOwF5FlBrhSeVqxdHXHk2ZKelyKOBqw8d5Sbl7bo+ZKXvvMsR06vzAFkvceUErXbeL0pxnfdGYt094i1LI18xeZQyiqAuSiQ06kh6Wg9L0WpSD+WPautnRyV/2q1c8T62FYA2W5DA6B0GBoTAinr46rBtNut2a6EYW2jB6bbZTxGtFqGFFT506YptNuowcAApJSoRudZtlqG6WuZxbRaOJYghlIUOztmvA2E3/seTr9/74t3VzmOw5EjRzhy5AhKKX71q1/R6XTqHFrf9+v9Z6fTOTQG7V5HsnEcPwbM3+Y6yA7zYUCquQPcDUAH1VAetnl6WZa1K86bb765p67tUbJk7yYZuXLlyoFeX+uoxjjPm+0gQVuJiRnLOo6sf851Z6/XtMwrtRnZavueass8ra1l3iKue4NTz5V8cqENIoUyocg1eVGSZTmt0EOGHg6fA9BrAAAgAElEQVQ5UeDWHbznzK6TbJrSjlyKUjGZZDgI4kLgOQ7LxxfJ0xwhYGddk+04CATjUULLk6hSI3wXqTPubE3RCDxH0AoDwtCnjEtWej3o9Xji2DGefXlAEsekacrazZu0XZew36e0xuvaZjbKNJ2BYtNXtgmQFQGm253pJavO0HGMVGN2kmvWrPZ9Yx3n+wa8wEg80tQAZGVmAHWcFpguVDZiw7TvGxKRJSA59nHOdGqIW/aLX1UyElvKdQ25y/eNmUCSmNuV6dR41zZjvpo3A90uemdnRgqy4dOu1ZuqKsuzOif2vctul/A732G/VYHYyspKHVmYJAmDwYBr164xGo1otVpzBKL9fg/tlfQzmUzo3CeO7Le1vjKAud96GMAsioILFy7guu5ndoD3GoU+7LEcFmBOp1PeffddTpw4wcmTJ/f8C/SoRrJ5nnPu3Dk6nc6cZORgshQXrX0MOJppn+Wc4HkCrWe7y6oq9qzWGqV2Wea5dUs6ZyROUSD0EKne5eNzAy78fwVpss1gS9Fth7ihRGYFYe7g2OdQWY6IDGs6HqW0IpckLciyAiklmZY4vktbz153Ok7oRC5SSsajmCgwgdRJkuF4knFW4roOXqEJQg9PaaZxQeCY81hqWOjMmNqulLgLC7SXl1FAMZ2SjEZs3blDniQIpZj6PkGng9sAy3qnacOidQUGQtQyEi1lnf9pXsyduf14nsnEbLfJu10DdJYQ1ATZ6txWpVsts1esOk/PM4xZq/F0Gi5Byu6YAYpWy4BuEKDsHlpUoO555t/K0mRrtts1gUhH0RywEgQwGhn7PQvsbhQZPanvI9bXzQ5z142o6HQoGs8TvvWWAed91t1ALAxDjh07xrFjx9BaM51OGQwGfPzxxyQ2H7QiED0oYahZe5WVpGl66F7YX4Z6DJgPqL2OQXd2dvjNb37DmTNnOH78+Gf+vQLegwDmYXWY6+vr3Lhxg6997Wv0H2IMdBjHsBfAu59kZL+AaTCtTVlKskzg+7oGyKbm0oCleY1qIlCavK95yzzj42OeuyxnkgXLjNRcR+sNPrkoWFjxKHNFkZT18afjmHbbfElOdqb4rmQSZ5Slwg8E2nEIAx8nTvEsQI53pnQi8yvrBB5LgUMaZ8RJSZYWqNLB9RwKJWhHLoHvMp1kOBIc36XICkJPIIRASsGJ51ZZee642R1ay7vKeF3mOYEQBL0evSNHyHd22NraItGa4ZUrlEDQ7RLZAG1ZloYQVOkxG1609iTPdJvWO1bb6YsuCtNt2o5TNru2JpGo3Ubs7JjHW4DRFYnH92edp5QmLqv6TLrd2gRBuS6qLKHbRXS7SMcx4c9g0k1stBZYlmxzNCul2ceGoek889xMFdLU7GCHQ9M9ep7pPO31I7pdysY+FN/Hte5GstcjeOWVB1y9968HgZgQgna7Tbvd5sknn0RrXROILl68SFEU9Pt9FhcXWVxcvO+kaa8SO631noD1t60eA+YDynXd+wJE5YRz69at+8ocDgvsDrLDrJh2WZbxxhtv7EtbetCR7IPOw91SRpq1X8BMEoHWHlAaqQgzzaUQoJTpOs341XSRhq/xWcs8MOQgbdmySmkuvXOVwdo2oe/w/BtPI9KblJM7HH2ix87AJZ2MCaMuWaKJJxmOI5hMc7QAL/DwIxdPC+KdMU8cF0xHsLM9pRWYzyhNctqhS54rCiUgmSIE+J5LUeT0+mbMlmUF7dAxHXGp8IR5P1lWMJkWdLoBThRw5PQRXvlbL5izYM0Img5B9Z9d10RseR46ilhaXkYsLqKyjGlRkG5uMkwScF1ankcrCIzkoUo80doEMGttiDTWTk5Yko4OwzkpSrML1VFkiDOdjulILalGlKU5xmr8atM/mo8TdjSqo8gcS6+HyDJkEODeuGGuQRvyXc9Wej0zUoUadEUjYaTK8STPjUlCdXOwq/PUNspLSYlj/XidbtfoUKPI6DVthb//+wfeLz6sE5kQgl6vR6/X48yZM5Rlyc7ODoPBgKtXrwLUDNx+vz93k7+X13rUAfGPsr4ygLnfi1JKSd4ctzUqyzIuXLhAGIb8zu/8zn0vpMMIoz4I6MZxzLlz53BdlxdeeGHfRgyHoaO82y+UUoqLFy9SluV9JSP7AUylYDKRFhgVUmr7XS6QEopCWmKPBmadZhMgK8KQMTmAUglAIiR89FeXufnxbcosI3EEH/7i/2b1xFUWFzyeeinh1tWSj+847GxneIGD60PY7lNkBePBmMB2mvE4pt32yFLFc68OufSux/ZWQak0uihwWj5+J6CcpoSOBdK0MEYGgCoVgS/RmSLPFZNpjiuhKAVaafpd33iYpxkvvXZm5krUTP2ojAjC0ICGUgjPq6UYFRFHuC4dpegcOQJAJgTZ1haD8ZipUgSOQ7vVouV5uDTkIkEw6zx3mxmEoel2ez0DcpOJOcYsMwBZjUYbLFnAdJtxbHae1kNXd7u1t23VeWrfNwHStvPT7fYs4cTzDJBbJntt/J4khsxTATaf7Twr30QRhmZMW5a4YYjc2UG6LrrqfB0H3SBReS+8gHvq1N4v5HvUYVh3Li0t1cEPeZ6zvb3NnTt3uHTpEq7r1vvPoij2PCX7IjyvP+/6ygDmfuteQDcYDLh48SLPPvvsnpxmDqPD3O8Os0pDefnll7l169bn2iE+qO4GeA9KGdn9+g97/OPxDOy0VrUGs+o0zRprXlIihK5JsI6jLatV2NzoBpACa5fW8X0HJwhBQWfhJjubgix1WD6hWD6RsX3nCEkaoMoRKjPWb6rIabcM8GldImVBnAqUq0nSHJwuUddhOkpo9Y2mMM8KWqEDpRkZq7xA+w5pVhBPc6KWh+e5aFVagDRM33Sa0F0yYDCNc3Rqv/zBAEwUVd6Axv5OKbN3rJiqgNu8caxM3oMA7bp4eY63vEwnz9GOQz4eE8cxt0cjxHhMGASErRZhUdR8X9Vq1d6wgIndUgqRJAZY7et9BiAdx4C53VsKG9gsytIAfMPcfS5sugJrrSlbLQNyvZ55v64L1di2ch6q9rTdbv1vWNcgqvBn34fJxJzHODYMXPvfyvNwxmMT4YXZXVaJJyKKCP/O39nT9fugOmzjdc/zWF5ersPr0zRlMBhw/fp1Njc3GQ6HTKdTFhcXabVafyOB8V71GDAfULsBU2vNJ598wsbGBq+99tqeLasOq8N8GNMApRQff/wxw+GwTkM5DPP0wwTcvaSMNOthO8wsg/G4MimoNJemmoEYVddZAaQxMqh2mjNJSRNUpdCWUJHi+w5hK8CNXIQEL1oEIVi7ss3RoxFnXkgospKr74UICVoI4kmCdARau5RZTr/fIQgVWZJy+8oSaeKYsao7O+Z0kqI8gQx8JsOE0HMQrosjHHquxHEkQStgZ2OI9KV1jElZ6PiE7YA014ikMI47VhIisszsFG0k1+zFGvtDxzFBzDZlYy6ZpChmiSBhiLS5kH4Y0stz6PWIy5JxnrM5GJhw7SCgk6YEvgV1eyzAfOSX+RCMFMXzDFBPpzMD94ZLUNOwvf7AsYxZ6zMrOh3EZIJ0HJwKIO0Itf5kg2DWQfo+Ok2RdjRbVo+zHrXades4Lt0wMABj6C5sh16RgpxOB5IE79VXkXu43vdSn3dSSRAErK6usrq6ysWLF1leXibLMi5fvsx0Op0jEIVh+FBd6L3qzJkzdLtdHMfBdV1++ctfHtK7OVh9ZQDzMGQlaZpy/vx5ut0ub7zxxkNdpIelodzrc1SB1EeOHOHs2bP1+/8yWNtVhJq9pozsrr2+vtawszP7jGZTNeMdq1QjMJqZTV4TVJsfsXlMBbwaHPOPz7/+DNd+c42iUMSjIf3WcZaWt8kSgQOsXfX5q/8nYLSZ4HklQcshigJOvnCS8fY2k6Eh44Agjh1EGZDkxoFoPEpwHUlaKMpc0emEOK7k9MtPMrw9YHDLaBCzSUrHdquTcUKn5VIUmiQ3aSW54zFNFUmc8eSZoyyvGMr/vQBSua4hL1Wyjp0dHMcxXZ8QtRGBCoIZSafqSC0A1gBclkRC0IpjY1helkzynPHWFptpiogiOloTRpG5NqQ0sgsr2ZE7O+akF4UZH1edZ8WSNR9cLTvRUWQ6vzw3IJrnxkrPjkOLIMCrAqSxO9vKMtFGnIl+H6EUSspaqmJFuzMzhUpGYl+/yg2VVoLD2hqu7yMrx6OdHcP6bbfxv/e9PVzBe6uDhkM8TFUmLMvLy5ywFn7j8ZitrS3ef/99/sW/+BccPXoUx3HY3NzkiB3Z76f+4i/+gqNHjx7i0R+8vjKAud+qAHNzc5P333+f559/vh5VPOzzHKaG8n5VHeuLL774mQv2oIB5GI8vioK//uu//oxkZK+P33vquyDPTeSzlIYVWxTaGhXM3Hma69LqzwYUS8pS1kYGzU7T82bH/Ow3T9FbbPHxrz9lujUkTk8gWqvo/BPyfJWPPhTkxZSF5QDXlZRFSTKasnhkmfG2h+eY3abjCLY2JniuQ6k0RV7SXWgjpNlBZpOklqFcuXidxUVD9ImnGWHgEKcl0nNodUI6vYh0nOCVihOnFjnxzCqXLlyn38s59vSK6RKraYUQlK5roskqTWm1a1PKaCC1GT9rz5tlYlrnn8pIQIPRZ9rnbbJd5xxvWi26oxHdo0fRjkMmJfFkwp3xmKnnsXntGlEUEbVa5tqoOsWG2w9CGEJQZWTgOMbWTinj05rns66305kLotY2VUZLafalSpkIsCwz58Uet2q1ENYZCEz3POf+M5kgWy3jFOS6yOnUnK/p1DCnx2PT0fZ6cw4//ltvGSnKIdWjjPzb3c0KIeh2u3S7XU6fPs1PfvIT/vN//s/823/7b/n93/998jznrbfe4p/9s3/GmTNnHskxfp71GDAfUFJKtre3SZKEs2fP7ltbdBgj2QeBbtW1bW5u3vNYDwPwDjKSrQylv/GNb+wrYHavI9myhMFA2O9uQRCAUhKtRdOIBt83naYh9sy6TmDuS6gpk7OJV7YUGsG1D9e49ckG/SNtBptT1v48RSVdyrwgjTOEKnCckLJQjLYmdLsBNy6vk0wTw3RNNY4n6fbbLK322d4Y4QcuQinG2xOmo5i2lZRkSY7OC27HOaXVlAahS7fj4XdDWr7Df/UH32M8TBBJQtgJeefPzxNvj4kCh9/88hM2hwmvfu8FoxHUGsdmWtqTXL9XXeVLapOHSVHUzNMaWO3EQO4Kl66fozIzqEavQpi9YFGA6xKMRgS+T//IEW5cu0av1yOOY24OBjjDIWEYEnQ6hI6DrDpPrD7TppRgO1nYtbuUci75RLVa5mcdB0cIyjg2II/xoK1JQNWxV+ek3YYsQ/Z6CKCU0lj3TafmZsF2wIBh2w6H9flU1Y2C7+M88QTuq6/e99p92HpU4dHwYOOCMAw5e/YsL730Ej/5yU8YjUb87Gc/e2hAF0Lw9//+30cIwT/9p/+UP/zDPzzooR9KPQbM+1SSJFy4cAGA119//Uvl0rO7sizj3Llz9Ho9Xn/99Xv+An2RI9nr169z5coVut3uvtPY9wqYW1uytp+baS4FUhb2e8y4+5SlIElypHQIAlHb5DXdfSqpiek6Vd2pmu5UokrF+tUtlp7o4QUeeZKz8cltOgstpBBMBmOiyGMySkiTHNeR5EogHYnrOHiBBxomgzG9fkhRKIq8JPAkYSdga23bjL7iAuk6aKVpdyMcR5JlJa4j0GiSOAdVcvYfmBF8pxtA22NwZ8LNW0MWlrq4jkTkBZsf30K9dhrHc80ItOrirKeqPdnm76IIJQQqz2sZioZZFwrzFoG+j5hODSvVmpiLdttIMlx35gRU7SOrp/B9HKUIggC/3aYvJfr4caZxzHgyYefqVaSU+J0Obcch8LzabGDOEH40ql2ClOua46zCmXd2cEYjnDBEra7O9JlSopJktsdcWDBg3O8jisKEgyeJYc22WsaVqLoOo2jWeTqO8Z31POOve/QoUmuzx8wy/O9/v46EO6x6lIC5l9eaTCY1t6Pb7fJ7v/d7D/06P//5zzlx4gTr6+v88Ic/5MUXX+Stt97a1zEfZn1lAPNhwa5ilj777LNcvXr1wEywwyL93I+xu5dx8Rcxkm1KRl577bX6JmQ/tRfATBKYTCqdZfW3GqUUZanrrtN1YWNji8lkghA5bSvCb7dDZr8aM4A00r0mqNrnl4Isjun0TGrE9u1tHFeSJibCyfU9RBAQtUL01oioZYguo60xnW6AACbjmFbbR0jJnVvbCAHRUpdkkpIr6C52DMFoFNNu+UgpSZMcUeRoRyKkwPONIXuqrLNNnpsvZwEtVzDe2GEyjJmMYnptn61b2xx96olZckhl7ddq1S47dRpJFcY8+1DrP2rPM/FeUWRGr1lmpCjW7af2hG1IQ6rXE3bnqcIQrRRFu20kLdWIFWgHAZ2igBMnKIuCiVIMNzfJ0hTZatGSkmhxES8MTcSaUjVj1rFJIYABtiQxt0qehx6P6zGz7vWQRWFGCVmGmE5nI92mETvG4KD5nOV0irRZntp1TVB1liHj2Ix07c86zz2H89RT971291NfNsA8DB/ZKgBiZWWFH//4x7z99tuPAfPLWEopPvroI0ajEa+//jqu6/LJJ58c+HkP0zi9Kq01n376Kevr63tm7D7qkexuyUhRFJ+rF63WsLlpRqzKZltmWWU+IMCKGoQouHVrA9/3efLJYziOIMsSJpMJw+EArQVR1KLbDQlDsyucmRpU0V+CeJzw9k/fIRmnfLJ+je6RLqXS+N02jiuZbo2IeobMkk4SoraPQBh5SMsjywqKUlNkhXlmz6MoFYuLbX7w3/wOWkre/9lFPnj7Enma4znCXkuKySjBcUzKikJz8lQPVSqySWxCnO15avVbTLanJJOEeJoTOoJpnPNf/q/3+Dv//RGilpFk0OgutZQzsMQ6GFXn2O4jdfWlWDkEWfP5pqazCZCV209NCKpCo+1OUU6neHZcOpdo0vi8RbtNVym6CwtoIItjsjt3GNy6RSIl7aIw+88wNMdbdc7VmFZKylbL6DStJKXKyKyN2Pv9uc5zTiva7dYOPQIoAcfcoRl2bcMft2i1DOHIdRGOg3dIMpLdpZTaV3rPfutBzcNkMjlQFuZkMkEpRbfbZTKZ8Kd/+qf8q3/1r/b9fIdZXynAfNCX7XQ65fz58ywvL9fMUuMhevAMSsdxyJp36Pt8jupY8jyvTRMehrF7PyOGvdTDjGTvJhk5mBfsgx8/GAgmE3MuPE/X3WClpdQasixlff0WS0tLtNsdoKAoJFJGHDkSAuY9pumE6TRma2uA4wj6/TZhGOF5LkJAnmt+8b++w2QwYvXpVSbDmOGdHZ44dYStmwMm2xPC0EcpxfLJJXr9FpfeucJoGKPygnY3Iur6DO8M6S90QECRFUShx+Jqn8lOzM76DqtPL7N0YpFL715lcGOLnc0xRaboLbaNEUGpKbKMIitwXEnnSHfm1CME47UB42lGnCgkRh/oO5J4nJEORrSChdoar67GPrO0ySBFENS2drVW0wIffLaDREoDrp5nwpcrpx6tzXNUnafdcdZXVePGUrVaBoCslZzIcwNCeQ5hSJjnhP0+vX4fJSXZ9jZxHLOVJMjr1wkWFoj6fULfN9IQu491t7eRdsdfViYHmLGwGo1M5ylE/boyDI1lXprOhVbP5WnaThswcpSNDWS7jex0cL7+deQBGKP3q0fZYe6lDhrtdfv2bX784x8Dxp/7D/7gD/jRj350WId3oPpKAeb96vbt23z88cef0QMelij3MHeYlW/t008/zerq6iM9jr2cD601ly5dYjAYfEYy8nl60ea52V3OXssApNaVSYEmjmMmkyGrq0/i+77VXzpoza4OUtLtdmrcKMuMOE5YXx9QFDHdbgfP8djZ2OHocTOKDds+rtOjyEpWn3mCtQ9vUpQK4QieefNZTj2zytKTR/nrPzuHtJZ6RVYQRZV5gTbdYegxnWT8z//T/4nvOXR6LZ588Rjf//Eb6FLxv/zJ/8FoY8dKXgSTcUynZSwcn/7GUxw7s2yACpjuTLj4V5fxA48kKeh0/NpCrxt5+JFffWgGAD3PdIZlaSQZZYksS5yiMCHMUs5GuFLO52NaGQqVN20jNFo2NJ67I7/q0afrklURWjZDswZIbJfYdAnaZaMnkoRgZYVASvpZBpMJyXTKaDxm+5NPcByHKIoobOA3zDNvdRBAp2MyKq18RDWyNVWvh646X7vTravTQSdJbaWnHAcpBI49f+4B0kgeVAf1qD7smk6nB+own376ad59991DPKLDq688YJZlyQcffECaprz55pv7tox7UB3GDlMIwWQy4eLFi3zzm9/c10V5GMB9v7pXykhVn2eHubEh7VRQ43mG6GMnjaSp5M6dMWmacebMGaMpFPOuPYb7Yhx+pNQUxcwRyHUDut2AXq9ngzZSJuMJjgfxZIrSUGYZRapwfRc3cDn5tVNoNHdubhJFJrrr6VdOceZrJ9i8tsnOxpCLP3+fnfWYaa4o0pwo9BGBx8atHULPmKlnccqn567w1IvH6C/3SOOMVstHlYo4ztBoRCfkh//j7xL4jpGLWKeeD37+PkVaIByHyDPyFI2myBXPvHaG1tG+MR0vS7Cer7XbDzPbPI01J6+6UGEM4rEOQRqQFZgUhdldNszWm1IUksQ8NgiMzrHatRYFflHMOs8wnMlIpJwb06pWy4B6xQSfTMyxJ4mJ+ZpOQQhanQ4RhqFa5DljKSmuXmXN8/C7XUIp6YQhXlEYE4LNzfo1yl6vPhbl+zOwBGP6XhTGDq8sUVqbHWjl7DMcgh01O9//vvm5z6m+bB3m39QsTPiKAebuL9vJZMK5c+c4fvw4L7300udq8XRQoCqKgosXL5LnOd/97nf3fUf5eQLm/VJGqjroOb7XDnU0MmukylhA68qIAKDg9u11HMel02nhOKajNHmYlYxE77LMa2rNZq9jVkUC3w8Ijni88tY3OP+z9ymyjLDtsfp8H+k5bF/ZMuNSpen2AzqL5gtEWR/To6eXaS20ufb+TdK0wM0KyjjF883nmo5jgn6EdCTjnSn9fmRIRFLyxOllbl+9g+tLXA1LKz2eOnuSIPTmjQjynOGdEWEnoE+PIZrxMCHqR/zwv32V40+vGJG+UjNJRnMHWQGk1iblw3UNQNnzL+82wsWAi2x0YuS56d6aqSgVKSdJZikmnleHP2vHmbn9SFkDZNUJ15pHbJdY3Yw2H4ftPEcjdLeL47r085xsYYGFVgvVbpOurbEZx5RK4fb7tIUgDENEp1OHT2sh0J2OAUgwo9nJpNax6m53fjRbnQ+tDUv2tdc+c70eZj0qwNzrje5kMjmQYcGXub5SgNmsmzdv8umnn+4r4mo/dZAOczQacf78eU6dOkWSJF94RNjd6vr161y7du2+iS2HUXfboSoFa2tOHUnpeTMSp9YxN27c4ciRBXxfsrMzrLtIY2oAStnoLqrx7ey5q2zMyrygKKSVl4DnORx/7jhe4PPh2x8A0Ol0eeqVE6wf22BrbUCpclbOLBEXBb4QuNUXm9ZcfvdTyrwkaPkMN3bodMzoOpmkhKHLZJIaRmZekiPorfRBCN740av81U/fYbwzpdf1WVxdYPHJ/kwHqLWxZZMSpxOxPZiy0Itod0Kmo4RXf/Aiy6vmmm/GcFWWd9pxwHXNF6Q0ySU6SfCa49HG+deuO+sgLflHt9um86zArZKiZNkMXJuRX1ZuooWYsW1dt/aanTNB8P05kJ0DyCopxXXNexuPDYja9yWqxBHHIShLwoUF+gsLlJ0Oyfo60yRhczpFxTGtIKDteQRRhBwMahJV2evNzrXjoJpj6W4XHceIToey3cb9e3/v0GUku+tRAeZeXyeO4wONZL/M9ZUDzLIsee+99yjLkjfffHPP7LIq4WC/tV+gunHjBleuXOGVV16h0+nU8TuP+jjuVc3zeb+UkcOquwHmnTuiAZbGfEBKzXC4zfb2NqurJ/B9n7JMKEuHoqjyMGeP0dqYsDuOkZGYu2mN1rIG36bhQfU2i6zg3b84j+dLlIYP3r7E8M6Qb//Xr3PmpacQlNy5cwelNTevXcOze7TA99GFQjqSsBXg+S6TSYZGILQmCAMiaaQn3U7IqReOEbQDRFHQWWzzvR+/weDWFp4j6Kz0Wbu9VrvtoHUdk/WtH7zEf/nff006TdFas/LUEyw/YRM5qu7PerRq+0aF1saSrmGVJxr7ulr3qLXZeQphhP22q5JxbEbCjjPfhTb1njY7UweBeX1tElmE1erMAWTjmtq9/6wZt00zA3M3ZAhGVbfcNHDXGlotoxW1CSMCiI4epW1Do8vBgDhJmGxvsy4EgWXfBouLOE2A7nTMKNYCRJll9Wi27Pdxnnnm7hfyIdajAsy97koPSvr5MtdXCjBHoxHnzp3j5MmTnDhxYs8AWHWHBwGDh+0wKyBSSj0UsD+oDhMwHyZl5LBq91g9TWFrS1jrO9N4FIXmzp1NhEg5fvy0Ebv7mjiWgMb3ocq5nEV9aUv8kfVYt+le1szQNH82GZp3bgzI0gIv6uBKSW/ZYTyYUuYlni+RUuK6LoHnsdzvU5Ylk8mE7e1tCr9kZzjB912OP3+cnY0R8XjK4tICeZJTloqjT/Ro9yIGt4cUaY7nSrSUOO2QlWeOIbSmKAq8hh+qbny+7SNdfvDj1xnvTHE8h3a/Zbq3qvuzIKfBhDhX1TD5147Zi2rHMWYEYPaddkFcJ5o0TQ+gBlCwoFeWxkTdvraoGLNgCELVOLkZdhAEs/QR3zcdZK9H1ebL3TFf1es1Hmc/NHMMYUhmI7vqhBMh5sOn7RSn027TOnaMpeGQIs+ZJgm3RyPKLCMKAqIoItzexqkMHvr9WfyZlIw+51FsVV9GwHzcYf4NqMFgwNe//nW6Nul9r3UYgPkwQFXtVtHgIuYAACAASURBVJ988kmefPLJQwWiwwLMSjLyta99jYWFhUM4sr3VbsC8fl2SJOb8RJEmyxRra7fp9TwWFk4gbM5lWVq9oiqsVAjKUuD71HKTIJg9b7XfNDUby85Ys9a8IHDxgsDIdZKUVscnLRVCzli6RVHiW1H7tY/WuH7hOr2lFi988wU67S7XfnMNVZScOXuC1ZMLlLHmg19cMnIGR1IqzXgwRmnqiBWnqcdVanaklUes1gbgAKfXod/rGEG/tcCrx6NVNUFKSkSeG4CyZue6Ajcp5wGy2UE2jklZ44Jaq5nndbKJ9v15l6BqJAyUNoJLe96sY+52zXF7njEFmF0Ms2MOw7nOE6iDp7WUiCqNJEkQRYETxwZEPW8+AqzTQezsmK7ZjoZFt4tfFHhLS/RHI3QUkWYZoyxjtLmJ1hq/2yVIU0KbviK+9S3UIaWRPKi+bCPZxx3m35A6ffr0vvaIh+UDu5fnWFtb4/Lly3z961+nZ8NsD7MOCphaa9I05ZNPPnnolJHDqCZgDgaC0WhmZTeZpKyvb7C8vEi/354DuKKYGRjMLPNmnabrKkDO2eapOu5rBpDNTlNKzdLqAkurC6xf3cD3BTt3Up569QwISW4dhbQWOJ7HpXeu8Jufv08UOEy2RqxfucP3fv8sz796xh5XQRLH7GyPGE5jQs8h8BzKrOT4maMEwWd/XTUgyxKFATBtW+Oqc5MVeAoxG6taHWT9HOYNGoCsfs7zauG/KIo6ueOuWk0pKS1hpzI1EA1phvb9mdE7GFu56il83xi4t1qUdtSrg8B0flLOJaHMPa7JoDV0Z2OkjgH8umOsjBAqgk4U4UwmxqrPfKDm/IQhhKG5qWi1kEli8iwHJg1GC2GOFXMN+ktLLE4mcOwYWinGvs90OGRrODSSlTNnKLa2DrzK2Us9KlnJ4w7zKwaY+61HAZhKKd5//33SNOWNN9743OQtBzFPryQjWmtee+21L0T7VQFmWcLNm7Ocy+l0m62tbY4dO0EQeHXXGQSz6aLraoSonH5o/L8lc5S60XXKxmMqm735Lz9DCBJ842+/zPUPb1CkBQsrfZ44vdSICNO4rnnMp+ev4XsSP/QpipLB2ja3r9zh9NdPGQs9oNPt0ul0+N3/7m9x8RcfMB5MiPoex752hI07d/CDgLbv41hyiy5L8H2cIDDdX0XK2Q2QMxaUie5Syow3tZ5pGyudZUWoaQCkhlouUms1i8Kc4LJENqUoVkNpT9IcyGpzcmeB1VW2pQV21wLtZ2z0PK+20dP2vWrr86pdd85svcnYnYsAs++htFZ4KgjMCDkMzflQqh7xNq3zwDBha72mlIbR2+/XNyPd4ZCuBYnirbfY7PXIb9/m7bffpt1us7S0xNLS0r7DG+5XX7YOM45jOjY67W9afaUA8yCZmAcdY95PPzidTjl37hyrq6tfWnlLUzKSW33ZF1EV4K+tCQtwms3N2yglWFk5jeOIuoPc/bvtugKlSrBxXxXj1UgApSX9NEex888hhK7XchVjFkA6Dk9/43TjMbPP2UZmUpSK0WCMH3qUUoIj6Cy0cAO/NjSvSitFqxPQ6kSsX72DoxU68+ksLTEdDtkYDNBa43me0RB6HmU1bq2q4fSjbZBxZYQuq2QSy1yt934NSUn9764LrktRAWLVeWbZDCCb5ue7LfV8H+E49YkU0ynWbmneJch1EYPB7Mzb8NKKFCTK0kg7smzOwH1OfsKu3aWU5jm6XTOaxZCChFKIOK7/H/hM+LSyHayW0nSeUkKvZ17f93EaIFxWhCdALC3hfec7HHMcrl+/zuuvv85kMqnzIrMso9/v14HLh8FNeBRdLOy9w5xMJl/ISPbatWu89dZb/OpXv2JpaYnBYMBrr73Gf/pP/4k/+qM/Yjgc4jgO//Jf/kv+0T/6R/t6ja8UYO63DsMH9l4X9Pr6Oh999NFD7QIP8guyH8DcLRm5cuXKFyaWFkKQJJLBQJLnJevrt1hYaNPvLyJEk8RDzYQ1fw9JIsjzivU602lWY9lKUlIBouOYjrMyMmjmYbru7L03v0OEUIAB8+ojKkqJqwTf+MFLfPyrTykLxWRrxMJSh5WTR8znWT2z3S9eePsyn1y8ie95+L7D+29fptVvsbJq9mKlUiTjMdPplCRJSOKYbc8j6nTwPK9mulZgLBrknhogrYykevMazJy6Ypymad2dOnlek4kqMwNoAGTFmK3kIPZDaO4qdYNmPCdFgdpmr2y1UJVVnQXKOY9bz5vfVTalKbZj1pYUpCtSUFEY1mwV/qw1dDqzkS6Yf7fdq7YdZzWaLV23HvFqxzFZl9Vhd7vo5l717/5dhB2NV7+nnU6HTqfDqVOnaqeura0trly5ghCCxcVFlpaW6PV6+/6dehSA+TAd5hcBmCdPnuSP/uiP+OM//mP+/b//9/zxH/8xf/iHf0ir1eI//sf/yHPPPcfNmzc5e/Ysv/u7v7sv7sVjwNxDHcZIdndVJu/j8Zg33ngDvxm4eJ+qAO9RGBc0mbpNychBIr4OXoL19Q6um7C+vsGTTy4Shh2EAN83YGVGp9RjWSvLs18qugZFMOSePNcWIM1+s9pbNs0Lmo3AvE5TWUch8xymA67+zR6xEEihefZbTxG1Q669d50Tp4/w1DdP4UW+ASLHMcdXlkgh2F4f4riSqGWui3SSMrh2hxWrn5TWxabV75PnORs3b+IEAYPtbfLptGZxBlGEexeA1Pa/CUMDFFrPJCDV8rbZeVqQqIwHKo9YbU+IKIo5xmz1evWfG11oBWa0WgachUBaGz3H5lvWgBwEdzdidxwzUq0Asijmsy89b/5YgmDOUL2WlFQ2fNOp2f0qZQhK9jV1GNYGBgCq3Z5lZlojBllxDVZX4bnn7GHqu4KLlJLFxcXafjPPcwaDAWtra3z44YcEQVCPb1ut1hc2yblb7bXD/CJ1mP/8n/9zzp49y7/7d/+On//85/zJn/zJ3Hrr+PHjrKyssLGx8RgwP686bMBMkoRz585x9OhRXnvttYf6pajGw583YN5PMnIYTNv9dsk7Ox7D4RSlbnPq1Cq+HzQUEDOwauosZyHR4DjVDxuAy3Npx7EGbM2xzWsu5xmzpQ2i1tYtaKbTtPGM5kjk7P1pXSKlR6lg9ZlVjj2zgpDSjOmLYta3KlWTddzArV1v0DAeTnEiq1mEmbON1kilcB2Hrt1/iiwz1n1xzM7WFgoIWy2iMCSKovqdNHWWNHWWTZKM1WqWvk/purPXrzq4Bgg26zNmBlIaxmz1uN0gqEycmLIJIlWJqvMLwyp6xuwlLeu23rHulpHs0nySJAZYpaQYDmsrvurGoDZk2LXzVI5Tv1fabfOZ9nqIPEf6PlgQ1lKiG/FTSqk9Xd+e57GyssLKygpgfu+2tra4fPky0+mUbrdbj28fNcFud5VluacO8yDfTwctz/P4N//m3/CjH/2IP/3TP/0MF+Ttt98myzKe2ac+9isFmAfZYR4WYFZyjJdeeomlpaWHfnw1Ht4vKWgvXq5VFui9xsQHIQ5Vj9/PL1WaKs6fHzOdak6ePGkjucy/RdEsmSQIZn82pgTUI7KicEjTGSFoZkRQhUw3A6e1laAY+zythR3Fzp67KsdpAqRh2VaXjFKaopTGUEFopH3fWqmaYIPWcwkjz7/xDP/vtU12hglaaY4//QRnvn7KdHlNSUnzcRiA0a6L7/v4rRZiaQlVlkzimGQ0YntzE+k4tDyPVhjiVbKLClzMARtijf2z0LoG9TkpSlOradmuCIGqrs122wCSEPNess3jbxgR1E5D/b7pXq25u7D7WW3N2MGyZJsA2QB8VeV5LizU3bLIcwOaros3HhstJ7t2lxUJqRrNVsBcsWaFqH9Wex46y2Y711dfBQt61eeyn/FqFEWcOHGCEydOoLVmNBqxtbXFxYsXKYqChYUFlpaWWFhYeOSg9KhjxPZbP/3pTzl27BgXLlzghz/8Yf33t27d4p/8k3/Cf/gP/2Hfo+8v/7v/EtRhAKbWmiRJDizH+Dy9YJspI/cbEx90JLsfA/YkSfjzP78GHCWKNO22rAHJ9010l8morECw+ruZBZ7niRoUg2AGkI6jLEFU148zz2EYs7PA6HlJSQWQSmkbHzbbgypV7Ug1jlP9mmmbyWmrIrwIgcKQh+xSlaPHl/jh//ADtm4OoCw5dvoIjmfs6mpws3tJ5brk0hgaCCt90FADqbQG48LeIaRFQbqzw+bmJqlSBK5Lu9OhFUVIbFdXlrUGs/7cdpsZJEmt1UQpRBSZfWnTwMB2qPXjPK8GTy0luigMsApBaTvW2gA+y2b7yeZoVohaYqKtv62w8hXyHKG1eawlDe3eeYpG5ymGw8+OZium8GQyi/1qt+dHs1E0Y82G4Vx3aa6Jg+/4hRD0ej16vR5nzpyhLEu2t7frDtRxHJaWlijL8pHJVx70vXWQG+nDqHfeeYc/+7M/4y//8i/5/ve/zz/+x/+YY8eOMRwO+b3f+z3+9b/+13z729/e9/M/Bsw9lOM4pM3x1UNWmqacO3cOIcSB5RifF2A+KGXkMI/hYR8/GAz49a8v4fuvEASC8XgHrc3O0eILZWmAsdWapT7t7jQNiJlRrCldWZWilLT+sDMSUBMgzWOqrtM81kz0jA9tWVrGrA2Wnr3X5vs23arp4kqktYFDKRwr2YBZB9nqRkTPBbPxqP1fvVC1Yz9pvyxl85w2QUqY5BBtd26+lPjLy/S0RpUl2WRCPJ1yY2sLz1rAha0WQWOKUWJvlCxjVGTZjDHbkLDsZsnWXrVaz0g5VecJczZ6znRK0XxcU97y/7P3ZjGSZWed+O+cuy8RkWtVZS3d5erV7rbd7q7qv4ZFMxrQIFkIhECIJx4QWBgewMIghGSBhIAnJB4sIWSELZAsHpAQD4AHRoPkGWtot7G7q2tpuqurqmvNzMolImO/yzn/h++cc8+NzKzKrZbuqk+yOssZce+NJeMX3/f9luGQxrpBQNFZuuOU0pgRADBm61s+D0EAZBnyNKXuU71xWFEQyanXqwA6ScCUBhOAIfpIxuh3gBnNyv/yXwj0rbofpDjHcTA7O2uMzbMsw9raGrIsw3e/+13EcWzGt/djh7ibx/Qwdq9SSnzxi1/En/3Zn+Gpp57Cb//2b+PLX/4yvv71r+NnfuZn8Iu/+Iv4uZ/7uX2d47ECzIchK1lbW8PFixfx/PPP48qVK/ue7x+ExGWydpIyYtd+R7I77TCllLh+/Tpu3ryFZvM0ytLHYDACY6Uh9MSxNB1kEMiapETvLTmXqusjJyDGUBvLkjyEukQNlvoY+jo5l4pgyeC6stZB2u8r3UES01aAmiUBzktzHwBwHV7db0JSYo9HJVAtR1W2ov5dbRRrH0NRg6Xrbm1EYJGAeFkiDEOEYYipVgsyyzAYDrHe7WI8HMILAiQqxJlzTuYEyswA2AyQ+sFLbUUnJfm2qm8mZufoupvvpxyLdKcno4jceIAKFKWE0+9X+8kgqI4zod0UcUxgqPSSyDIwKeFlGQGlDay+D+jjOE69e1THYcrlqJSy+v3UFOSZM5isne4w91O+72N+fh43b97Eq6++isFggLW1NVy6dAmj0QjNZtMA6EHoundC+nkQj3u7+trXvoannnrKjGF/7dd+DV//+tfxJ3/yJ/j2t7+N1dVVfOMb3wAAfOMb38Arr7yy63M8VoC519qLrERKiStXruDOnTt47bXXEIYhrl27tq/9416v5W61l5SRBzGSLcsSFy5cAAAcO/b/4fJleqsSANHPtgOPMnsxAOY4AmXJUJYMQUCMWSE4OBcGSHV3SseVZiRLRuwSWVaZF9gAaes0q5QTqUCVmWNWhCBeG8VyXn2oaIDUjFLJGOkM6Ukw3+illDWiD7Oef6Hur31e+Xhc70JtlqztuGN1hZIxIiJ5HpI4RqrGoXmeozsaYbixASEERkWB1HEQhmF1bZzTzlEd39jo6dEoJkhAUtb3mNSio1RuP9J1wbT2kvM6Qcgm87hu5TPrutRd6rl4WdLzoL9gqIBpAJUJgz6/1lwGAeD71MGORsTWBYBu13TQIk1rQCv++3+v06b1Mfe4w9xt6a6PMYYkSZAkCU6cOAEhBDY2NrC2tobr169DSmnYuVNTU3u6tp10mA+TIfuFL3wBX/jCF8y/HcfB97//fQDA7//+7x/IOZ4A5g5qtzvMLMtw7tw5xHGMM2fOmDfZQYxTD2oku51k5EFcw73urxm6R48exeHDJ/Dd77q1+6qPPOP9qmUg4zEz+stqRIoaQFZSD5KhSEmEHs6rPEwaq3LrnNW10WdjNdKt9p0EkHVmra4SjPnmPgxAqVQbnIHAQTNmLeIQq9C86kIZo0xNzg3i86KAqztIPWNWV1kDSGU0DsehwGOuEkpYPZnEaDUZgxuGmOEc3bKk6YjnYTAYYGVtDRJAU5GHfMbIQ1V3nhM6S3sXKrSzTpLQ9SrrPe1SZOQgapdprkvtMaXr0s6RcygtELkcTeRgGis9ziksVVURBDQGVqxZWZa0+9UZnb1eBcr2aJbzGtFHPP005IsvYqt62O47nHNMTU0Z0l5RFFhfX8fKygo++OADeJ5nus80TXfUFe6kw+z3+x9bWzzgCWDuqHYDmJ1OB+fPn99yvHkQ5KGDAEwhBN58800cPXoUJ06c2PUI5X6OZFdXV/Huu+/iU5/6FKanp3HhAjcYEIYC47EEUMDzJAYDvWuEYsJqUGQ1qUdZ6rGsQFnS7tFxJMbjylrP3jtO6jT1zhKAGcvq82owtvlRmjGr2bmMMRQFnZtzoDTdavVhV2PM6hOhTgjSI047VWTS9MAezULZxmmdJVMGBhKkdzTHsLs928wAIJAIQ5RZBiElWkGAVFvAjccY9fvY2NhAP88RA4ijCGEUmeNLz4NwXfK0VV0js230LJ9ZAcXCVU+mDAIazcYxjWbLskoY4bweATap+bR+J6KIdo3qheVLS2b3KaOobuhOT2R1HG1YEASkwVQRZCzLUP7Yj2G7etiAOVmu62J+fh7z8/MAiES3traGa9euodfrIU1TA6Db2fft5FxPAPNjVPdTViKlxLVr13D79m288sorW75pDgLs9rvDvHPnDgaDAc6cOWPE07ut/Y5kt3oepJT48MMPsbS0ZEbYa2vA6mo1vRuNOLLMUW491Wup7EkBAGEoDVOVMTIiIMCkkWxZOhCC7qOPazNhKQ+zAmC9H5Wyzqy1CUHaTq/6ElAnBAEOKmchA29wJxizkjH64BcCTOsdAThKiwgQ+cQ8Z7D2mFrLqPadUgjLl2giust+3hmrxqbaiDyKyGydMSMj4VqrqFiS0nHgMuVi02hgrigwznP0swxr7TaQ50iCAGEUIXKcCtRdtwJka6cJAKVyCZLah1SNlnW0mG1EwCx5S02a4nk0WrW+RXFtxwcavzr6zaJlJPo4ijAkfR8IAuNaxLIMYAxOp2O+yIjPfAbyyJEtn1P9ejxK7juTFYYhjh49iqNHj0JKiV6vZ/gWeZ7X5Ct6+rSTDvNhufw8qHqsAHOvdS/ALIoC586dg+/7eP3117d9Ax9Uh7mXY9iSkTRN95WEctAdZlmWOHfuHFzXNSNsIYCLFzmGQ/rQSRK9cmPw/aImKaFros9EfXvG6LPdBkVNCApDYqtSNyohRJVMAlRetASQ9nlsxiwAVBpPsmdl8Dx7HCxrAKnfFjSKlWosS8xbV3WCugM09yqKegdpaTWlJIcFAaBkjDxboQDSHsVOdpBZRqQcJZ8wO0fUgcge55ZS1hyDoCK/4DgGnEPHQRDHmE0SyLLEaDRCdzhEp9MB5xxBkiBxHPiuS2Nh368Bvu4YWZZRd6dBfpJ5q0wKzGgWABoNQLsN2Z2nnZHpuoBlhyfDEBgOyWvWcegNFoYVa9Y2bY/jClw9D8V//a+4Wz1qHebdijGGRqOBRqNhEp20fd/Vq1fBGMPMzAzG4/E9zzUYDBBF0b6u51Guxw4w96IBvBvQaYbpJz7xCSwsLNz1OA9rh5llGd555x0jGfne9773wOz1tir7NRgMBnj77bdx4sQJHD9+3Nzm6lWGfp+gIoqICcs57R31zrEoCNz0Z3wc1ztNW1JSlkyxYHMUBTUKQgBRBOQ5fQEIgsoRyDYyoG6B/qu7Vw2qjlMRguoAaTNmJYQoFW4p7ivnYOopdB1Zk5RMAqRUjCapzc8nGLMA9bCmJowNIJTxutI9MlsOYt3W3jNKzutuP6CsShlFtGtV3ZsUotb56b0q4xxho4HIdYE0Rc45eoMBVns95FkG3/eRco4oiuh9qPIzAepeJ5NKzIulgE3q0azj1Eeq9mOfzMj0fQjGkDcaEFNTYDqNZDym49nkosndqR7Nui7KH/5h4B5pHI9aqPNuSus7tbFKlmVYX1/HeDzG97//fURRVJOv2O/5j3MWJvAYAuZeaqsxqJQSN2/exPXr1/GZz3xmR3E2D2OHubGxgXfeeQfPPvus2akeBOAdxEh2uxDq4RC4coWraK2K85JlQBAwZJmLLGMGSAECyEpSQmBMYEafofS0M7VP1ECsd5BSmRdwtQclQNZkTgrO2Aykk5KSipgqwblAWVKnTKoOxzJKsCz0WJ0xC5sxK2VFCFIes+b/n5SiqJ+F2mlqCzsURXV8oKbVrBkRoLK7084/dnfmSGlAsjbetQFKjVul5xlTdA1sruNgWgjyrpUSozzHqN3G8vIyCs6RqC9Rngb2MKTulXMw5TOLPK/vWNXvzPmtjEypuljZbFZuQ90umBDw85x2kfrxO04NWGWSUIi06wJhWJGL8hyIIogtZCST9aiPZHdTvu/j8OHDuHbtGk6fPr3Jvq/ZbKLVIo/j/e4wv/Wtb+E3fuM3UJYlfvmXfxm/+7u/e1AP40DqCWDuoCbHoEVR4MKFC2CM4fXXX9/xN7yD2mFmtj3ZXUpLRl555ZXat74HbTywVd26dQv9fn9L16Pz57kiODKkqTSayygiqQdNIiuwdBw97qTdoetWo1nbMo+Yq9pAHigLgbIowV1mNJc6D9OWlExqM3XRyk+NMhldTzXCdQyW0L5T33/CQo9TDqeQDA5nZGYAAkENkJgk81hjWQH6AlNyTt2WsEzTJzSdtQ4SyoZBmRmwsqxGs0JUpBxeRX5tkmNwDpQlsV4Zg8xzcvnRY+XtbPQ8D2GeI5yawtTMDArHwbDfR7vdRj4aYXj9OqIoou5TufgAm5m3Wsu55WhWufjYt9XPpZggBUnfpzFwmtKbR+V1sjwncpF1nOJ//I+6E/829VEaye6mGGOI4xhxHOP48eMQQqDb7eKDDz7Ab/7mb6LX6+HIkSP4l3/5F/zoj/7orsazZVni13/91/Gv//qvOH78OM6cOYOf+qmfwqc+9an7+Ih2V48dYO5lJGt/U+z1enjnnXc2jRB3Ug9qh2lLRrYC9IMcqe62iqLAysoK0jTF6dOnN/2xLy4yLC5WAKc7O+o0Cdg4z+G6UikSCOA0Y9Y2L3AcIM8Elq+totfpI226KJwMnEv01jdw84MV2jv6JY4/fwxhHBg3HgBm/FoxZkmGoke0+jyA5pjo664ej+NINaGQ6jmnZBN9fba+0zB1J3WKtsuM6lykGqvyooBkDI69IMUWjFlJZgJQ+2edLrKVmYHpvPTt1PGE6rTMiFTlomoXodre1AZny3JOmykYn1nO4fb7aPg+pY/EMWLHwXA4xJ2NDcibNxH4PqI4RpCmcFyXNJ/Ktk9uxZqdkJEIiwkr1WORSVJpR7tdei50Rqc9xrXlNkePQmwjI5msjytgThbnHK1WC6+++iq+/e1v4y//8i9x/vx5/PM//zN+7/d+DzMzM/jHf/zHHWnPv/vd7+LZZ5/FqVOnAAC/8Au/gH/4h394Apgf1bp16xauXr2KT3/602g0Gru+/4PYYdoaxu0kIwfRYe4F+Pv9Ps6ePWvE1ZN/6GVJ3aUusj6txqtZxk381mhUdYA2qGo5h9ZZfvD2dbSXuwgTH3du5RiMejhyZIwr5xbhBR7glGivt9F/a4DDp+bQbAYIwwS+74JwgXSa6pGba7NlJNsxZjWwZhl5yJLmsxrn1qQsvDqGdktR204i87hu5bFqS1G2AUhNCNKSEp5lFTPqXmYGUhKwKVIQpITwfbgaWBWj1+w/J9iuZjSrtZJlSWQaJZitZWRaXWjpuvDzHG4YouF5SBgDDh3CuCjQ7ffRvn0bXAiEUYQgTREB1ZcHu2P0vMqkgHP6sqEyMsuigLeyQt22dkCytaNWiLQezYIxyDhG8d/+G3ZajwtgTlZRFDh9+jR+9Vd/FQCx8ndq1HLz5k2cOHHC/Pv48eN444037st17rWeAOYOqixLDIdDLC8v4/XXX9+zY/9+PWmBu4PdvVJGdnKMnV5Dvo1MYbvS1/byyy9jeXl5yw710iUCJ88jgk6vpzWOlakAEWmqDwjPo889x5EmZUQbGXQ7AmvLI6StBhyXwQsZ2uvruH7xGlZvrwEMKPM+PvHSSeTjDHNzUxiPx1hZWUNR5IjjEFEUq/GgbVBQZ8wSQAvFvNUjYGb50jIAdcsw1626WAYBIRmkgNrjqYmAAqdJVyD9O5uUk2tiDxTjVJ9IL4BtMwP7y47qzuA41d5NAS3PMtOxClumYklR9L/huiQJgRrFai9Yziuf2a2AVY971RcEkSSQSUL7VmWBF3GOME3BgoCSV8oSg9VVrI9GcD0PQZIgVSYLQpvP64xMx6mceRjZBBpS1WQkmFouyzgm0BUCUoVZy1OnIO9B6rPr47TD3E0Nh8Ma+VHrPj8u9QQw71GDwQBnz56F4zj47Gc/u68/goMYyW5HQNpJyoiugwDMnY5kpZS4fPky1tbWzLWtrKxsOn+3C/znf3LNz4DvV8+zBkWAdpJSCnieTghhZj02HOrxpvrM58Qu5awA4ENKoBhuoHPHxbDfhxc6SBvTWLq2bMms9wAAIABJREFUgbljU/C8AK4bIkla8DyB4TDDcDhEr7cK1/UQhhHiOIDnBQaHXBcGIGnfubXHbOXoVhGC9FPoulWmJnWo1XPHqn9UTj2cQxQFuGbMZhl8a7xaG+cCmwwRDGNWypo3bY3Mo4WoIDBz9HJYa0WDoOpeVayXBuba/nMLBi04h1Ads3H7cRw4nQ6dpyxrMWLS8wy5hzsOUtdF49AhSN/HuCwx3NjAcq8H2W7DiyKkjCGMInLvsd1/wtDEdwEgElEc0xtMj3FdlwDeHs26Loof+iHspj5uHeZOPWL3Iys5duwYrl+/bv5948YNHDt2bE/Hul/12AHmbgBvaWkJly5dwssvv4zz58/v+9wHNZK1QVdLRhqNBk6fPr2jx3cQXrA7uX9RFHjnnXcQRVEtAWWrHejbb1egEcfSmKPHMd1OW80NhwzjMekzfb/u6GODalEwOK6DhadaWLy6DMcZI88FgmYLg1xg6sghlMMBhACKPMdTL87XTAmk5IiiAHEcwHFayHOBXm+ETqeDlZUSnuej0QiQpgkcx9nkMasJQYRzBTj3LHc7xwJLaT6/GWSN6GMceJR9G7dMCRzrdrZ5uwCZDNCvaCwMbxszgy2IRABqTFSpusbS8+B6HqTn1TMx9fwbWwCk+p3U2ZZlSUxW9eFb85kdDqlrVo/XEJs4N7IPaIKSMiJgRYFAgeN0FEF4HrKVFQyHQ7Q7HZSOgwaAKI7hxzH51SYJuRY1m0TmEYJIPja5aQJoy1dfvaeMZLIepKzkIIzV71U7fTyDwWBHioGt6syZM3j//fdx5coVHDt2DH/7t3+Lb37zm3s61v2qxw4wd1JCCLz33nsYDAZ4/fXX4Xme6ez2mzRykLKSrSQjuz3Gfq9hu+r1ejh79uyW+tRJwLx+nWFlhQg92orO84CiIOAkOzogTSvG6qSkJM+ZItjozGAajc4/fRhekmLUG8ELcqy0O8jXBKamA3C3hX57gOZchCAOzXiVdJM0Tq3GwRxTUwk4TyElkGVjlOXAjJfj2EWSpAiCUBGCqg8XAlQ9Urafx2qPKaUEd+iaBTVhRHDBZsZsDSDVXlEClRzFYoSaDlLKOinHev4lYNx0DLBpxiwjn1lHaUJrySqTAFmqTEqVMMLGYxqJqhfQjGbtvEzrWiQAod2GVEamFIKcesqy2sVqMLUzMkEdchhFCJMErTCEyDL0h0O0u10Ml5cRK3DhZVkzdK+FSAPVF4AgAJpNAsxd1oNK7XjU9J6DwWDPshLXdfHVr34VP/ETP4GyLPFLv/RLeOmll/Z0rPtVTwBzoobDIc6ePYtDhw7hhRdeMG963dk97CxLfYztJCM7PcZ+nHrudf/l5WVcunRpW3KU/TzkOXDxInWKWUZTP814TZKKpJgktoykVPpIvV+jdVVRkDbTjv4qCobmTAo3zLGxMULSiDG9MIWlKzcgeiM0ZlIcf+4whkOJcX8M3ysRpjEclykdZ7Vr1ODGmESSeGBsCo0GIGWJ8ThDpzPAeLyGMHQRx4nafToYjRQzlUnzZUHrPbVDEK3Pqv7PsQhBte5PWOkm2hnI88CDgAzI7fiv7TpI/V8LkHXwNDAxwtVtu2LJbmLeKt9RKWVl4F6WtHvVwGaRcADUHHxK36fIsDiG6PXIp1XdX04QhMy3IaCeken7xq+WKVkIK0u4RYGW56F5+DDQ7yPPMnS7XfSLAreuXUMQhgjjGJEiJUEnpQyHgDJjLz73uTrteYf1oNNKHpXz7Nca7/Of/zw+//nP7/n+97seO8C827c+TUzRxt92HdT+8SCiudrtNjjnu9KA2nW/jAuklLh06RI6nQ5Onz697S7V7jDPneNot+k1SdOK8RoE1ViWzMyp+6z2lRpU6/epQBUqSURiZWUJjlPgxIkFXLlyA9OHGkinPwUpBMKIIc8K3HzvFvLRGK7H4Ic+jj+3AD/lSvlAe0fyotVazMq4PQgcuG6MJInhOAJ5XmI4HGBlZQmck5TE83ykaax2nNp1aAtJCSqmLQCTJiLphkbrwgBy7WFkxlBahuYAKoCUEkLdxhgR2GAGy8xAsXDN6wkFnoyhYAycMeq6tBGAJgUxVtd4KokG9DUrhq50XQgN6mqHyS0DAcEY7VGtaDJzTAVkMgzJDlBKOFlG0hYh4AwG9c7TJvMoWY7v+4inplBubGDu5EkMx2P0+n20l5fhAOR7G8cI9Cj50CGI55/HXupRA7L91oPoMD8K9dgB5lZlf9BvR5p5FJJGbALSpz/96T2PfO4H6SfPc5w9exaNRgOvvfbaXa9Nd+vr68SMBSqAI8KmVGs3AkDXhbHJSxKJsqQ/XBqXVpISDUSMMbiuwHgscOPGEmZmQjSbRzAaCqxeW0X/5hCu7+H480cQxQk6d7rIRjlaUz4Ajn53gLWlO/DDw4aE5Lr1vaP+2faYBejcnufCcZpoNpuQElhfX8N4PMDt20twHAdhGKDRSOB5HhirnH/omCWk5ChKCQkG12GVjMRmzOoRqS6LaCOlBHMcAi7AhB9vut/EMYzbj2VmoLQ9gOOQrKQstzZBsMwUkGX10Wyek5SFMTjjcTWCdZxaMgoviiqpRMXMmNGsTgkRArIs4djSFM+rA/RkiLQaMaMsIQYDuKBUlNjzkAQBsLCAsijQkxIbS0vIlHVf9kM/hGaWbTLW2El93ABzp+uo/ewwPwr12APmeDzG2bNnMT09fdcP+ofdYeru98UXX8SlS5f2tR856B1mt9vFO++8g1OnTuHIXRIcdFGHKvGDH3Bjnu55EqMRR1EAacqgCYp2p0mSvmpESokj0vxuNCKtYxhKdDo5lpaWcejQNFot2jve+mARg3YfU0/PoshyfHj2faQ//ElkoxGkLJCXIQAGxn2UWRXdpXX6+jor5x/qHrV5u+PULfSo+yNbvCRpodlsIs8LjMc9rK2tIssyBIGHZrOBIIjAuaNCp4l1W3MFsiUlABFVFGO2VPIJ+L7RSRoIv4tWUzBmcjX1HhN6NCtlzSXI0eegF9AcQ6eryDA0wGaTjviE/MQc095/cg7h+yhVCLQMQ9M5QlACC58kE+kfXZf2mKqDlmqkK4WgLwpZVslvgqBi9Oo3jTqW4/to5Tnk0aNAEKA/P4/1Vgs3LlxAURSYnp7GzMwMWq3WjoDj47jDvN+kn49CPdaAqbMXX3zxRczOzt71tg+rw5yUjLiue9/ND+5V9kh2cXERly9f3pWZA2MMH37o49atisCjsyl1HjBgFAhadYAoIq2jlCWCoNJpahDLswJLV5bR31hFAYkXPvscZmZCk3+5cWcFfuQSy9TlyBGgvZbBi1LIsgNRSoBJiHyEuEXG066rk02kIQWVJe1cg4DV7Pm2t9Ajlx8hJFzXge+3kKZTkFKiKIYYjcZYX98A5wKtVgNRFMH33Noe0zBmtZRDSTygNJeGIGRJUYyjj/XvTWYGFpnI3G9CZ6kYUGTFp8fBejSrgVWQSfwmaYr+UQOkZs3q1lqBIh+P4RQFdZmWNAVA3W1HRXnJIDD5oEbryVg9yisI6qQkZcrA1HEwHlMHqzvhfp/OKwT8H/kRnGw0cPLkSRRFgXa7jZWVFVy6dAm+7xtz8iRJtgTGB7XD3CmQHcR5noxkH0PA1Puzy5cvY3V11WQv3qseRoe5nWRkP4QdYG/GA5P3L8sS7733HrrdLs6cObMranueO3j33cAw9R2nIl/GMY1ZfV+aqCytX+z16IOhKPgmW7rxWOL6u7ewsXoLju8hDkIsvn8djdazEIIM1/0wRm+YQUgHnkMRTo7DMXM4BMNhrC22AVng8NNzaM2lAHT0F3V8dkTYVh6zWrpoW+gBeoRM4KonnPq6PS9GFMWYmZkCYxSJtbq6hiwbIIpi5dsZIfAr5mvNiMDuJoHN8V+2pGQy8ksfg9Xt8PTxpQYSIci2Ttnx1XSWFimotnPUVnNK4yil3N7tx3ryJpm3Unu7KiKJzHMwO47MGr9ac206vx0irUazRZJAqHE1Z4y0mECNNVu+/DJ50pr3l4u5uTnMzc0BIGLL+vo6rl69in6/j2azadI79DrnURuVHsR5dvJ4HpTM5WHVYweYWZbh+9///rZeptvVfoObgd11dp1OB+fOncNzzz2HQ4cO7eu8+7mOraooCpOr+eqrr+569HThQoQsow+2NCVCTxjSf4dDpjpCZmzw9PhVg2oYluazOYroOMWojw/efheOFyCMXLA5DjCBQbdAEPuIIomFZxew/J1VjDY6GDsuWnNNNGcjABLThxtozTdVR8lVMko9umvSY5YwR5ruUo+HtaSECEGA3nHaDkF636kZs5Sw4sD3U8zPJ3BdhvF4jMFggDt3luBwisIKPA+RDnFWO0jBGAolLYHrmpGqHo1uAjN7NKu7Q7VIFVqKoo0QioJ0k6rDrHV+FgALHfSsv3yS/ZKRvJjR7CSxyJKYCMZI96lMEQALEPN8swZ0MkRa3dYcQ5OHypJGukJFkTFWZ99aJaMI5Wc/u+XvdGljeB2+vLGxgbW1Ndy4cQNSSkxPT+/b0Wun9aiRfj7u9dgBZp7nOHHixK5BaK/+qXbtFFj2IxnZSe0HMLX2MwxDPPfcc7u+/9ISsLzswvNG8DyJwaAyH0iSigVrmxekKTAeM7WmkwaoypIhyxiGwxwXvncFEAyNKYoZ6i6vgB+aAXdoT9pZHWLpyhKkyOAFDSw8s4B0pmV2n0JIhCFqAGl3kNqIgCaJdO6iqDNmgUpHSj8L63dCNUB636kfK1NgWTn/6M+lIAgQhT4cZwpCCPR7PXTabSyNxwjCEHEQIEkS+sDkvG6HNwmQ+t+W1GOrztPZ5n4CiryjgdUCQ+h9od5nTspPbIDUsg0FjgCoexQCpe/DzfOKoGRZUErO60klylxA+r6x5EOSGJeems6Slt30OKSKJ9PkoiCgEW8UQXoeylde2ZWMhDGGVquFVquFT3ziE+bL5OLiIs6ePWuyI2dmZhBF0YHvNR8lctF+J18fhXrsADNJkntax21VByUJuVvdK2XkoGqvgHn79m1cuXIFL730Ei5durTr+wsB/Pu/c/T7DgYDjkOHKplfszkZ40VjWTIBoL3heEwANR67GI8p+uv65Tv44NyHyNe7CBtNjIcZHEaxXY2WjzB2kI8zfPjuIrzARzIdg3kx1u8MMX24pUaslduOLk1G0uNgHStGJJ7qxuQXSz/be0ztJUoGCiUYE7V9pw2y9rk1y5eOKQAOFCWDlBxJ2kCj2QQAjIdDjAYDrKysoCxLFMMhRqORYXTqkaV5lbWkRFjRXVLW3H6kdT9DAlKj2RIEPFIdn9t7Rc7r97N/p5iw2u0HZQlG30yoA9Wdnu48dfesorvsJ0nqpBLtyhOGhtVrkkr0i6TPP5E+Uurjp2nFvvU8ek5aLchnn8V+ynVdzM/Pm5zcLMuwtraGS5cuYTQa1ca3BzG6fJAd5k4/Nx8E2elh1WMHmHt9MR3H2dfe716lJSN3Sxk5qNotYGrno+FwiNdffx3A3r5NXrzIsL5O+8AwLIyWUnM3aARahUVrUNRAmqZV5uSou4HL5xZx+4NlHD46ixEvsbHSRdJqoDkbYzxKwIMUq7fWIOFCCsAPGPjARxD5GPYHUB/v4FzCcUoAjiJrVGkoJCmpQFEbvAN1xqxNCiJTBRiApOdck3K0gTyVnW5CO1MCWSkZXHebdBMpEXgeAtXZjAYDrOU5Nvp9DO7cgcc50jRFHMdw9WhVP9pJraYFdNosQFvxGdYtAFdKcvuRsvba25Zy+gkze0uAfqeTVoBqV8pYnczjeXC0Mboa/yIMzXEMu1V52toyEts1SIZh5f6jQVbvI6UEX1ykLw2jEWQY1kazxWuvYdM3pz2WBrLJ7Eg9vr127RoYY5iensbs7CwajcaegO9BmbzvZCT7pMN8UqYcx8HI/sZ7gLXTlJGDqt0AZpZlePvttzEzM2Ocj8qy3HWHOhgAb73FwZiWighlNEDg0u3SH32jUY1iw7ACSyIGkUyjv7qOi5euoxgDWV9g0OkinZvD+p0Cy1eXMRrSKDaMPYx7HEVOFH+XewAk8vEQviPAGDd70aJwzAdPGNpj1Wp3qYk+toUekSo1IWjzOHcSIPXIVneuVTfJ1NiXmWPcLf6LPtgZwADuunDjGIcOHYLIc5QZmcbfuXMHIs8RhSHiOIbvutAfeUIIYouq0SyKosau5fbrW5ng1hm06t/Yyu1H3d+QkDivd56cV79TI9UiDMnxx/eJ7arLkn9Ix9kcIq1GDzII6HoaDWiHCT4Z+2WxjW2gFSdOQO5AErXT2grIOOeYmprC1NQUTp06hTzPsba2hlu3bmFjYwNxHNfGtzutR0W+MhqNdkSg/CjXE8DcYd2PkexuU0Ym73u/jQs08ej555+vxfTsZaT75pvMeMP6PtDruYhjhjiuQNHzKh0jnYfAFSCwGo85BoMca7famD2yACY4ssEiRiMBsdKFLAvMHp9BY3Ya64ttuCxD0mxh1B8jH4/QWXPQ2yjgORKnXj5hOCO+X/FHwlDWujqSOmpvWe0qxFRQtZbCWM48sgqdJhWHwGhEBuxlqQEX5vHWO9T6zlQfDxDm/BKox8uVRY09zaUE9zx4noeGSgIZjsfY6Pcx6vfhOA6SJEEcBAh0nBVQMzOoyUFAXalgjAKkGSNijxp92hFgtb3ppM+s/v+tnE0d/gzOwUcjONpSb6LzrPnOaoKSHs0WRXUcx6kBba0T1nIUKcEUuGI8phGw56HYg1/s3Wonf5+e5+Hw4cM4fPgwpJQYDAZYW1vDe++9h/F4jKmpKczMzGBqamrPkYIHVTuRr/T7/Y+1pAR4DAFzPyPZgwBMrWHUSR67SRnRpQFrrzvOnQDezZs3ce3aNXzuc5/b9Eew2+fwxg2K7gI0OHGoIaD5rGVMR3dRc+B5ladsGCqw7A9w8/oNSOEiCiMwhyNteli83gZKCZH30JxaAEMBxgr0ekDYclFKgaTlY+GZY3Bu3MSzzx+B49E34bqdHhkRkBSE8ix1t+v7FMlFz1+dEOS6WzNm6bFwFIUDIVjNeF3vKqt/212njv/SRvQcOsOaCEJUUoiKCQuQ/IJuRMJ9sk1C7Hn0Gs7NoSgKIg+trSHPc/i+j8jzEIchOTgxCobWrFmp3H6459Eo1AZFe/+5hTRFj2b1tRkGL6rR7CZg1fFauoQgcNPXNhpRoLbuYHXCiPaW1ddjRYLRJUkgSVCUJRw90pUSyDKUp04Bajd8ULXbvxHGGJIkMeHqQgi0222sra3h6tWr4Jyb7rPRaDzwPeFOPm8Gg8F9ISk+SvXYAeZe6yBkJQCBVbvdxsWLF/csGbmfgCmEwLvvvossy4xRwn6qKIDvfKf6ZhpF1EU6ToFmk4wIylLCdYGNjWqnaX834Rxor7dx5fw1NEKGbFjg+rsf4vizs8iyEmEcIG4lKMYpRhmHXziQgjqgIi9QZn00nz4BP/IQNznAPeNPq0GqKIjMo7td2qfq7g/Qvq+AJlFKdW1k8E7SxbpW02bMcl7C7kJpyliZsJdlFVDtuo5p1mrxXxN7TCYoH7NkDJn2Z9UPSk4YGOhdpOOgmSRgcWy6muFggNWNDTDOkfo+0iiC7/u0O9TkIc0u1aQZ1d2ZBwQYOUhtNCsppswQjSbs8OxuttCdcpLQ/aSsdozq/jVDdwsQlc2S+Z3knEazirXLlbesMx7T86L+dmQQkO7yESsbIAEY8tCNGzfQ7XaRJAlmZmYO5DNpJ7WTHebH3bQAeEwBc6s8xnvVQchKAJK1XLx4cV+Skf2C93aAOR6P8fbbb2N+fh6f/OQnD+Rb7NmzDMMhrbl8X2I8JsDMMqDbtaUU1ethj2mTRGBxcRnrix0kHkfUaCKZFRAjoN8VcPwU80+HaLaA1aUBums9FMMeFp49Dj/0wFmJheeOYmahCQ1yWUYAFcc0YhVCG7tXRB9dpAHVnScBXZZV4EZGBLoLrTrP+h5TgDFhJCXkkVslk/i+HSZdndsGSC1pobGu6mZdYllyIeBxXo1my7Juh6dBRv9becUCQKI6mzlQLuio20VnYwOj8RiB4yBWmkOhDRIYI0s9qDGnGhMz5aKzSWc5SQoqCgJD14VwHJNUwhThyClLsDwnkLvLaJYplyKpE0bKkkaz9M2nGs3Sk2bul7suotGIonAAlJ/+9J7SSB50+b6PI0eO4MiRI5BSot/vY3V1FaPRCG+++WZtfHs/2PU72WEOh8MngPmkqPY7ktWSkaIocPr06X2NLvYL3lsBZrvdxvnz5/HCCy8YR5P9VqcDfPe73OgVo4gpGQmD7wsDEo2GxHDIrLEsg+dJ5HmJ999fRBQl8NxpSK+NsnTAOMfhowG8KIUXeli9dgtCttCaTcFZjhdffRozx2YhBDNs1eFQG7d7aswpLbcgaVnwSWMwIAQxX2mETKXVGQB1oRoU9ShWd6y6g9QAKYSLPCfCkOdNdqtUOoRa3891dfyXlj9u3nEC2NKU3Yxmta+gZaNn38/8DGLCpmmKNE0hpEQ+HKI3GmH1zh3kwyEY52h6Hnwtw4AaxdpG7Gqka2o8Jqaqdg1SbwamJC125+koe7vqYAr0uQqRDoIqRHo0AmPKm1Z5xgKKBGTvMT2v3tHmOWkuGw3IRgPimWfwUSvGGNI0RZIkWF5exquvvmrGt5cvX4brupidnb2rdd9uaycdZq/XewKYT4pqP4BpS0YK255sj3XQ5unaKGGrfeV+6v/8H26aDQ2K+udej8PzpDE255wIQZSHCYzHOXq9m2i1DiNJYhRBB5dXAMcX4KzAcOBi9miIuWMtOHKIOzc7ENLFM595GsncPMbjesi0TkPRE0u9d+RcwnUF8hyK8VqZF0hJI2T9VJFpQtVB6vsDmmgqFWO23q1SziUdxAZIfV8NkJxL1QzV47/otpP3UwApBCAkOf0wDilpAcy0KYG9c9zO7QcKPLU/LYjoE6QpgjTFTFli5fZt+J6HTreLoteD57oUhRVF0FQ1LU0RQVCd33o/MIsgtGk0a/m8Csch0I/jasQ7GpndqE4/AVSXa49mrZJq12k0l1KCr63BEQJsPEbx+uv1J/YjVrrrcxwHs7Ozxg97NBqZ3We/30ej0TDj3b1o0O1z3a32m4X5UajHEjD3MpLdK2BOSkY2NjYeekyYvr8QAhcvXkRZlgdulPDBBwxXr1b7wLKsk3rGY4rsajQAPWnT5gW9Xg+DwR0cOnQMvu/DcYB4roFjz2RYunoHWX+I+VNHELSmwTgw/4mnMPu0RBhWhgBkOlN9s9ZSEcYKeF6J0chVu0QGzh0URQnGJi34hAFP6v70qBUAqrFqXY8Jcw2ADrnWIFt5zGqtpr7Gej5mXYqik0+AivmpR7OcMzDPg+P5JDHR3YR+olVNppbosagBEnND2h1OajcZYwijCM1GA6zZRJbn6A6H6CwvQwiBOI5JvuJ54HLCDk8fx/qb012p5JzAUwjkQUDaSHVOFAWZEmwjRwFjgCIMScchOUpZEtAq9q0Z42oNp/pZHDkCecCWkw+6tgOxMAxx9OhRY93X7XaxtraGc+fOQQhRG9/uVPv5ZIdJ9VgC5l5qt4C5nWRkv2Cnr2W/gFkUBd58800cPnwYTz/99IGy7rIM+N73GKJImsBlnSzSakmMRkRqSdOq6yRGKiXIFMUQzzxzAow5yHOpGLMcycw8Xjo2i6tXFzF3aF6lhdA5KQMT0ClUQVDtHRmr8jTz3EVRMLMrDAJpJCUE7BW46S9WmjGrJS+kzazAzZIJWntMbWRAo908J7DUHa8NpPr6dU2aGSi1BcjMoAJZveM0b8uJbtJY1wFVOohqsWtespNs1y1s7QplhwfXhXRdSuyIIrBWC1II9MdjjDY20B6N4DoO/DBEquQtmgkrOaf763Ooa9Q/u0KAOU6dNWs/JvU76boUIs05eJ7TSFoIiiDTQDyx89R6Tb3DLT/zGdyvelAC/p0Q/xhjaDYpm/Xkyc3JK0EQmO4zjuO7fg7c6zPiCUv2SZnaDaBslzICHFxM2H6O0W63MRgM8Nprr90z1mwv9cYbDLdvV+NXDYqVEQEDY0IBl1SpHQJXr94GYyFOnjxmANY2L+CcxqX0rVgiCLRaQcL3CdjoaZEYDKpvztR5UgVBWRux5jmD4wjTQepjxDGz9KGy1q3aRXtM3YFKZRhPtw9DqH/zmm0egewkQFJJKZQUBQBYTas5aWZgNweF3uExBgkGxlXyh7J/M6PZu3SedCDq6uimKkYMZI7ALbatDayMMaRBgFS9l7KiwKDTwfJwiKIoEHgeGmGIKAzBlObSnN9xTLdZSll3/9FJJVpWIgSYRTRyhsNqxDvJmrWBlhbZkHGMYjhE9swzCHcYRbeXetQyKu3aKnlF7z4Hg4Gx7puZmdm1dd8TwHxSu657pYwcRIe512NIKXH9+nXcunULcRzvGyy3EmevrgI/+IHWK9bt4WgfKFGWEkGQI8u0S06G999fxtRUCzMzDTuEAq5bmQrEMY0yfb9AFJUYDj1F1GEmo1Kfx76PHeoMEEgTgGnSptZcViNWOz7Mkv0Zxix1j7R31YAWhlXAtU0IIuP1SlLiuno0C9CwstqZeh6vEYm2MzMg1m3VvTquCyjWLLYgAdVeM/2z5bQDzok8Y+Vq2vvPsixr6Se2pEQbseu23eMcU7OzmAJtbrNOB4PhEJ12G0IINHwfURzDDcPauDUnG6gq7ivL6FpLks/YtzVPBLDZtScIaAeq5CnaHF4nr2TPPIP76UfzKBmi36uiKMKxY8dw7NgxCCHQ7Xaxurpqklc0eO6kax4MBvflC/ijVI8lYN4v0e9OUkYeVhB1WZa4cOECAODMmTN444039nUNelw5+Vz+279xs59rNKiLVJM45SML+D7DcOhCCGA4HGB5eRnz8wsIwwBRRB2l4wBxTOBEn8NVYPRo5CLLmOmw7GQTDZD6yvC+AAAgAElEQVQ0gaQ/cp0MwhgZt/f7DNPT1TiXfl8nBJGuUhpWrNZMTjJmdedpE4LsNSKNTQXyXKAsdRc6Gf9VXYc9pq1GvVIRgqrdu+tyA+KMSXDdFQoBLjfb2kn1P8aYMSWAEJXkZAJY7ZJSwlHMW+mQ365OFIHWZ+q9qL1jBLFiwyhCGEWQnEP0ehiMRljtdjFaWUEUBEjU/tMHyAxeGSfYo+FaELZmwmpZieOAKfYYU8xbY4zgebURb+f4cczaT/p9qAfl73rQwMw5N8krAEngdPKKJi7a49vJeiIreVI7qt2kjDyMHeZwOMTbb799oMbu+nHYf7AXLjAsL2tPb4m1NW4kEfZnVBhSN9hutwF0cPTocUSRA8ehcaQQ+nO+8nrVYdMAEEXChDGTCxDJUKrPcALNJKl2pxVjloFzUTNG8DwgzyUcp4ruqhQOleZS72TpPpsBEtDxX9XjILmKi7IkUNaucvoY9T0mHUMDbVEw9bPuPOl2tpkBIOE4VvKJKGlvqViqTJNqGAO0uTm2AMjJ1BI9mlXHKV0XTMk6amQerb3ENhITKSsz9rKEk6ZoxDFSRcgZj8cYDoe4vb4OkWVot9sIkwQ2pGnQk75vvkXIOCZQnAyjtmUkk+PnNEVvfh5z9xnMPkod5t3K8zwcOnQI8/Pz2NjYwLPPPltLXmm1WiZ5xXVd9Pv9AxnJ/sEf/AG+9rWvGTvOP/7jP8bnP//5fR/3IOoJYO6yJr897jZl5EHvMNfW1nDx4kV86lOfwvT09L7OO3kNNmiPRtRd6jVSFFXRXY2GNDZ3zaZiYbIhAAezs0+hKBi6XSCOq1GqHfeVpvZYVTvqlIpgQ/fJMko20echg3cb0Kqfw1CY7pMxifX1Ifr9IZIkRJoGEyNWuh69IwWg2KmViTrnlVaTRr2OuZ29BrKNDbSMxD6Gtt4ji717mxnQ6yBRFAJZVqAshTEzgNo3mtGsvatUY0pdtdEsSGLCPE+ZBJLbj6Pf15PAOgGQhlikABr2cawukalvJEEYwk8STI3HuHnzJjzPw1qng3w0gh+GiOIYiZTwtNTkbqQgXs/MFEFAhgbqQ7x46SXI5eX73v19XABTFyX4bE5e6XQ6WFtbw9/93d/hm9/8Jubn5/Hiiy8eSNj0l770JXz5y18+oEdwcPUEMHdRk5Z0e0kZ4ZzvOyZsJ12qlBIffvghlpaW8Nprrx14igDnvLbX+Pa3K7BsNgm4XJe6MoA6zCyT2NgocOPGMorCx/PPLxhCkL4PADOWpc6KOkffJzar4zAMhw48jyMMmeGIaAKPLnu8Goa07yPv8BL9PlfgJzEaddDtDpCmKcbjDayvF/B9D81mAM4TuK4Liv+qosdct9p3Tuolta6Ufq66UClLZWBQxX9pkCUyT3UM+7OG8yrRREoJ15XaLAdV8LQDxpwakEKKqned6LQEY5Xbjxb+q/PX/GkngRWojAb06+/7lTRFf9tRpJxaRqbdlVruP5JT+LWMIpRBgGhuDonSXGZ5jt5wiNWVFQgpKTQ7DBFqnamdp8k5GbLb4+bxmK63LCHm5iAPHYJYXHwggPlRHMluV1sBIOcc09PTmJ6exhe/+EX89E//NL70pS/hn/7pn/Dnf/7nePHFF/HzP//z+Nmf/dn7fn0Psh5LwNyvATvnHJcuXUK73d51yshBxITdC3TLssT58+fhOA7OnDlzX/6otIk8ACwuAufOkdWcNhHXEjnPq6K7wnCEDz9cwfz8HAaDxQlJCSWAKOUChJDq/6s8ZpOErPUYY+C8hP0UEFDR/T3POLBBCGLMagwgoIfSp92GEC4WFhbAeQnOU8zNCeR5hvG4h9u3F1GWDK2WjyhqIggCuG6dMWv73uo9ps7GBAhvdGNlA6Q9irU7SG2ppyPEAO32wxRob21mIGWVWgJpuf2o14lrhxygHhottgdWCfJulZwjV/+Wvm9ubwPkJmnK5PtTiMqMvSwpt1LtPDWZx7HlLozBC0PMAEAUQQiBfp5jsL6OlTwHDwJEYYg0juEp0N0U+2Udq3zxRXWp8r6DzIM4B/BgO9l7dYxHjx5FFEX4wz/8Q3zyk5/EhQsXcOvWrT2f86tf/Sr++q//GqdPn8af/umfHuh0bD/1WALmXstxHIzH4z2njAAHt8McTzIGVQ0GA7z99ts4fvw4Tpw4cdfj7DciTBNhvvUtjsGA0kVmZmRNc6n1j1nWwfLyBhYWFuD7LkYjiSiSyseVdo3jMUOjIQ1A2pISaoZsxq00I1nHkRgOK7KR5qDQMaoxb5IAnQ6HECVu376OmRltYE1jYvqM5wjDAI4TgvgLJYpiiG63i5WVFaQpRxQ1EMcRgoDOaTNu6aVlSvJSyUFsoCOpCP2sR8NSCgO2BMh1gKRpp92F2mYGQr2vqv0nc1zjtuPYCSfaE1a//hPgCdW56T2mHqkCgKMAFwDsbyt25wnAkHY025WpxBO2xW1tYC0n/g0hjOYSnCPNMrAowmxZYgxgvLaG9cVFlGUJLwiQui5NUly3xpotT5yAVDKSB0HIeZid3/06z04ej5aVMMbw0ksv4aWXXtr2tj/+4z+OxcXFTf//H/3RH+GLX/wivvKVr4Axhq985Sv4rd/6LfzVX/3Vvh7DQdUTwNxFlWWJt956Cy+88MKeUkaA+7vDXFlZwX/+53/uaER8UIkn//EfDDduVB2gBkvHgRqrSnQ6y3DdDKdOHUVRcESRxLVrHjodpmzyqv2k3jvqf2cZkVxIUsIUMUeg2yUpCU3iKklJGFb7ziiqGLMkKQGEyLC01MXx44fg+ykGA7pPnjtKH1ntKgEgjjmKIkUcp3DdEmWZo9fr49atNjgH4jhBFMVoNj0DbrbmUj8Xust0nBJCVF82AC1FYcoxqDJl39rMgH4HkBWf7qIBRwFtnQRUG6laOkr9b93e6l2lYRNNAKszcb/aPhTUeWqCEFegx6Ss3VYytjlE2pKnSCkhlFbTJJWQ+LYuZeEcQVkiaLXQbLVQOg6ytTUMBwOsr6+j9DykUYQ4TeFFEcpnn7Wejvs/Lv247TB3Csy70WH+r//1v3Z0u1/5lV/BT/7kT+7otg+iHkvA3MsfzI0bN7CxsYGXX355z2AJ3B8dppQSV69exZ07d3D69GkEO6DN7xcwGWPodgX+7d9sGzj6YOecIQgEej2JDz9cxPx8gDA8QfmUYbWrnLSviyLazwWB3lkyJQdh6HaZ1ZVV57STTTRY6r0ncU9ot+n7wPLyAO12hqNHZ+D7qbkG7cwDVNZ4WqtJ+k6p5DEcUoZIkhBzcxJZJjEaDdHvt9Fu5/D9AHEcYXo6BOAqgo62A9TSFm4A2fer0exkgLTrVrIUgL4s6ABqz6v0nkQQql7D2sspSnD1uITa68FxqNOTdSN2o7vBFh2jvkpWTyqhG8uqK9xqNGt7J1sjUq3dlBT3AgDwGCPtZ0WTpuPYu0r9b+3o45AZfzg3h1ABftnpYKhs+xZnZoArVzA7O4vp6ekHMi59kDvMBxEsvVNgHg6HSG06+x7r9u3bWFhYAAD8/d//PV5+hOLXHkvA3E1p/aKUEocPH96zebGug9ZhFkWBc+fOwfd9nD59escfBgfhR/ud77gIAgHfl0pnSZ/WSSLRbudYWlrG3Nw0Go3UdFhBQN6xUgJTU5WnKucS/b4ecRLrVT9NQVCBYqNBsWDkDkT3p+xK1BizNjPX9yUWF9sYDIZI0wS+X1FXaSws4Tgk9s9zOi/JVqprIEmJ7p7pZ8ehaKzp6QhSMozHYwwGXVy/3oEQDFEUYmoqQlGQGUFdq7nVHlMaIlWVj1m3w9MkIPt+lUWqvq/ymWXMjGYhrLHaFizZmsSkKIgQxLkBT+E4ZFunpCJ0tRMs2S2kKpLae3McqYCSWR3jJLBKx6lIQnrWzRik6xp9pgxDAnXHqZyDpIRkDK7rotFoID18GM0zZ7DR62F1dRUffvgh+v0+rl27hrm5OaRpel+A7eO2w9xph5ll2a7dgbaq3/md38Fbb70FxhhOnjyJv/iLv9j3MQ+qngDmXWpSMvLee+89dFs7oNJh6n3lU089hWPHju36OvYDmLdve/jBDxjCUKidXPUHNRz2sLTUxuHDh3HokIdej0ArjqlDcl0Jzku021XXmKbVZ3iSVGCXpgSWNHqVarwqIJU4X49zG41KRqK7U4DGlcvLixDCxfHjC+j3lwFozaZEv68/kxniWChTAam6XbKW0wAJECjpYGjdAY5Ges8YYnqaZCllKVCWPWxs9DAajcC5xMaGiyiK4TiOGRHrx68ZvlKyTbFh2xGEtNtPnpcYjXLlOVsBK3cqgLSBTNjdperobM2ltsPTHSMDge+m6K6JKYdN7JEKEM2VK5cdQAGkbedkPxEAkGXUwToOBCj0GXp/KkTNuL024p1ILimffRbcdTE1NWVWFG+88QbCMMS1a9fQ6/UOJMljsj5uI9ndnOcgrudv/uZv9n2M+1VPAHOb2koychDd4X6N0wF6U/b7ffzgBz/Ayy+/bJw5dnuMvV6HEBLf+U7TdENxzLGxwVTjcgedzhjPPbcA33egk5hGI6Y+3OkYGnQAIgfZfrPjMUMYVkYEADFufZ8Ys8Ohg6kpYQBSZ17q8n3ddeVYWbmOZnMaSTINKaFSSqrsTcVzQbPpIM8dJfHQxgZCjTwBKbkxYa8Asq6zpE5XM38ZoqiJNAUGgx4Ggw1kWY719dsAJNKUiEO+79/TzMAQeVjl9kMaT67YwFpSYu88q5/tmC2TVFLNrGuuPZt2npYTkHHSl5JGs4xVu8uiMOzbSc2lZtuac9gSF2s0W3gegZ4G07Kk4+hrmBjNmidHHVcWBRkaMEZZl0r4bhfnHAsLC1hYWMBWSR4zMzOYnZ1Fo9HY84f/owhk+6mddJgPynD+YddjCZh3G8NIKbeVjBwUYO7nGFJK3LhxA71eDz/yIz+y52/F+wHMf/93YH3dRRwLNJv0h5KmOW7duoWyjDE1dRwbG3XzgakpWesGl5aU76hijGoXHS1HGY8Zmk1Zc+qpTNjrxBwKhtam5sSYHQzGWFlZxJEjhxGGiTJUpw5OStJmZplmn9Lz6nmancqQ51yRikroKEbGhNoR0oeUNlcHYHSaeiyq7fiEYBCCgfMIzeY0ms0ZcF5iMBhhY2MDeU7uKFEUIY4jUHamju6S6v70OF23cj7SHSpALNn6HpNAl1izgrpDrrIuy8JEgG0iAW0jMZGcY6zGn7WRqgWmtlTF7hbN2FZSnJjuUqXngWkrO3UcJuVmvaZts1dF00C4LgFtFJnz8dGoSld5+mncqyaTPLQV3K1bt9DtdhHHsQHQnfACdD0OOszt6kE87odZjyVgbld3SxkBDq473OsxiqLAO++8A8/z0Gq19jVC2ut1dDoCb70lEcclGCuRZQzd7hhLS0s4fnwKjFE3Pj1dRWpFEclLXBdm3+m6BQCK7tIykmazysYMgqrrBAjUtGlAmgpwLgy5p9PRQAoEAUOn08f6+hqeeeYIoEzWNGMWIPMCQMDzmNpFEsjSeQWKwlHH04Qa6urCsFR2dTRSJv9ZrsCUmeOTicLWRgTUWTtI0wRJEiMIZjEcjtHvD7C+vgrH8RBFMZIkRJIE5j04qdWcdPuhfFMiCAF698rgOBxM3bZmSgBsHqmWZWUkUBTgqn1mUsLjnHIqQQQiA5BbaTe1rZ62T1R7T4YKPAFsihKzuxTJGNnhES26uq3rEtAC9dGsLU85coRCo3dZ2gru0KFDkFJiMBhgdXUVFy5cQFEUmJ6e3lGO5IPcYT4IWclOgPlJh/mY1b1SRoAqR3I/tdcOs9fr4ezZszh58iTm5uZw9uzZfV3HXgHzX/5FYnWV9nYzM2Qrt7KygpMnD0EIopQTEUUijqsOriiocwxDMmEfDj14nsBgQH/wjoNNRgRlSeNQPWKliaBEr+fBcTg4J7MEXUkicPt2B6PREKdOLQBw1b606j45d9Bur2A4bCKOYzQavmWoLuE4zJBoSG7ClOZRgjFHXaeE6zKl95RwXaGcfwjI7ElhEBCZiXI7dEantMhNHI5DzNq5uVmUpcBwOECvt45OR8D3fcRxgDRN4Cjjc6iMTH0Okqk4RnZjM2/t0SwT1ihUAZgezcqyBFdfwCYZtFJK6koVeNsEHQH6siA9z4xmmesazaUzAYi1KDGbMMQ5dYxqxAur6wSUU5AG2ruNZh0H5Q66y3sVY0ToSpIETz31FMqyxPr6ei1HcnZ2dksj8gfFXt1LvNdez3MvMk+WZQe2A36U67EEzMnO8fr167hx4wY+97nP3dVt33EcZJNkhX2eeye1vLyMS5cu4eWXX0az2URRFA8l8eTSJYl3363kF8vLQ2RZDydPHkGz6UPKUgU4M2xs0B/y1FTdiEB3nfZnHEDjW810dV2JXq8yIqAYMLodvTzU5WlCEEBEoBs3FuG6HE8/fQSOQ7Z52mO232eQUqDVStFoJBiNRuh2e+j1+nCcSI3fAkjpKZDVkhIau0YRzLmCQOdyEijpUamUAr5fKgkKgWdRMBSFVOkqVYD0VlpN+i/H1FQCxlIAAqPRGKNRHzdvdgBw5XfbgO/7YKyyDKTXdHMcmFSuRkIIOJxTp8Y4WJGD2bmX9gs9CXJFQXtTxgggFesVIOarMVAAwMscXFwAl8sQ0oXEK5AsqRN9GEPJuSESQUogz+GoEexkx6hN3E1Zf4NCdZwyiujSFxbozXnA5TjOphzJ1dXVmhG5lq583EayOznPYDBApF6Dj3M9loCpy5aM3CtlBDiYHeZuSkqJDz74AO12G6dPnzbf4B5GpmZRSPzP/yng+5QJ2e224boOFhaeQpJwrK/TB1qSwICllofo8n1gMKCuq9nMFdhQB6ijv8g3ttrbJUk1mk1TIgTR/eh1IMlJgVu3biEIppAkLbMHBbQZAklHCGAYsowjSWLMzYUAZpFlGbrdPq5dIzlIHEeYmwvhOBHItUeYESt1mhXYay0lfZ5wk1JSFBJBUCotqQRjhdmzSlnP2Kz2kdqvVoMpRxAEiKII09NAUZTI8wE2NjrIsgxB4KDVapjOk469tTTF83gFbKKsAHJypKp2k0ZWUpaA71MH6Xl1Ms8WHaMj/gNMXIdgArwAJP/fKPzPQ0oPht0kJRzbd9YezU4Sj7TZgd6BalkJY8Tg1ZIYISCDAELp9+53RVGE48eP14zIV1dXceXKFRRFgVarhTRNjfPN/ahHaYd5UEklj3o9toC5l8irBwmYeZ7jnXfeQZqmeO2112rXp7Mo91O7Bcz/9/8KdLslhsMCS0uLGI9jRFEEzpkh5tAkjXZ+AHWN5IrG4HnEatUax17PR6fD4LqkmdTVaFRdqDYlCILNRgRBQOcdjcbY2LiJqakFxHFUc9WRknaS4zHtSjUDVdmZYjzWJgIh5ud9ZNkshChRln2srfUwHq/C931MTYUIghSexxEEmsVK15xldoA0OfUQMAsw5qMsR+h01rGwMKNAW5j4L3q+uLreav9pm7nbH4hBwBGGDTQaDQghIcQQvd4AvV4fZZmp8W0M3/fgupVkp9Z5biExYbrTA8g6T/nF2uxaxlj1xKpHv8lWDwLglyGdBKwoidgjMzCsgolqzVHbVYLGrVK9gbQGU7puFSRtkX/45GjWkpWUTz1VN9h9QGUbkQPAe++9BwC4evUqBoMBGo2G6T4PQqeo61Hykh0Oh08A8+NaUkqcP38eL7744o5TRoAHB5h6X3nq1CkcOXJk0+8PMs9yJ7W2JvB//2+Jfn+MO3eWsLBwBP1+CSklgoCj26UP5VaLmJmeJ8C5RLvtmm4qDLlZWVGjQTu/qSnUIrnKkrpKPZ4dj4kx22pJY+JOjFmOouih3V7DU08dB+fUfZPWUz9GgdGIAJrkF8ywa8nIXZ9XmE6Yc440baDZbChwHqLbHeLOndtgTKLZTBBFCYLARxxXYdC+L8zPAO04u90eVldXcPz4YQRBYO1hmZkqeh5Z5amGDrY0RHevem8pJVNACUWcijE1FSNJUvR6Hbiui06ng/G4jzRNEUURoiiE51VxY0TC4QYgbTGKLEvDoIWs+8wWRVFZ50lKI5GuW9nY5TnAXLAihZQlGAJCQynIJFafY0KDqSPBhOch12CidqCY1GtOzvHt0WyzCaHGpQ+7OOdG2ymlxMbGBlZXV3H9+nUAqElX9vO3/CA7zHudp9/vf+zDo4HHFDAZYzh9+vSu7/cgAHNxcRGXL1/Gpz/9aTSUYfT9qN0A5re+VWB9vYtOp4PnnjuG8ThAknTAeQHGhOqsgI0NB2VJx4xjp6aztCUlgwERacKQdI4U/UWdn76dHfcVhnXGLGPAYNAH5xIvvLAAxlwIIc396WEJRJGWfbAaQPq+NLFgZERQjTI1Y5bSQQDOY6RpgjQFgiBHtztCp9OGEANEUYI4pk5bGxwARBBaXt5ArzfEkSPHwbljADkMJYRwVa6ngI7uIrchoca2dFsa71Z2eLaZe31XyRTQ036W8zmMx2P0ej2srNyB57mI4wRxHNWYtyiLmoxkk8REAaQEUFqmBJiUkej3EXMg+Anw0XkAI0A6EDwG5CzACBwlYNLETSSY6iA5UJeR2B0t51UOppQQOuJLkYSKkye3e/s+8LIN3hljaLVaRiud5znW1tZw48YNdLtdpGlqAHS3pJlHaSQ7GAyeAObHufYy1jwIWYmuydQEKSXef/99dLtdnDlz5kBHN1vVZJ7ldnXxYoGzZxfB2BgvvbSA8diBlAVGI2J8at1hs8kNCLVazBB99Fg1jqXWyYNzIM85KLy5Akg77ksTbPS/KYtYwvdLXL7cRlk6ePrp42Z8q89FnamwQqeZIcYQa1TC9+kzXh+z16tM0z2vGrEGQRUMHQQCUnpIUxfNZoowFBgMxuh2++h07gAIEMckB+n3O5CS4ciRBcRx5b6jU02opAJNHTcmIIQLnZxCXa9ULOP6mNb+7NI7VSKCaf9bDtcl16G5uTmUZYnhsIth/zIGPQ7uziDwQ6RhUMvBVAc0/5WeB4YSKCV8BVBMyuq2UO9jBZ5MrIAVHwDSAZwRBE9Rsh8DeGT2onwijaR6NgBnEiCVUFanpyghLSBENZotS4jZ/5+9N3mW47rvfD/n5JxVlXVH3HsxkQAhkhIpkaJIeZJfREfLb2OHHdo4HP4HvPLGWy1sLxz+CxztjXe9cLQj5PDCg9Ryd9vu9/SaoiiCIDgBHEAAF3eqec7Mc85bnMysuiCGi4HQAPwiGMQdqrKqblV+8/f7fYdVuzy/Sz0q6cOdgMzzPDY2NtjY2MAYw3A4PGScUEpXms3mkaQcP0+knyeA+Utc9wOYD8PWDuadakk9z7KM8+fP02w2eeWVVx4Jw+4oHeZolPI3f/MxWtdYXt5Ea7ci0zQaDq2WolaDen0OkEFgCkG4Ks6Hdtc4HguWl+eM2ShSjEaWCGT3jvPnvGhE4Lp2ZJvnMJvl7O3t4Hk1gsAlCObkHuuoUzJVLcPV901FLEpTOxKu18VCooo5dFyr1ZwDZCkpKaSJlYG6NZB3gJilpQjXXSPPFaPRiL29q4BHrVYjTYf4fq2StJSG6lrbr+daTYPvy0oWYnetDsbo4sLKFJ17GWRtb1eOZrNMoLVbgPHngdVxMpaj/4OX2PtI1Q3GQ4/uOCVV67j+Jo04qsT5RimEGOGqfwO1Dzk0wqcRbB0Khi4Bq7TVk+kbIGNMGCOMQOo9jN7HcBK4qWMUNxmzl92s59ndZZ4jyisbKefZm8VtF+bu5MeP3/F9PD/EFx/tBUfv/IQQNBp2J/3UU0+R5zmdToe9vT0uXbpEFEXVaPdnyUA9aof5ZIf5pA7VwxrJLoLVYDDgwoULnDt37oFSUO61FgOgb1XD4ZC/+ZtLuO5xarUaSSLp9+3PwlDQ6Th4XkqSaBxHUqvZjigMJd2uPZnZTrMEIA6llJRBzp5naDQswJUA2e2WgDYPaJ5OZ4zH26ysbKKUxvPGVRdqOzBTjDvt7Wy3akexVgdZmqbPn2MYcmiPqTV4ni6JnNXeM4p0ZWxgAWt+0g0CU5irG0ajLmtrGzQadabTMZPJiFargxAuzWZIrdYoJgeGMJwzgW349Vw7WXJdbFC27UKtT6ymIIdiTR80UJ7IzKHOswypNgZE/g5C9EmzxI5TzQcsJRsg6mhzneHIpddLyLIMz3VpRCkN74cIphjVQ5iYpfgDlNoC+fRh39nFnScZAsssNiKD3EU4GZWdwgLQGq3t1VIxpjWTCdL3LaDdtD/ldqNZrEnBUWUkP2+AeXO5rsv6+jrr6+sYYyrpyocffshsNjtknPAoDAvKetJhzusJYN5DPSzALO/nxo0bfPLJJ3zta1+7r1icBw2Avh1g7u3t8eMff0K7/SVqNb+yaEsSQ5myYe3drAav0wEw1GrzTtNxYDyef8iiyHZo1u0Hul0rvdAaOh1ZNQz1+qIRgd1jDgZDZrMD1tdPEkUu0+mguC+7i/R9Tb9vvU3jeO7aU0ZrlRXHFiClNEVyiJV05LklA5XgacF/DpCLXag1M7A/s+AqyLIx29u7nDhxDNetkaYQRTV8v06zCXmeodSIVqtFnuc0Gh5KNQjD0I45xfxB2s6ztNMrsz7L/acdF9t9q6IMjc5zBeSF3rJk8U4weowxEa7po8Qy4CNMH9f1QDgYUQPVJYn2qNXP2ZP0aISnfgK6j2ZmR8ZeDiZAchktz1aPVdw0UjXmNIIrYCJQIwQSJVbnkWDlmsGYuTylkISU7j2fy8x0nMOdKdikEmHTS9Q9XGQ+KsB8GMex7+WYOI45deoUSim63S7tdpuPP/4Yz/NI07Qi23yRz+sogPlEVvJLXvfzBjvq3u8ox758+TJ5nvPNb37zvlxBHlYA9GIZY/j4449ptzv0el9mZUWS5xrfl3S79kKh0ZAMBvYk7rp6QVIiCscZe9JfWrL6Q9BIaQlBWlvyip82ENgAACAASURBVJTWBL0Ez9K0ZWnpMNEnz2E02iNNp5w6dZLZzGU8tiSX4dDB9wVhaL1ey/3oohlAvW6JlL4/z7Y0xjCdlkzVOUCWILiYTALlHlMU+Zi6YLQasgxcV3BwMKLb7XL69HEcJyhe28NAXa87aL1UyGc0So0ZDvvs7u7j+4I4bhLHMUHgFs485S53vrtcBFUhrPG6lILJZMLu7i4bG8eqHbLvXMPR50GAIEc6q0AfjIeUI4T0MIRgNMIIDFOblwlEjQauchGmiUg7IGIMGqEnTMaS3BnPgX7xzZPnKOdFjFQI9QnCDcn9V0CuWTAso7y4BZknyypZSeVfWwBi6RdbhlHLRRnJ8eM3BYDeuX6RDQUcx2F1dZXV1VUAptMpP/nJT/j444+ZTCYkSVJJV74Il6G7vW6TyaTKsPxlrscWMH9WlaYp3a6NvnrxxRcfuEN8WIBZ5mqGYYjrvshHH80ARRQJer3yNhQWcPYD5HkWIOPYFEbkdkcmhKDdts46tktyDhkRWJC1e86S6BNFFmRsB2dPOp98so/neZw9e+qQ9GQ0ciqijN0t2p/V66Zgt9pOeDSay0gaDRY6yDlj9maALBNMLENWFybsFLtLWd0uijQHBz0mkynHj2/hebJ6jqWVn+PoSgmhtR0Hh6EAGjSbDVZWDHmeMR5P2N8/QMoZcdwgjmPqdb+S3syJP3OJSZ5bsGy325w8eRzfD4u/S4pvzmPwABdHDBF0MGyAugbujCxLMYwQcobjehj5PEK6oFXR5Z3A5FcQhCA0AnvxYryvkk3bjIfbCC2R/mniWhPXdZGeh9QdhKljzNfQ4jSIwLr/ZF0wIxB129UuVppipER7Hmkxgy8N3hHikOPPodFsHKPvQRIGP18kmQetMAzxfZ+vfvWraK0r6cqVK1cqWcvq6uoXlvl5cz0ZyT6ph16lX22j0eD48eMP9EZ+UMbuImAu5mqurGzxX/7L8NDvld1SkkiyzGZFxrHhxo0cY3LyXNDrOShlx4FxPL9NoyGrMW29bjvIODbUatZ83XEsi7ZWmwNzHGd89NEuzWbC6mrCwsqKIIDRCNJ0iOu6CFHDceyubjSajy/r9cNAWgKdlKY670ppiCLL9i0nByWY2xGzrKzsoshU/5ZSs7OzjxAOm5ub1GpzSQpQhVDnuaziysCOcBfB2bJkfZpNn7W1RvG3GDEY9Gi1Rvh+RBTVSZLoEGvaGtYPGQz6nDixie/PP8aek0JufWIxYwwOWk3IOIMnU5TeBzTSdJHeKbR8DiNPHXL/0eLLGNPD4RMwY7SJ2O7+ClsnfOLop5BNQXtkqs9+51nymaJZ75CEl4EURzkYcQ3lfAuZfYSTXwDAMMPI1zCeHesuWvKJNMVbMFUwN4HlzVmc+X10M49yh/lFH2fxGFLKQ5mfaZrSbre/0MzPm+uJccGTeqh1/fp1PvvsM15++WWuXr36Mw+iLgGz3W7z3nvvVbmf//RPE0Yjq02s1SyQJJYrQr+vK4an1rKKvQpDpyIENZtz4LNdoyFJVNFlSdLUai6FkHS7klpt7vUKkKYT9vf3WFvbIIrCwhzAjmGtyTlIGVCrrbC/P2Y06hVU/RDHqeM4biVlsc+z7BhLI3c7VrW6zVJSUgIklOPQWm2+q7S+smDNA3L2969TryckyTJCWDlMOQq2j7fUex42M3CcOaCX+89yfKuUfX08r8GxY/XitciYTEbs7+8CgjCMaDQCBoMZaZqyubmF79tOu6xchYjMEot838VgnZdcN8M1+xhiECClQrILaojJ30SLr2DkSRA+GokMfh3Nr9tXJs8xzjaO+ahIPIkw0sUXUzZXZ2hOI9O3SXOBmrpIJK7fIjeXCXkL40cgfMgkrr5Ark9ghH/IZk8BzuIce1ETWpolBIFNQKnVMPfRzTyqkeyj6GTv1MX6vs/m5iabm5uUmZ+tVot33nkHYwzLy8sPnPl5cz3pMH/J60E+OPdypaq15oMPPmA2m/Haa6/Z8dXPwAv25hJC0O/3GQwGfOMb3yAMQ65fz7h0aVrszgyjkUuWlR6x87Fqo+Gyv2+v/ut1y571fcs0lbIcf9porH5/zphdtLzb2XEKCcr8MY1GffJ8n6efPoXjeDiOqaK7hLD6SSvNE2xsxIzHdZaXDa47o9+fMpnsYYxidTUkjmvFeNmOYvPcWuxlmSzAbZ5/aZ8HC24/por9ktIau2stmc1S9vZ2WF1dJwhqzGZW/ld2npYxWz6h8j1iirG0xhhZEHPsDrUEzxLEy+dZ7mJ936dedwFr6D0aDdnZuYHWhjiuMRr1McZeJIA1gNDGRbi/hmf+J/bjbdDOV3FlBxSF7nKKlDN03kVpD1fs4bi7oFfIxfNInpvrM/MFcwO1h5NfAeMhjEAbBzgHrkS4UzwJfhBbw4I8ZzLo43guCBcpZzjaByYIZhhzWGe8GNWlpUQaM7fGK39eaHLUfTr6/DKNZO9FulJmfp45c+aeMz+Pytl40mE+qVtWqd88CmDOZjPOnz/P+vo6zz//fHWbh8G2fRDAtPvBT5jNZnzrW9+qzLv/6Z/G9Pv2PpPErbrGRUlJEFi7uiSBNJ1hcyl1wQx1KhN2e5sSEKjMAaCUi1jCzvKy1Tu2WvtkWcrGxplKBlIyZo2BRsMSjISgYMKKyqUnjn2iKCDPmziOotWa0ukM0Xq/6FJtQLPnyQWiz3ynaQk1pvBxtY9vNrNdYwmyk8mUVuuA06ePIaXVxJXxX+V92POXrp6jUqKQg1CA5ZzQVIKl7TAXSUaWOFo+pnL/meeaXq9LkqzTbCak6Yw0HbO7u1u8Vj6NRkIQ+CCXwPtdlBkj8os4+T8jlIcxQ5RJcNwGuc4wLCHFAOk17LGQOPmbKGcZrY9Zt598gjSfsBRfR6jLVgYiU8BmYmonRIo9BDOkmSLMBCMaCCloNpZw1GW0maJmAGMQBjX9IZpv4YRrVWam8TwIAoTrIvN8PpotDQyKUisrdiZ9H/WLxJK9W90vKN+c+TkajWi327fN/DzqcZ5Y4z2pW1YJdnd7E5X7yueee66KBCrrYXSY97vDLEG83HeUpKE33pixs2NHZHFs/WFL2zrHsV6ueW6JjMOhKgg+ogLSOJ7/27Jg569PrSZQyhTgCt2uw2wmcBxBuw03buzg+z5nzx6vSEAlY9YY8H3FZGJHvLZbs6Aym9nvdbuln6shzx1qtTq1Wp1GQ9Pvp4zHY2azFu22R70ekSQhQgRF0LM4BOgWIKEc07outNtD+v0+Z85sVp2RBUhTjXxdt9R+ShynNClYZPwuakbnfw/bzZe6SQrCkwXrUsKS5xkH+5+wsS4IwzGGOrVaQByHLC2B1jl5PqHbbTOZTIkin0YjouH9vwhzDccDK9qo44oWQmSAQRiB644Aa9uGyZAiBjEkFxsYnePy70jRww9ThKyBcBAITN4Dakh13jKkaSJEDcwAzBCjv4Kj3wdRQ5orOL7CSA9t1pHpFJ39iO3tV/CDkJrv22gvChbt4vt60eDddS1g3mc9qpHsLwoTVwhBvV6nXq/fNvOztPS7W43H4/uSxv2i1WMLmPf7pi4B807WddeuXePq1au3zdd8WB3mvd5HCeLPP/88cRzz3nvvATAcav7t38ZEkQUd+zlUzGaGIHDpdA5LSsAmkBwcSOp1Cx7GOIAhigRxLMhzhedZE/JOx/7MMk+dKp3DdTOuXt1maanJqVP1iglr93IQhgqlrFZyPLbdYbM5H9N6njlkoRcEVIBr3YIESRLQbPpIucx4nDMYTAovT00YRiwthWgdV+PT0jkHLBjv7nbI8xlPPbWJ54nK7cdGldkTluuWILg4mp3/rPwz2bFy+bsWIKdTUb0Xrfm8KG6n0Vowm03ptD/lqc3zSBHYsaqJwf1PlB9fx5E4Th3fb7CyotE6JZ9dJjM9Qn+MZhlJBiZDuDHWDUgjZRdEjFZdjIkQwkOILoLLOMLH9WKk0kxnTYTpgSgY2VohtD22oAd6iDDP2LxMGUO+D+5nGHwwPuRnEXofaIKUuE6MKyec2FplNNFMh0PGkwm5UngHB8SRJTkZKavYLoB8ZeWB0kge1Uj2UVjwfVHSlcXMz/HYTjAmkwmvv/46S0tLrKyssLy8/Dl2/mQyeSw6zEefhfMLXncCO601Fy9epNVq8c1vfvO2b6CHYbF3r13q9vY27777Ll//+tdZXV09dPt//dcB02nKZJJhjKDT0YzH1q5tsWssR5gAQeDgeYokMaysWCNxKTWgaLcNvZ5hPIbZbP7Bqtdl1WkFwZQbN/ocP77K5mYdISpPblzX0OnMMzKtjEQUjNr5c7KpJnY0W6tZCUcUmUI7SWF6YPeUFow91tYarK4e58SJk8RxzGw25vr1bXZ2bpCmHbIsx/cNrptz/foNssywtLSFlJLxWBZ5nLCodgiC+VjVEn0smcfuQEtSjx2xTiaS6bS8nzlYet6ivMVeaIxGY/b39zmx/jFS2GOo3AV1QD67Rp6XJgZz0pGdbIbUayGBZ3DcpvWDNRphBhg1QWdd8qyH1j5Z6pKrGsaESCcFmYBRyOz/AXWDNE2RIifwlgE7ijbavimMzNHSATFDyE8Q8jpC3EDKFYSoFYklGYLy4jK1XrImAwRG+tSCgJXVVVY3NvDCEO377A0GXN3bo3VwwHQ8phC9Yh4wjOBRjWQfRT2KPWkcxxw7dozl5WVeffVV1tbW6Ha7vPnmm/z0pz/ls88+Y3d3t9ivj+67w/y7v/s7XnjhBaSUvPHGG4d+9pd/+ZecO3eO5557ju9///sP42k9UD22Heb91u1GodPplPPnz7OxscFTTz11xw+m4ziki7FF91FHBUxjDB9++CHj8bgiHS3e/tNPU95+2zoHeJ5gPK5uWRmDOw40m7LQEdqTebutmU4Nk4liPHYLkwLbQS7KUErGbBhawk6joRkMOgyHA5JkFWMipJybsNfrdldpZRpzyziwe8fpFMJQ43mmcMMxFfO27AyTZDG6a55MYp+j/V3HMRw7FmBMyLFjMJlkjMdjrlw5QCmF70+JomWWl1cq8/eyLPlokbAz7wgXLfXK/Wf5elpj9/nrMX9uJfnJVL6zBwddBoMxGxvHEbxNmjUBF8+bWKYrEyyhaA6WjqOx18AGhESyg1ZO1fFImaBU0fk6A9sBosEIhH8aQ8va26nPECIkyy4gnWUc3cIQgPSsbZ3TBDcEaggFQtcBgcEg1AhNgBFnkPr/g9y1x8ADvWs7TkeRO9/CSB8cKkP30HVZThKWkwSlNelgwGQ8pt3p0KrXqQOrq6v37av6yzSSPYq/68OoEpgXI8vArnZarRZ//dd/zfe+9z08z+Mf//Ef+a3f+q0qF/So9eKLL/K9732PP/qjPzr0/XfffZe//du/5eLFi2xvb/Ptb3+bDz/88JHaAt5cTzrMeyzHccgXTaOBTqfDT37yE86dO8fTTz991w/MoyL9ZFnGm2++ieM4vPzyy4ccQKSUZJnmX/6lX30vijyEsIzR1VUH1zUEgcL3FZ2OptdTDIfWNL0U0UeRU+kak0QyGtkTfq1mT/7NpiKO8yI2y5oR9PsjfP8YWjvE8Tz6C0yV1iGE3WO6LsSxJkmspCTLrN4yTSX9vmQ6tZZ9i0zV0jkILLhJab/faOjCic3uKScTyWhk/4tjn3rd0u1dV1GrraC15vr1a7TbNxgMhhiTE4bWnMF1bTSZ1oLJxHaftvOUh+QiZS0SfQqDN2xMl+1Es8yOgrMMdndbjMc5m5sniCKBFqfATIEir1IYkGuUf04hivBmrN1gluaY2U/JOYNSDbSOi+7fSmiEmCEdawovAE/2kPojtGqj8xbGGDI1RjpjhLOEcJeR7gzhxGjxDbTzq0DTAq3qAxIjVjHGBbOFpEfOCVJeQ7nrKG8F5bkYeQb8k+A8hcNV5GKkWJ7hOV2k/gxo4ShlzcdXV9l67jme+vKXARvO/Prrr3Pp0iXa7fY9TVmejGTvvW4HzEEQcPz4cf70T/+UH//4x/i+z8WLF/md3/kdfvM3f5N/+Zd/OfIxvvzlL/Pcc8997vv/8A//wB/8wR8QBAFnzpzh3LlzvP766w/0fB60HtsO82F4sBpjuHr1Ktvb27zyyitHvvJ9WLKSO4FuGUL9zDPPsLGxccvbX7wI06kmSQSeJxgMcrLM6gOnU7cCwlrNrU7+jYZLr0cxQtWMx9bg3HXtuMuGO9sTU7drn2OzKel0DLu7O9TrHs3mKXq9IVorHMd2np5nqNXszrIczXY68+4pSeYj4WZTV0xa35/vMYUwC8BkgWg8tm4/1rBg0fnn8/mY4/GYdrvNmTMbuG5Q7FwNs1lKrzfm4KBHEBiiqE4cxzSb3iGt5uJ5MggsAJbkIGvdpwtLwTkpyhKESo9YTau1je/HrK4uF12nQDsvIE2G57yLMSHaeQnNGqiSWGQ1qkoZhL4GuoPrZhiTAjlSDoFyXCZwZGqdknQGJkUJD7IZBhcpZghnCSkFggxH/8RqKAFUG0eNMfIpjDCQXUWYmh3J6qt21OoCRHj8EOP9CpqnQV1FZjuFzR6AtkDraBASAwT6PeLgMkJ5OGqIFi+j/RcxQpCvrBB5HidPnuTkyZOVr2pJTgnDsJJG3Okz+GQke+91lE7W8zwcx+HP/uzP+PM//3NarRazxbHOfdb169f51V/91errkydPcv369Qe+3wepxxYw77fK7lApxXvvvYcxhtdee+2exgQPo8O8E0t2b2+Py5cv3zGEut/XvPWWYGsrRwhrPpCmpebSrUapSWK1lELfIPSuQxbQTJ7BUGN/35DnOXkOzaZbpZTU66IiB9n0EcX29i5LS0scP94oTNdzhMjRmiq6qtsVlR5xaclUY89mc07mKYk+UpoCZG3Xmef2WL3eHMB8fw6Q9fo8Y7PccULJBDa0212GwwFnzmyhlFeBnTU8D0mSkOPHl5hMDJPJmF6vTbudEQQRcRyzthZijMR1TaXjNMaCdBTNDeEXSUBAEUVmL3729q6ztLRUCMrnTFutJUq8ghFfxyBACQJ3vjcVwiDQyOx/gmnhuX3b/aHRJscRCmMGhaZRkYtV6xRAhOf2MdQLI94ZjlsDWQOGCNUD6kVDrCFPQXRAtzFGIZwQXAkiwmQdhC51eBqpuiD+A+H+3xg3Qcx8DLbLNaaNMWsobSyPyAxwwsvkeYTj+zALccxljD6HTtY+JyO52Vd1PB5XqR5pmrK0tMTq6moljSjrUQDmz3siyhd5nPJ5l3+Xxfr2t7/Nzs7O577/F3/xF/ze7/3egz3IR1hPAPMey3EcJpMJb7zxBltbW5w6deqePyAPq8PMFhdr2A/rJ598QqvV4tVXX72jDdb3v99bGKW69Hr28cSxBcgwFFVWZSP6lNn4A1wnoN8bA2+QrP5K1SVF0aKkZL63s+46U3Z39zh7dpN6PaTbtWPXycRax9nAZ2t2UEo7kmRuwl4CTBRZUk8p37BdKbTbc4Bc/FzXanOQLfeYJcgGgVUrWC6J4dNP2yilOHbsVAFQJciayjvXjk0FjiOp1+scOxYXsWNTRqMhly+3kdKtwFMI2yZ7nq7GxfbruWVfaZWX51O2t2+wublGFNUrQC0DsMHubcuLiZulKa4LqKsIvWNdcUSEUgOMSXHkDKWsNMAIjedkaM4i2EXKPYRT7B8NuDJHSB/oY/QUYcCIoX0MZobwm4ADWkA+BdkAMtB9hJl3dsYMEca1IKv3wWyhvZcQ5k1LAlIG4fUIzA/IzGlQGwgdI/EwuUIKB4wAR6GS5Lbv4bJuleqx2H2W4PqoLeu+6OP8vHSYcPcx9A9/+MN7PvaJEye4evVq9fW1a9c4ceLEPd/Pw6wngHmPNZvN2N3d5aWXXrrn5XZZX8QOUynFhQsXCIKAb3zjG3f8MF26NOWDDyzd1Pctg7PZtGQR60KjmE4zAn9Mp+0g8us06iGDUQ0E+E6XYb9b3JtBShfPs91SGIqiU9UMh3329kZsbJwgz11Go0UTdsHBgf2gNRqlRZ0FM8+zhJ8ss2A3GNjdW62mK1AV4rDgP0lYkKWUIGs/xK5rjQ7y3I5DS0MFUEUgdVQYVc+7UM+zAFmyXcssY6tFXbTUq7G+HhfpLBlZNmR3t02eq2JUGOF5cSUpsdFoprDCg9FoysFBixMntvD9sALL0vjAPpY5WJY/K197CiN2sil57hL4iiyvg6kh2bam6kW5cojhGEKkGHkWV/Yw2tj9qJmAdMjTKcZ4OE6Kcef6TEEwl5WYLpIIzAhtJDKfQgWYM4SRGKdvSUK8Bc5JcJ/F8AzM3sFR7xUWfTle/gGp9sly8LwhIqthxAQISevHKDevR63bdZ/vv/8+47FNWkmS5HPd58OqXyY3oaMeJ8uyLyQh5Xd/93f5wz/8Q/7kT/6E7e1tLl26xDe/+c2Hfpx7qccWMO/1KtAYw5UrV9jf3+fkyZP3DZbw8IwLStCdTCacP3++2vHcqbJM8x//0aPZhL29nCAQDAb2fppN1/7bTKl5P2LQ0kgDUo6ZpZvFPRhqjZzcaOr1jNVV6Pdzssy+puOxHRUfHLRwXVWYzEsaDbngMQv9fkiebzMcDpGyjuc1UMrF96HVsh/QOF6MDytzHikeqymINnZvaXWbZUrIHDzr9RJwy/Bne/s8zxkMrlOrrVCvN/A8q68MghJkNbOZrEaq5c601JqWXeiiKbvnuTQaS4VTj2Y2GzIcDhgO93GcgKWlmDCs4TguYWjo9Ub0en22tjaJovnFhAX8OUGodBAqAjzIsvlu117wCITYwHdSC0TGADMcr4lBIZiCyBHU0KKGUB8jGZPJNQuUBFbWYmz4sxCTovMsSo9BFF9rhVDWcg+RIswIIxyEk4LwMEojZIJAYgiR+Qwt+iCaaCNxVRsjPECCUWjtMB1dxY++hRQ/Ar+PkWtk/q+TRTUo1h82TFveM0gsdp/Xr19nMBiwv7//ue4zDMN7ut/b1aMEsi8CpG4updRdjzMejx/IFu/v//7v+eM//mP29/f57d/+bV5++WW+//3v88ILL/D7v//7fOUrX8F1Xf7qr/7qZ8qQhccYMGFuc3e3Ukpx8eJFHMfhmWeeeWBJyMPsMG82T79b/e//3ef69WnxOASDgX3+vi8YDgvfTvUBeDMQS0RRTuy3yPQ2nruMIxWdThPjrTCZ7NLvi0py4fsOk4lid3eP1dUA3z8GWHmF1rC0pNG6dMYRrK2dJIpydndnjMf7eF5Or1cnimKCIMDzRKXbTBK7u7SSEioT+NnMRmaVZgaNhqlGsYvJJFDKUgRpOqXd3ubkyQ2CIEYp29GW3WUUaUYj+8G0pB1RdX5xPJeUWN9XU7BV56YHeW7/PkGQ4HlNksQgpfW77fX2AF2YMwi2tjaJY1HZ4ZWOP2U0pA3JnoN1EMwdhFx3zrw1YgUR/CbkbwEpQq6hvF9D5m9C/jZSQiZOQ9ZCCAfHSYrO0cFxBgjZqI5hU1QKwNYTG/OlJxihQU8RbgjStZ6yOSBDwIAeIUQMBnIdkqczXEIyPcXzE4RSGEIEE4zMUKlBmSG15VNIforMtN2nOl9GLD9FGARorVFKYYxBKVUx1B3HqUD0Xqper3Py5EmMMRXJ6/333yfLssqUvNls3jfoPcpR6a28X38Wx3lQ4/XvfOc7fOc737nlz7773e/y3e9+977v+2HXYw2YR6myeztx4gSnTp1ib2+P8VyseF/1sACz1+vR6XQq8/S7VauV8aMf9Yvbs5CkAVEkC+KMxDctRiOJMPuYfEB77KPFCYSzhu/7GPc44BNFc7BsNCTtdsbBwQ02N5dYWWmS54Y0tQHUg4HGGE2jIej37cnOWtOFNJsRzeYS9XpOqzWl1+sRBEOm05hGo0Ycx0wmDmkqmM2s209p5F6vHwbIxca9XqcA1DI307KH9/d7PPPMCfI8IM85lG5ycydbqxnSVBbyj7kJvFJ2Hzl3+6GQrHy+87Rs24ClpZBms0mvt41SGtcVXL9+hSgKiaIGURQTx/IQIB/2mZ0HSpeaTUsysf8pcQbtnEEr8D0wuQD+L1z3NFJcADNFoJDStdIXYYlXjmPfO0YbhOhhtItWg8IsQoNsgggtWDoRiMKYXXUQ1CglLWhldZaAKwc4Mgcx5mDYprc7oxEa1hoH+E6OyfaR1HH8TWCAyEcYUQcUwvkhuJvAU4e6Sq11BZzlhOZeus/FcakQglqtRq1Wq3afnU6Hvb09Ll26RBRFVfd5L8D0OJJ+HpekEngCmHescvex2L39PCSNWMOBT5lOp/zGb/zGkccU//zPbZSyJ/xGw+PgQBfdj6DXyzHG4LqScb6Fml0AFI4jMToH2aWx9Cq9fgDCAuzenixubxgMxuzvH7C6eoxms1aZsFvGLJRhz3aMWhJZHIZDO1KNYxsZtrISkyQxQhxjOJyxuzvG866RpkHhPBIyGgXF67hIfjE0m/OUESEscSjPLcjW65qdnT6TyYRz5zZRqrB2E4cnDHFc+svax2v/TJZVW69TjWY977AhQhhaYC1/tpi5aXeXkGWKnZ0bxHGD1dUmIIgizXhs/W77/et4nkMc24uERsOtjAZs51nqO03x2GznK4TAdcXCaLgEWoVQH+F6e2jxFMJo0O8wSWOiYAxmD5igcg9tMsDFdWNybUFPMkA4CeAACvQUZDmazRAqqK4tjBpYL1g5soCqcvATBA4by+dZW/49TPpTUDOGEw9HreG7isw8g2/+D8I4wAEGFx19itBXMc5Th/425Ym7fL/f3H2W/75d93knMFu0hSu7z1ardciU/Cjd588TkD2MOgrp5wlgPuZljOHTTz9lf3+fV1999dAV5sPqDu9X3FyapydJguM4RwbLd98dsr8/xfMsEHQ6GaORZjDICQKvejy1mkuvew7JOzTrU3rDOtJtEsYGQZdmc4Mss8brs5mm388xZsj2tnWlSRK/kpRYFx5Z8FiFbAAAIABJREFU2LcZGg1JloHjqILtao+ZpqCUU53wl5cNg4EgDEPW1nyybJksyxmPx+ztHTCdKpIkZG0tRsq4kF9Atzvf7TWbVOPcONZcvdoCYGtrY+GkaYpEFFEwT00VBZamFmTLDrLUapZVOgaB1aOW7kE2DqwkCJmCcCTJ85zd3R02NpqEYVLcp2XJBkFIEIRE0TJpqhiPx3Q6uxwcZEXXWadejyqbwdKAfj6a1Yc6T5uKZZD563jiMkLHCPMps3wZrTRRmKJUDUOA44QoXbr/9BGyYKUajeOVLOvc+sXKOhgFZBg9AscpTBM8hAlBeBY/9QhIAA9wQHWR4jOEHJFmDo7xCIIYo4eMxjeQ3gjppAjhQnANIT7BiLubft+t+8zzvPqd8jN3lO5vsfs8ffo0eZ7T6XTY3d29a/f5ywaYTzrMw/VYA+atdph5nvPOO+/g+z6vvvrq594sDwMw77f6/T4XLlzgueeeI4oiLl26dKTbzWaaH/ygxXBo254w9JlOdZFW4DIYlJISl/FYU294eDpBq3WC2Gc2c3BEj27PAaFpNiW9nike0wHTqeD48S2kFFidnR0f1uuCNFWFNlEUt1HFONapjAOSZL6DXHT+KfeD1u3HYW2twWSSMJ0a8nzM9vaYyaRTBOaGCFHHcZxDY1pjFNev38D3a6yvN4kiU1jYmYKlOifwJMlc+xmG+pCx+6IdXhjqIkXFdrjGWEZvmpaayzkgO45gMpmxt7fP8ePL+H7t0M9KgpAlJAmEcAjDBktLDfIcptMJ4/GQTqeD67rEcY2VlRBTjD4X48Hs61V4y6oBOv2Y3F0C7ZPlAZI93NpvY8S+lYk4qxj9GYIJQkyRC0QfRw6BEJ0PMUZZpyDhggzAKISzQuGsYDWYonhe2tj/iudozACUD+IzJukAVxwQxMsIuggUzaCJzI6BGWCYkjsfoFKfa52c5dUhtVrtSCB3u+6z/L9SiizL8H3/nsHGdV3W19dZX1/n5kgspVTVfSZJ8ks3kj1KhzkajR6LLEx4zAHz5hqPx5w/f57Tp0/fVu/zswLMGzdu8Omnn/Lyyy9Tq9WYTCZHHuv+27+1GQwsWDYaXgWQYWhHpUki0dnHkH1EPnbJp2doJi/QH7wPKBr1jP7oJLhLeJ4oQKY8ATU4dmwV37egMploXNfef6sl0dp2cLXa/MNt95hzjWS/LxHCEmFs0okhz62hQLdrP6ylxZ0FFcHqao0oqgMG35/R6UyYTHYAw/p6SKNhDd339rZJknV8v14YHCwCpF7Qki4CpAV4ISyzNgisuKG0sMtzsdC9mkM7x8WKY0O/P6XdbnPs2LHCMan0dbXdrH0+lri0aO9nma8QRRFLSxFKCbIsYzYbsLd3QJ7nRFFIkkSEYYzN25w7/2AkkQMIjzRN0UZRq8doJ0SLF+x+Uf07oDAYHCZWE6sLsYoTIowP+EjRRzhzVrhQOUjfHkfPEDoqwNNYDSYBiIl1A1IpwvfBXCWQNaSSCLrYC6scmX8CSJBbEF7GCV5C6BHuLOSjjz5iPB6ztLTE2toaKysrR56o3Nx9DodDDg4OWF9fr8hDi93nUevmSKyy+9zZ2eGDDz7A8zyEEMxmsy+UlPOkw/zZ1BPALGp/f58PP/yQF1988Y4ZcI8aMI0xXLp0ieFweEvz9LvVzs6MN97oE0US35fFuMkwnSpcV9LrZbhij6X4PN2R3avF3kX6gxdBRAg6pNkyxnkWx5EkiWQ8nrG3t83yMgRBg+k0RylRmLBb1x7fl0X3JA4FUFuDd0Eca1zX2sJJqZjN5pFhYBmgc+NyS76ZB0vrSlJiQdYGSCu1hOPk7O1N2d9vo9SIRqNBlllf3DAUVfcXx3OwpIgeK3efrluauZem6/OUlXpdV7vKm1m4dv8pK4/YbrdHv99na+sEQSArtx/r4jMH7jA01a7SEniodrOWTVvmgLpE0VIRTG3IshHd7pTZrIvv+yRJSBTZLls6McacRGU3rKwnmmLkaQw1jNGgr4O6jjJNIAUZIPLChN/tFwYGgFE47oLdnOoXTkD2Yot8DHINRA9QCO1jZIwQdYTuglizvyccJG0EpRm7BGWDq8EF2cL4N+xj8X+TrePPs3VCoLWujAg++ugjfN+vdo1HPUkPBgPeffddvva1r1Gv12/Zfdq/i7xn5u3N3ef29ja7u7tcvHgRrTXLy8usra2RJMlD7Tx/njrMB5WV/CLVYw2Y5Uj2448/pt1u89prr93RHQfuP7j5firLMt5++22SJOHrX//6oQ/cUR6HMYYf/GAfrW0As+f59HpWEtNoeFy7JqjXDZ7zGcPBCGEmVl5HhCd+SlBfIgiXmE2nkP8UJ/hVrl0bc3DQYmtrg06njdYWbKLIOgQZY6jVBMOh7ZA8rzRhNwWAWlu+PLcj23bbKZ6PqfaFYAk25Wi20dCVpMRx7Ii2JN14nqHTWQx/div26LPPnmY41IzHI8bjPVqtsPCADfF9t9Jluq6pDBGsG9DcNGDRc9Zx5kHQUCaOUPjo2q5Q6zJa7IDZzHDs2ClgLksBC4KLgdIlcC4ShKyxu/XPLfeTizmbUkKzWS+sDw15PmUymdLvW/uxWs3DMZK1xgFCZGgl0LnBiCky+hW07hfk1ime06Fk7wg5WZCYgOuMEDLBmBytU6Q2aLlcmMEPEeFvIfRlBBqTdUBGNk5M5xgtwGi75zQpKKc4jsDoCYIJ2q2Ds0webiDlNTBgWANywOPmlIzJZMLBwQEffPABs9msAqTl5eVbAkir1eLSpUu8/PLLlc/szd3n4n9AFRB/r+AphKhCl5955hnyPKfdbrO9vc37779PrVardp93O8/crbTWj0STeBTAfFyyMOExB8w8z3nrrbeIouiu7jhl3Sqt5H7rTvuO0WjE+fPnOXv2LJubm5/7+VEyNd96q8+VK7ZriCJZjWWltKQWe2xNI76KysYgIlw3p9+bkOsmwo0YtT20CREMmI5btNs5x49vsbwcsL/fKwBSMhhYjaDr6mKPqJnNbJpJabtXq4lCDmJHnotZmbWarMa0tZo1gK/XdeE1a2O9JhPJyoqm250TcUqDArCd2vZ2l9lsxrlzm2gtWVoyrKyEeN4Kw2FWmKjvcO2aQxxH1OsRjUa48DgO+9aWklspDXGsq5QWsL9X7g/juAQ3Tbu9QxAEbGysABboy27ZaicpxtaiYNTajtEC/fw+w3AO0KU+s6wgOBx9FscBURRgTJM0nXGw/ymbS58xmqzSiHZRuoZAIUQHN/9BZW7gyj1g3h24UmFMOjdmd33ULMUIH0mG9p4FEYDRSO1i3K8i0wugsoXRrMaYIegaQiogxegBuAFCWF9YkcUgFZIcIy7jmn/HqCbIBk723xDmY1Twx9WetKwoijh16tQhKcj+/j6XLl0qSGK2+wzDkN3dXa5cucIrr7xyW4C6GTyBqvssO1CY70bvRbriui7Hjh3j2LFj1e7z4OCAd955B611ZRh/P91nCepfdB2lkx2NRlXo9C97PdaA+cknn7CxscHx48ePfJujmh3crcqR6q2u3srx8Fe/+lWS23hp3u1xjMeK//E/WgvHc5BSEYaSKLJG61FkiCJFpxuD1rhuCrjkChABnlskhBiF5w3ZaVvnnjC0ZJVGQ9Fo6EIvmDOZWLcgS+4xxPF8FCuEOKT7bDQsyNrAZzBGUqvlzGagtVORgJaW5t1fEBwGyCii0mPWajk3buzheQ6bmzadJU1hNpM0m5p+XwIBy8s+Ui6R55rJZEKWdfjsMyvOXlqKGI1ifF/iuhaQ81yQZfb5lBZ9YPWfJbBZlqy9gNnd3WV9PaJWszs/37cga/MybWdonXoknqcLQJwbJlR5lZ8zabcYZ2O65qQlpUpCkiyec0q7vcux1RDP8XGcGUbWwEg0CtQMHIURCYbAdoZ6gN00Z2RqCYx9rTx3iKGOESFGPI/jdoCRJQzpLrjPgfAxoo5QLcAHMcOQkisP1xWWKGRmCLOGHb96GCUQpIDBiFW0fwFp+vZ5iVOAQao3UaYF4vYn4kUpCNgTdykFGY1GADz//PNHdsQpgeFW3WcpWSm7ztt1n7cDmMXd59NPP02WZXQ6nar7rNfrFYAepft8VCPZo1j9TSaTJyPZx6G+9KUv3fM+8mHtIW4FmKWc5eDg4K7j4bs9jv/1vw5wHOsR63m2u9RaoZRDu21P3mlqyDIHIRogJVENWgcOg64iaW4y6I/wvRFK98jMC5w9u0mWaTzPLXIxJWtr0O/b1zAIZCUpKZ5l9a9m0x4vSSiyMW03NZmAEE4RXC1IkrnXq+ctMk7tjnA8ts5BNpdSFvmXik8/vUEQJMRxE8eZy0Hs6HYRZK3MQ0qHtbUYx4nZ2IDJZMp0OuDgoAu4rKwE+H4Dz/OwDjuiIvcsEn2sgYAgy1L292+wublMvd4odozW0ciCvCi0mocZtGUHaSUm89fLrdJIbNeTZeVYVx7SfC52ntPplFbrht2ZehPINK5jgVYwQcoUIY+h8h6z3CXyW2QmsRc8QuE5eQGWIOW00GBaX2DhnwN9HkwL0Bj5LFp8CTn9rxi9g/ACEDWMidGzNq7fLEazlhhktZyAmSCUD9QtN8kbgJyAksB04b0zf+5HrVIKUhqgHz9+vDJhr9VqrK2t3ZMRwa1kKzeDKBzuPo8KZJ7nHeo+h8MhrVbryN3nowLMo9QT0s9jUj/LbLySPOQV0UVKKd555x08zzvyePh2de3amDffbBciboGUbqGdtGOi6dR+0BsNl3T6GYEcEwc7TAYu7/x7wHjYQJkByUbMxrMhJ069iNZbDIeKRsOt7PRsdFeG77uFVMQlTW3HWKuJYk9p00n6fVm58NTrDtMpgCk6zbnVW2lJZ3/PahltZqTtdq18A0AWX6eMRtep1TaI4/hQPiZYstB4LIuUElPIQWyCiA1/LjvGCClj4hiUysjzEa3WAXmuWF310DohCEKknLv9lDZyg8GMGzcOOHZsE8/zqy44jnXVVZdknrKs762oXHoch0JHaEFwTkgSFWu2fI0WV9elHnM0GtHttjhx4gSe59qLIPMceX4BrX0w4AcxWvsY8RK+dwnp1DBFQqUrSu0kIDSO4wOBBTvTRab/ijJTDE2kHCKdFiL/ATCzdnjCtXtKPUWKCEEOqCK5pIbVZGq0XgZHY9yvI83rGOcTIMDgWsMDMwAzwTgvgFi/p/d9SZBL05SXXnoJKSUbGxuHxqEXLlyoAGl9ff3I49BbyVZuJg0t/vteSghBo9Gg0WhU3We73eb69etV97m6usrKysqhi+ifl2zPJx3mk/rCa5HlerP93oOU1oZ//uedalxbr3v0evZDnCQe/b7CdQVhKFBZn2b0DpoV4Evs3timccwDd43BCK591OfEM6dQeguw3rO2W7PknvX1Bvv7HSaTfZKkxmjUQAhrN9fvu+R5CcxzY/FFgJRSFMxRXYGsUhqlbBfa6czdeOJYVJ3iyopNLZlMxvT7B2xsHMd1bdcQx3aMakHWdnRaG0Yje4IpwXSRzHOzpV6z6TCdLlGvN5FSY8yYfr/LwcGUOPYZDBKiyI5uZ7MRnU6Pzc0tksSpOshFMg/YfWRpkGAJQvP0kyiiYtBCmcFpv/K8RSP2xXgweyEBgk6nzXA44uTJLcArjPANrvsSSjyLcCa47hglNIgG4ODyAWAQCIRIQUQYM8HoHCFmZCbBMEEg8Dxp9ZQIpNlDytXCZm+CMOPC0MAue4XKQdTAZIVWNMTIiSUe0UDIdWCCcbbI5XNI/SPbS7q/hpFnrR2jcxbl/d7n9pd3ft9r3nvvPVzX5YUXXjgEJrcah7bbba5du0a/36fRaNwzGafsPl3XrbrPLMvY39/nxIkTZFl2ZMu+m8vzPDY2NiqwL7vPCxcuALCysnJoRPyzrtFo9KTDfFJfbJUdZqfT4d133+UrX/nKAyWglPXjH3fY2bGjrShymU419bpTdDC2u0pTjRABo9EEkXusrEp6fY/JyGF1bcL1z5SNpwoCsuncnL3RcMhzg+fZveVgELKysgloZrMZBwc9ZrOU1dUQYxKiKKLRcBgM7GOT0so14tgUTFeYTBRaW7/VkjFrQ53nnWazOWfMlkSffr/PeNzj2Wc3EcItxtvQ61nSjBCWhTs3R5jvPy3bdf6a1etllJjN3CyN3bMM6nXJZNKgXm+wvKzJsozRaEyvt4PvT9HajtbCUFa+ukIYosjuLkvXnel0TuaJorkJwqLxgP2ZWRjNll2pKTShupCUlI8Rbtxok+c5W1snkHIRaAtSkIgxREh3pTiOwVXfAxmhTR+jc6ScoVSC3UGC50dgUgQ5UgxsUonJsdZ8AwQCg2NBU2Bdf0yKYYpwAoRQIDzsMvxZm06iDhBaIBhjSDDOEir4Tyh+zTJuxdI9AeRildOZJEl4+umn7woiNwPSYDDg4OCA8+fPAzYAeW1tjUajceTuM89zLl68yObmJhsbGw9NtnK77jNNU15//XUajUY1vvVuCtp+VPVEVvKY1P1enQkhHniH4DgON27coN1u88orr1SU9wepwSDlzTdbNJtO0d3Z/d5sBkkS0O/bM3q97hWRXiGuoxgNLTjVEsmgZYCMpO6RDsYsrcd4nvWUbbdNYUSgCYL5lXiS+PT7HseO1YkiSaeTMhqNGQwOmExc4rhOFNUIQ49u1548okgwGDhFJyywO66y+xOf22MGgQ1/9n3Y3j5gNFI89dRx+v05yMbx3C4uSUzVtTnOnO0qhM3f1NoyVMEauduuTZAk8/1nEJhidGwrDAVCBHiej5QpWtep1wP6/Ra93pQwrBGGdWq1aCEv046FF0eqi2BdjmbLx2bMPCC6lLHYTrXUtpavi2ZnZx/HsUxMm9e5CMJggdYU3a41kdBK4TImVSsglnFEFw0Y5yyIJVy/jpKbONnfIRA4rh23YzJgCMZB591iMZqjZR2ED8JDIgvHHwlqAtoD0UYQYYgRBGiRYNwvo7ygAMgIxP2/9/M85/z582xsbNw12u5WZXXCCUmScPbsWdI0pdVqceXKFYbDIUmSVKYJtwOkLMt46623OHXqVMVov9Xuc3F0+6Dd52effcarr77KYDCg1Wrx9ttvA1TgeVSwv1MdVT73ZCT7pO5Y97Lcv1WVYmzf93nttdceSE+1OJb57/99h4MDKyOxAFmCk1NlXkpZOsoYkEsEtS0Cdw+jwN1SfPzB0+RTzShNOfv154iWl8gyg+fNZSzNpl+xX4NAMBxqosgCkJSwuupTr7vE8QqtVka/P6HV2mU2E4U3qjUXL7uhJFkESI0xDkmiqx1sr2f3l3Fs+OijfTzPZ21t/VBDkiTmkDF6morCGMEycUtQMmbehdrbzTWXh80MqPam9jXUlRxke3ubej2kVlvDGMHmZkKeC6bTKYPBiF6vhRDWLH55OSTL5hcXnme7WWteYKpu2LJd57tLC5rzx2n3mOVJeG7i3mw2Cy9ZUQGuEHZ3ar8HllVbdOiexOTLxcjUQzpR4ezzZevm42DtftDWyEdbY3VjwHU9lAgLRu0ERzYwQlhlpR4gnAb2IiFAK40QIYhVMDlCd1Heb4BzAi0E5iFoCNM05a233uL06dO3lF7dT/m+z9bWFltbWxhj6PV6HBwccOXKFaSUFSu3tOwrvZ3PnDnD+vrnd66Lu0/P8w4xbh9G91mC/ZkzZ8iyjFarxdWrVxkOh9Wo+U5gf6c6qtbzSYf5pO5Y5Tj1fgJc0zTl/PnzeJ7HU0899UBguWgo/fHHQy5e7ALgeZLxWB/6Pd83+L6D70vS1O4gwxD22s8Q+E/T7eyxvHqKr//nhDzNaS4HFMx8Gg232oMGQdmJmao7TFNdGCM4dLv2uDZf014RN5se9foy/b5mPJ6gdY8PP+zQaHgsLcVAg3q9zLaUFakojqnCn5XKuH59hzheptFosLSkDwGk1raTA9vFjcf2wiCOD5uyL+Zl1uuH3X6sF64dF5csXCstsV2gzfrcZWsrIQybBTjZ118IQRRFrKyEZNkaWWYTSA4OdlFKU6vZFJY8j9BaFHvWw5rPRVMEGyI9B8+ye1QqY3//Kqura9RqpWvNnG3reRql5u8p+9osEI+kQLu/hsz/A092AA/jPI8RSwjsYzBGkqtnCJwr5CZGGIHjdOyuEoPAIEVunaCEtsklIsRoiTIO/em3SPy3cByNkVb7IoiRYoiWEv0QwHI6nfLWW29x7ty5L0wDKIRgaWmpSir6/9l70yC5zvPe7/eevc/pbWbQs2BArARJiAAIbrKs0tWNHUuRr5Ky5Uoib+Ukvo5d91Zulg+Oq1KJIqek3NhxYjsux3Ss1b6SLUuWRBKiJVleRKtkSSYlLMRKYl9m6+me3pezvPnwnnO6Z4ABZgYDgL7EU4UiwO45fXq6+/z7eZ7/0uv1WFxc5Pz587RaLbLZLLVajUcfffSmYHmz2oy4stXkZKZpMjk5yeTkZDpqXlxc5OrVqwDpnjabza6p+3wAmDfWA8DcQG3UHi8xT3/kkUeo1Wp3rOdMzAukhK997Vr8/yCXs2IJQtKhBbEwXqfVUiHOSiSv0+32WFrq8sgjj9LpqLdDcdSh1VLkExUmHJLNEjNgjaHRrp6GTuu6YDgm1Lb1dAyaz6tQ5WJRMDLi4vsenifpdHp0ux2uXKnHmroMnU4Bw9Bipxv1Ye31enQ618lmp8jlnHTXqAwBVK5mAqyuG9FuDwDSMAYjz2FT9oS1mhxLdX7qPBP5RvJzuVxEreYzPz/P+PgYnpcZCpROLPxknHupnIIMwySbzdPrFWOnpQ6Liw263Uqs+XTQtGwM0uo8k07XNCOiSMQWe2p3KaVGt9tjdnaWqakpTDNDv69+BwNy0cDQXR1z+W2pMTujhNr7iLQ6Ehekgx41iHBRbFYwnB9CRjlEdA1YQtMckhEzURdhKku9KOwgZAepOUhs0DKgCTpBFiOqAT4mRpyNmSESYsO7yqRarRbHjx/nscceW1No+maVbdts3bqVrVu30mg0OHr0KMVikfPnz3PlypVUtrJW8NhoXNlayD4ru0+lz61w+fLltPtMHJJW6z7Xao7wwOnnLVIbnfFvBDBnZ2c5f/58ap7ebDY3JSYsiiJeeaVCr+fjOCrPslJRizcFPAZhqEDNNPVUUpLPW8zMlGNXnO3oukWhoIAkCCRChHQ6klzOYGlJ6do8T0+7P01TpgCQdIM6jUaEbQtUlrWSlARBRLdr0u8n49yB5nJ01KXdzrJtGwSBTxj2WFxcIIoixscdpMwhhE+nU2ZiYhtRZNHtqr1fpaI+yJ4XDZkZyJj4MthjKlZsknoiY9mI6rwSkNX1JBRaxOc4AFbDkFSrHcrlKhMTE4yOKhZqkpeZdJn9vjIQSLrexC9W/V2nVHIJAtWh9Xpder0Wlcp1NE2nWLQwjCyWZaZA3O+rfazqGDU6nS6Li4ts3z6Jpg3ngS7vSqNIfdkAUovABEDVKD4hT9lIxhFyAdH/awyzC2GGSH8WYUwghE6kH0STPoa4CBLCoE8U9tFNBxlmkGIPmjyHro8SxXtIIWwKhYeAUTT/WwTdMlFo0Ol41Hsmvj7P2JYtGyao1Go1Tp48yYEDB8hms7f/gbtQjUaD1157jSeeeCK2JlQdb7lc5vXXX6fT6Syz7NuoYfxq3edG1kEq0WfQfdbrdRYXF7l8+XJqP7iy+1yLLR6Qgvpbod7SgLnRWg9gSil54403qNfrPPvss+mFYjOCqHVdp1rt8s1vzuD7qlMSwgDUubmuRb2uGCaKmBNi2wLbFszOzmDbPtmsh2XpNJuqHSwULJrNMB7ZChqNKB45EmsK1cU4lzPxfUkmo7qjbjdA5V8qN5deLwFmg3pd/UwmI9Ldp6oEsKBYNIkimy1b8oRhSLmsIrF836dUylCpBGQyJrkcqfNP0lElKR/5PPFYVzFmVXem/p8azQ5GuMnPgGLJJgCp9ojpq0e/X6XRaLBr11Z0XafTSTpWQS633CAhYcmq5zrYfyrtpEgJOJmMhZQOo6PQ7fr0+22uXq0QBCHFooXr5rBtJ5aGCGq1FrVajW3bJtC0wUd22JhdSrVvjCL1WJbZIejNgAxBm8C0c8tIQQpMA7TgOxhGFygiZR8t+BYY/4IochXYBg3QxhCygZQS0wgRmovU9xPpTyD0H0ZGxxGyiiQPxgGE0IAcgfbP0awFpNBxsiX8dpfawgJXjhwBSPeBax0RVioVzp49u8wX9l5XrVbj1KlTHDx4cFkn6TgO27ZtY9u2bURRRLVaTU0TbNtOn+taz/tW3Wez2UTTNPr9/qph2bcqIQSFQoFCobCM6JR0n/l8nrGxMQzDeNOYI7xZ6gFgbqDWCphBEHDs2DGy2SxPPfXUsovCZgVRf/WrV1NTgnzeTneNrmsShhGFgh6TSqLYASdgbq6MEB6maWPbklZL/bxtqy5RAblE0ywUOxOyWSMlpgDU6/1UppDJmGkYtNJ6Eh9PpJISSMypJaapRr2+H2KaqktqNHTCUJ1HLqfTanWxLIu9e7dSrYa0Wi2q1Qq5nIZp5vA8l1JJR0qVvhJFqivs9ZQZweioTO31lBvQ4DwymYHReyajAFLXEzBTHajvS6rVRXq9kPHxh+h0NDxvsGd0nGiZg5BtD6QiSjs5yMtUyStq3GsYipGbdIaeZ2JZRbLZIlJGRFGbRkNFUXmextKSQRAETE9PpFIbNcqXy4zZle9ssqvsYIR/hYzUlyBD9IjCHwdRQERXsYwWMpoEdJA1lWAS9YkiE0NrEIU9ZKTAwDa3E/nzhKGLbbbQdYdI202kH0CICE1zkNqzhJFEEKGh4jAlQt1mb49ZthI3Z7I7l0sv0uVymQsXLtBqtSgUCulI82bdyvz8PBcvXuTJJ5+8q7FZt6oEsJ944olbAp+maem+EIh32WVOnTpFv99ndHSULVu2UCwW1wxISfdZr9d544032L9//7K9s9AyAAAgAElEQVQAhjth3q4kOiXd5/z8PGEYcunSpXTUvPKLTRIO/2bQg96LegCYG6i1gF1inr5r1y6mpqZuuF3TNPzhlmQDdflyjzfeaMd7PR0hIJ/X6PdDpIxot5MxqEOjEdDv96nX53HdEq7r0u22abcDkjQzdUEOcV2BaRr0ehJdVx/IpaUgHe15npnuX4c7yIToo35H4Lpa6q6j6yqlRFnyqTFlECTH0FOQdRzJ2bPzOI7DyEgRKXU8T2dszMJxirTbAUtLbebnZ5mfB9v28DyXiQkrBTDHkSlhSf170EG6rjJGyGRUl6X0lgpos9mEQSuZn5+nUBBMTEwACpQHAKk6v35f7RmVKUHi/6q0kMmYONmzJqNQ215uxD4sMfE8QRR55HIuUSQpl2fpdDqAwdWr18hm87iuh2WZ2PYgHmyl+4+tv44M+kqDKUOE6KAF30VKH03OEoQuUppE+jvQDZ0wtABDSUeEiSRJ9YioNkYQ0W5GcvPoukloHkKK3fEomjjOLdG3asj4wink8v1XuGJfb1lWug+Moihlo164cAHTNJdFeF27do2ZmRmefPLJ+6Y1XFhY4MKFCxsCbNd12b59O9u3bycMQyqVCnNzc5w5cwbXddPnervjLi0tcfr06Rs67M2MKxvuPguFAouLi1iWxcWLF2m1Wmn3OTo6uiHS43B9/vOf58Mf/jCnTp3ie9/7Hs888wwAFy9eZN++fTz66KMAvOMd7+C55567o8farHpLA+ZGvxXdbpyaxA/dyjz9TjtM3w/5/vfr6HqGfj/AcXSWlnoAFAqDTjOTMWg0grRD2759G1FkYJoC2zap131yOSWwX1rqIiX4vvqgJYCWyZj0+0n3N2yNJ2i31ejWNFXWZb+vUkocR6NaTT64oOvGMmu8BCCHDdqVIfUcU1OjFApZdF3SaISEoaDXk3S7OmFoY9s2e/cWqdeh02nT61U5fTrAtm1c1yOfd+h2dUxTJYwkna1KBRmYGeRyA2P3RJIRRYoJOz7ukMmMprcle08VLzaI8vJ9lo2FV/rMKhLOMHgOHk/tHFWXLoTat0aRiOUMsxhGhq1bt8a/v5Bms0O1WiEMO7huDtd1yWScOFsz2WlKZNQF2SEMTXS9T69fANkDOjh2gUiaCFnHil5C8ihC1gEfQ28TGe+KXX8k1eo8YSgplZ4kEAKpCwjVblVJWQYXYuVglEh3JDqJvhYimRjw3bw0TWNkZCQ17hiO8Go0GmiaxmOPPXbf9mSzs7NcuXJlUwBb1/Vl+ZnDCSZBEKSmCYVCYdn1aXgc7TjOsmPebve50bDsMAyXdZ9RFC3bfX7sYx+LNcDWhrrM/fv388UvfpFf+ZVfueG2PXv2cCQe3b+Z6i0NmLCx9JHVwC4xT19YWOCZZ5655TfGtcRz3apefnmGSsXH8yyKxcGu0jS1dMSqzlWj1arg+y0OHNiJ72v0esoer1IJaLV8HKePrhtx1yDwPJN6PYnk0mk2o/hYSUeoji0ENBpRPNJUpu7qubFsXKlkKervCUDqOrGJuozBoEuzOUcmMw3YtFoSKbWUiKPiyQag1GoJNE3geVnyeS8Grw69Xp0LF8qEoYHjZBkfd4kidZErFKJlIc7DDX4+r8B5dnaO8fECIyNZIIqBchDlpSz3RHpew4HSSYZlUq470FyqgOqEVKX+33D+ZyajjAeiKGRh4TrFYp5cTrX+SoNpkMvlyOezGIZKWmm1GlQqM1iWCo7OZDyyWZ1+uBPNv4zQAmVPJ3tIbRxbXyRiDCGrQIhh9IlkBSkKSP0JQtMD4cZfGmaxbSe2YRPxeHnAME7Yverfy0koIjZNl1IiETd0l7erTCbDtm3b6Ha7GIbBxMREGuHlui6lUmldJup3UlevXmVubo4nn3zyjjuqlbXSsm84P/PUqVNks1m2bNmCEIJLly6tqbtdbfe5ke5zJelH07RlMptSqcSXvvQlZmZmeOKJJ3jHO97Bj//4j/Pe9753TUzhffv23fY+b7Z6ywPmRupmgBmGISdOnEDXdZ555pnbfpO7kyDqhYUO3/3uXPyNTsbxU6rDKxQsfB+kVCzOs2evIITG9PQU9frAbUQZdAvCMMTz1FhVCBGzXVUMmGmqi7zSSEpcV6dWU8DsunoqI0lAIKlhgHQcQb+fgKwa36lRpMQwdCoVSbPZotGoMjHxEJqmwG0lQCpGa4RpKnBRpuOJ+bna5SnzdBfDEPi+j2k2uHZNsW6zWSfe2yp5RDarMjZtWx2z3e4yNzfP6OgkhYIdGymIdB85nHs5zKAd1k66rgJM21avRxiSOvV43kA3CmqPm7z8yZg2CPxY51nEcXIpSQjUlxBlIagSZgwjS6HgUSqN0+v5tNttKpXrVKsq5zPnPkXO+AGR1JD6PtC3IsQ1kHUEdTTRJ4zyhOjIsIaezRKELlEUMTc3Sz7vUiiMxO9VpUlNSuHGoItWdoJxdyvVl7SQ5Mvo+t/jUkpOnTqFpmns378fIcQNmZKJiXrSkW0kU/J2denSJSqVCocOHbon3e3K/Mxms8mlS5eYn5/H8zyuXr267ue6lu5zNeLQ7di4O3bs4Kd/+qd5+eWX+cu//Eu+853v8NJLL7F//3727t27wd+CqmT8nc/n+chHPsI/+2f/7I6Ot1n1ADA3ULqu0+v10n8nIuqtW7eyffv2NR9jox3mV796OfZ2NfA8I734WpagXE4oniGzs2UymSyFQgHbNlO3n0LBolZTxguWJblw4VIcpuwhRDYeD4bYtsnSkkLCTEZLd5VqfDnMmDWo19WFVMmxJLmcShrRNI1WS2Vlql1lotuEVktSrdbodjs8/PBDaVKJ6wpaLeWuo9yDBBDQ7Sqm7eKiettqmordGnbtSTxnPc9A00aYmlJdm2U1aTSqdLtdMhmHfj+HaXr0+xqaVmdmps7ExDTZrLHMDk+RggaB1UnKimkqgFTergosOp3B+DWbHaSmaNpyA3XPk+lolnh0GQRd5uZmmJoaJ5NxCUP1JcR1B4kqw2NPGLj/mKZFoWDiOAWCQJlDVGoO88HTOI6N53lksxm60T9H+N9ByC6WnUNG4/FxW0gMVJ7nLCMj2bS7TcbKkOj/ki564FI0AFNxw2hWyvW9x6Mo4vjx4+RyOXbt2rXs+d7MRD1xtmk0GqmNXcLw3GhJKVNzgiT15F6XEIJ2u02n00nBYvi5JjrK9XjI3qr7HLbuS7rPZCR7q0pMCwzD4F3vehfvete7lt3+Yz/2Y8zOzt7wcx/96Ef5iZ/4iZsec2pqisuXLzM2Nsarr77KT/7kT3LixIlV11v3sh4A5gZqGOwS8/R9+/YxOjq65mNsVFby2msLXL5cjUeQAUtLfTyvjxBgGAOhf6tVoVDYEhugW2nXaFlqX5nJKLJLsbiVej2g2+3S6XS4fLmKrusUi1miKJvKGDRNT0fXiaQkn1duNb4v064xilRWprrfwHhd12E4/Nl1Nc6dK6Np8PDDk2iaoFCIYmNxLRb7qxHz0lLyO4N2e7kpe9KFqnBpBSpq1Evs0EO8j82TyRTIZCSW1aFS6dDp1DBNnzDUmZiYwDDMZfFgrjswRlBjVZVDqfaWCQs32YcOxtAqg5Oh57rSbJ14B6i61KWlHouLFSYmprEsMz2ObQ/iwZLnmPw7cf9JDBiSnaIQGpmMF4+podvt0ek0WFqqoWkGrvujlArfQ1JXpudE6Nbb6PqC+fkZRkdHyOVchEjM4xP3HwWQw3rVRPaS1MrR7Hq7y4RVXiqV1pTas9LZZtjGTtd1xsbGKJUUwW2tHZmUkrNnzxKGIQcOHLhv7M+ZmRmuXbu2bBS8UkdZLpdTHWXSaa9VogM3dp/Df5L0Fcuybtlp3i4L8xvf+MY6n7kyiEhGz08//TR79uzh7NmzKSnoftZbHjDvZId59epVrly5siHz9I10mN1uwF/91aXYAF0xDbvdZK/oUKv5tFpN2u0lpqcfIpOxUiajrod0uwGmabG4qFqoXE51neqbu4sQeWxb0u/3gR6zs/NoWsSWLVmCIEcuZxFF0G4HBAF0OuoYyY5z2PlH01iWS5nNGjSb4HmKwHLlyjUKhSyOk49lJYk0Rhti2oplIJvLaalUxHGSNJEk51PtBHs9NUZNjA1AUigMSDkK2FxGRzOUy2UsS0PXXSqVBSzLp9/38LwshuEQhgMQ9DyGdo6q6xrsV6PYxEGVaRJLSCJUdJiW7kwta3AcXZfU601qtQZTU1Nks4PzTEwYkrdI4v6jPGaV9jJJLgGQUhv4xVoDKz3Hccjn7diOz6fdbjK7+DiWMYNj+1jOKL6/nZmZK0xMTOG6dqozVd3j4EvBrUazanw8/FlSJv1rrcQyctu2bTdlld+uVtrYqTDtRd544w3a7faajASSUbBhGOzbt+++geW1a9eYnZ3lySefvOm5DjNZ9+zZk1r2rZTorIfJuhI8E3LP5OTkst3ncFg23J3w6IWFBUZHR9F1nfPnz/P666+ze/fuTX2MjdZbHjA3UpqmsbCwQKfT4e1vf/uG9hsb6TD/7u+u0GwqpkouZ3PtWgvT1MjnjdhtZolWq8n27Q/R7Ur6/R6FgkOzmYxVBztIXRepdR0oqUi/L3FdDcNw6PVcXDdPEIR0uz0uXy7T7/fZsiWLlB6ZTIZs1ljm/DOcCFIsmvFIUXVArVZAGEK16lOrLeC6W7Btl1xuwJjVNDG054NsVhmvm6ZM3YNyuQDfV84iCcNVsV0HqSWD/ZrqQpOR5qC7C1lYmKFQMCkWJ+n3Bfm8MjGv1ztcu9bENGfRtCyu6+F5GYazLZVN4GDsaBgDQlSiuVSEIg3XHcSKqS8jyVEk7fYirZbP1NRUDMCk52nbat+bjHOjiBRME0BOnqeKBBsm5HCDPZ5i5RpkMnmgQBBsVTFlizW63VkymQz9fh/btkjezuq/yxm/SSXmB0Ioza4a02/M6rHb7XL06FH27Nmzab6wjuMwPT3N9PT0DUYCjuOkUo6EcRpFEa+99hrZbPaGUfC9rCtXrlAul9e1Nx227Fsp0TEMY5lEZy3Pq9FoLJOvDHeew4krat2y8SzML33pS/ybf/NvWFhY4P3vfz+HDh3ia1/7Gi+//DIf+tCHME0TTdN47rnn1jW9u5slbvMmvzOz038C5fv+uoCr3+/z6quvIqXkh3/4hzf8wfJ9nx/84Ae8/e1vX9P9Z2aa/NmfnYovWuoCOTdXwfdDtm2b4Ny56+i6zq5dW9NdpePo9Pta3JFKbNuk04likFWAproVQb2uPGk1TfmgKseexIhA/X4yGWW712q16XY7eF4Gx/EYGfFiwCV2HBJx/iOAxHVN2m0lF+h0ynjedHphFkJPCUOFgobvixSA+n2dXk/t8jxPHzKDFzQaNw+XLhajFEhNU9nzSZlkgUK1GjE7O8fISJbR0fwyO7xWa0DmMU1otXq02y2gQRja5HIZCgUXzzNSAFMRYAOWbCYz8K5Nxt5Jqd2lev2WluYRAiYnt6CCiJUFXgKauj6I6xoGRPW6DshGhqEAcmB5F6VWrerLAalRgtovDu7b79eo15uMj6v8xiBo0umo6YPrOuTzWSzLit8TUewrnDxe8t87q/vhC5sQh8rlMkEQMDIywtLSEuPj4+zcufOenMPN6uLFi9RqNQ4cOLBpe9PEsq9cLq/Jsi/Req5mzjAcVxZFER/96Ec5ffo0hw8f3pTzfRPVTS/sDzrMdVSj0eD48eNs27aNarV6R99C19NhSil56aU3aDbVxaxQcGk2+0ip3HROn75EPp9ndLRItzs4pmma8V5JsWL7fRX+rOtQrfZTQFNWbepncjmLWi0BSD0dlQoRYVkW4+MeQrjouka53KVeb3H5coUwNMlkXDzPo1jMrDA2UL+7VqvG5OR2QMe2wfM0wlCxUIUg1o4m+0ODdjvZmWrLQqiHx5+FArTbSuOYTJ8cJ0k+gWp1kG3ZaPSZnV1gbGyMqSkn7fxUKPXg953NKsJSsWgzMmIhxCjNpk+j0WFubpZeTyOTccnnMwgx0MR5nlwmMRl8F5WxUYLAMEKuXZvB82yy2S10OmpHqkhAN2o5lx8n2WOKGLhkGhStWKoKxAeRYMt3oMMgXK9X8f0Ok5NTaJpGJqOjaaPxyNen2awwO3uWVqtGsVhYty/qWqper3PixAn279+ferLei/I8D8/z2LFjB91ulx/84AcYhsHMzAyNRiPtyO6lScL58+dpNpubCpawPsu+YWOElVrPpIaJQy+88AJ///d/z+c+97lNO983e73lAXOtoJeYpx88eBBd1ymXy3f0uOsBzO9/f5br1xViKCMCNdeLopBarcnY2ASFgkc2axMEEZmMMmGvVrtxDJlOpyNTE3bbNoa8Xq20g7QsjUYjwrIUucOytHjEGGFZBrVaP71fEICuW4yMWGSz4ywtKWlDt1vmzBliQHHpdj3a7TLQZ9++abpd6PUCVCD14Dm67uBCnM9ry8a0g12oIhqFoSSTSQKyNfp9NSItFmXqF5vJyHQXCiBlm9nZKuPj4xSLJp1OQlpJ5CAiTnGRsduPOk6hoEaqmmYxPm4SRXnCUKaGCZVKiG3b5PMZbNtLLfYSyz9NU+NT31e5oXNzs5RKWTxv0E0lSSnq7zd60qocThl/s1d7wiBQrOhk3KzuG6WRYCtH0yrmS3W31WoFKZvs2jWNaUoMI8AwZOq/CxrF4ha2bduypnHmRmrYZu5+JV34vs/x48fZtWvXskiscrmciubX63e73pJScu7cObrd7l0nGd3Msm9xcZHTp0/TbrfxfZ/HHnvstsxYgBdeeIHf/d3f5S//8i/fNOPSe1FvecC8Xd3MPL3f79+xD+xaPxitVp+//duL6b913YjHgE3CsEmh4JLL2WmqRjJW1bSEVCRwXSsd0yaMWXUstRvL57WYbanRaIRxjJdJpaKu3ErXOAB3Fd2lwDch+pimTqmUI5MZYetWSaOhyEdnzsxiGAZbt46yuKi6IjXpH3yLXg6Q0OloQ8YGirRkGMTswIF+NZfT0m7T8wYjVVgOQlLWmJ2ts2vXJKapp2DW6ykgSUBWPZ+B5tLzBkYHyTG7XWWYMDrqYpouQigNZ7db5+LFJcCgUMiQy3nouhkfU9JoBMzNzTE2NkI+766IB1NApiYByQhZ/X4TwwR138FzStixg3MbgKV6jdRI1jSVo5DqwCUXLpzBtiWPPfZoDKq33rqsvMgm48wTJ04QhuGGdJDz8/MbtpnbrOr1ehw5coTdu3enWZbDkVir+d2WSqWUkHKnlTByoyji8ccfv+d7U9dVumXP8zhz5gyPPvooS0tLXLhwAdd109d25Rej559/nt/7vd/jK1/5ylsKLOEBYN6ygiDg+PHjuK67zDx9M4zT11ovv3w57vQMDENjaanL4mKFKOrjeaO0Wi3CMEJKCynVMjCbtVha6qM8UE0ajQDL0mJGqCCbVRZ2jqNRr/fSn0nIQZomVpiVG+loNpvV6XaV7+lgBBrR60U4jsnSUmKM4LC0VGd0dATbtuj1+lQq19F1g4kJj3o9F6chRESRRi6XSDcEjYYiCIWhoFodyFmSxwalT2w0kotWktihSDLZrIxdgCIWFir0el1GRqZptTQKhYEp+8oubDhcOgmGTszn1W5wECgNItV8ZjIOup7B8xQTFRrMz5eJopBczqHbNalW64yPjzM2ZqUM2tiTHFBdqG0PM3FVlzzI9ZQMv+WGJSZqPy2wrAjbTgBSnXcy3QvDkOPHj1MoFNi5c+eGL87D48yb6SATQFmNnXn9+nWuX7/OU089dd98YTudDkePHuWRRx655QV/Nb/bc+fOYVnWMjLNektKyenTp1Pbv/tFMqpUKrz++us89dRT2LadGrAnhvEnTpwgCAK+/e1vs2/fPlqtFs899xyHDx9+y4ElPADMVd+o7Xabo0ePsmPHDrZu3brsts2I5lpLXb5c49VXr6buKUJozMyojm3nzp2Uy02klLGkRIGdZQn6/ZB83owdWEDTQvr9IN5TKIB0XSO109O05YzZbFYRfTRNgZQahWqEYYTvK32W70OhYKaetQp81dW/3+9RLpcpFtXFRBkWCIpFEKJPt9ul1bpOvx9RLGbpdBS5xHU1ul0tBRHT1FI9YzY7MHZXz0tg2xGWpYDB9zV0PcL3VRfY6ylP30IhYmRkmkRUP+xIlM/LZVZ5oDpaIdRusN9XbFflnKSl3d2wKcFKiUkupxOGo7guSBnS7ZapVCoYhkGrVUHKLLbtIYR2Q6D1cA2btKvXVQGkYSgw9DyJ44Q4joxzUFd/H/m+z9GjR5mammJ6enr1O66zVtNBJuzMUqm0DFAS55zV5BL3ohKS0b59+ygkqQNrqGG/27179y7zu+31eutKIJFScvLkSSzL4uGHH75vYJnIbg4dOrSs01f2mIMvRkEQcPnyZf7gD/6AV155hR/5kR/h8OHDvO9972N8fPy+nPv9qrc8YN6skrn+/v37b/qhuhdv8CiSfPWrZ1PwcByNM2eukM/nmZ4u0WwGZDI6QSBiYNPo9Xx03aTV8uPxkp3KUBxnAJAJ4CSVzZp0u+oYhiEIggjLiggC5ZOahE4XCuZQFNgAIEF13ck3016vwuTkFK5rxXITRTTq9yWFgkWvZ1Eo5LEsSaXSodWqxbFHLkJkY7MFPe3glH+rRj4fxV8eRJp84vvQ6Rgpa3RkRFKrRczNzZPP2+RyIymY5fPQaonU3EAZOCTmBFCrJSkiavw6YNAu96BdbgOo5DTJDjDxi/V9aLUa1OsBExN70HUNTeuwtNRhcbEWj3ezuG4WwzDi0eywzlOdWyajxrbZrALINayXllUi2RgePd6NGtZBPvzwwzcAiqZp6LrOE088cUuwFOFJRLSA1HcjtdubF6ynkuDnzSAZZTIZHnroIR566KGbJpCs5ncbRREnTpzA87z7Kl9JwPLJJ5+87c7SMAxUFmyHc+fOce3aNV566SU++MEP8vu///u87W1vu0dnff/rLS8rUXR6dQWUUnLp0iXm5uZu+Na1sr797W/zzne+844e+9vf/vaq0pR/+IcrfOMb5wDVIc7NzbN16ySel4m7qIBOp0ev1ySXKxFFEbmck5oImKaWJmoAeJ5DqxWiaSLWSCY2d9BqRem/Xdem3U52hFY6ilVEn4H/aTarwNO2BZmMThQJFherLC01KJWmkVJdFAsFg1ptECDd7erpl4BhqUg2KyiXewRBk36/iW1ncJwshuGSy1mxt6vapypTduLja9Rq6rGUzlEZqBeLRaanXYJgIFNRSSVqDzgyMvB2TXIrk/FnsTjQTiYJJQlhJp9Xx0k0nVKqTlRKFSitdqqSarWKrncZG5tECA3HWena02dpqUOn08IwOkxMOExM5CiVMngecae73nfU8mo2m7z22mv3VLKxspJuSmk8bWq1Gp7npYBiWRYiPIuQZYT/MnrwN6j9tiSwf5XI+rFNOY+EAXrgwIE1GYNvtIb9bsvl8jK/22w2y2uvvZaOxe9Xlctlzp8/z6FDh9ZE8PmLv/gL/vAP/5DDhw/ft/fRfagHspJbVRiGnDx5EiEEzz777D3xj0xchlYCZr3e5ciRq+RyOgsLFRqNJsXieCoZaLXU/DSbtVlcXMLzInRdo9cbfL9xHAPfj2KSi0a/r7pGNTojZcxms9ZQLuWAMauiuwZjZ9fVY0u4wW1ChPT7SnA/M1MmDEP27HloaLc33IVKhDBSKUuhoBNFShYSRaprcxwLGCWX28LiYkC93sb3Z7h+3SSTyeK6iuCUSEwcB+p1Zcpu22AYPebm5ti2bQLPs2O2a9IlkpKCPC9a5iDkOAPbvkxGhU0nTFfHIe1koygxelfuN7ncYDSbGLFLKSmXF/C8iGJxisQxR9MEmYwkl1Ogm8tpZLOKdBFFAYuLiywsnOP11we7wNXClNdSCUDs37+fbDa76v1EdBURngaRJ9KfBrF5o9LEDMDzPN72trel7/dms8nCwoJaeWz5ElPF76DpoLGEZAQ0G2SA2fsteua7QayzrV5Rt4rG2uxaze/28uXLLCws4Hkek5OTBEGw6ekna6kk13OtYPmFL3yBP/qjP3qrgeWq9ZYHTCWy76Y7noceeuiejUkS8tBKcP76189SLjepVCqYJoyNJVq5gaREEUY0giCgXJ5ncnIE0zRwHD0eWfaIIqUL1HUjZbnmchkajSD+u5n+XdnQKZKI46jHCgLlD6vrgqUlNdpVInZjiCWr8frrM9i2zbZt40NMVRmP4SS2nZgoyHj0qAArkU8UCnpKMrJt5fZjWRaWZZHLbaFaDWm327RaZSqViHzeoVDwcBwXTQtiqUqbc+caTExM4/vGsoSRXE4uO6/h/MpsVvnXeh7xuFfGO1DVRQ4zaAuFwc5RMZUHr5nrQrstmZ+fo1i02LNnjFwuIpeT8R9W3TNqmoqwmpiYSHeByYXNNM00P3GtF/uFhYW0g7jVz4jgFczuR0Aqt57IOETgfHhTQDMMQ44ePcqWLVuWBRIIIcjlcuRyOfbs6GK2vkcYGYRBD6FLBFWC0EbXDKALsgli4+SSOwl+3oxKXr/r16+zd+9ecrncHfvdbrSGfxdrIVx9/vOf52Mf+xgvvvjiA7CM6y0PmI1Gg1dffXXd5unATbvD9dTNyEPnzpU5cWKW+fk5MhmHkZHxtAPUdSX4N02BYWh0OgE7dmwFAhYXFaAIAcViAcPIYFkmuZxNraaQyXUHAJnYp+VyBiqgWKPZDAmCEDBZXOyn9xv+cOVyZmpsYBgRZ87Mks8XKBRysbm7AnNNU2xXZcgO/b4xBJCD+C/bFqmkBMA0dXo9tSv0PCV3GRsTFAouUuZoNiWdTodarc7581Vs24pHlxFTU1tj4/hBMLTyck0Cm5WhupQajiNT/WZiEpDLJTFikHi5JpXN3igxCUO13ywUJNlsn2vXTvL2t4+zY8cW1uOjOlwrPT51qVUAACAASURBVFE7nQ4LCwucPHkS3/fTC+xqMo5r164xMzOzJhaq2f1tkBoIF6REC46ghd8lMlasGmQbvfdJtOg0UuwgcP5rEKsTZnzf58iR77N3xzxjxctEQQ1pHLjxuUbzIHQlv9F1hGyCjIjCgChoEkRFZmoNtmxxN9QZbmbw80YrCAKOHDnC9PR06pE77HdbLpd5/fXX1+TCcyc1Pz+fZmqu5Xfx53/+53ziE5/g8OHD6yJH/fteb3nAzGQyd2SefidjlZXylCAIefHF17h+/Rql0gjT0xP4vkTKCF3XWVrqxaJ1xdhUQnulpyoWLYrFIp5nMDNTo1ZbxDAklYpHPp+NhfV6PDoMMU1jCEiNlGWrCEFqzAnLnX9sWxkb2LYginqUy3Ps2DGJrtvYNmkUmKYJdF1LyTEKZBXoO85ygDQMDSEUAKlzi2LnmwjfN1PCUaLV1DQRaxxzZDKS+fkFDKNDu+0wPz9PLpfBtl1c14zHx8qU3feJpSraEEFosMdcGSitusmBSXqhoECzWJTpn2TSmTAvn3761jKFjVQmk2H79u1s376dIAhuKuMYGxtD07TUWm1NLFQpQdaA+EkIoRgLcvDiiOgaeu8v0IK/QsgWUmQQnMVsn8Z3/wDEiguv7CFbn6BX+wfevreJqbWhBzo6gf0viayfWn53fTcgQQYgDMAD0cEyAqQ2TZsPEbbZkObzbgY/r7XUF4cjbN++nYmJiRtuv5ULz2YZRADMzc1x+fJlDh06tCaw/NznPsenPvUpXnzxxQdguaLe8oBpmua6wRI2BzBXdpjf+MZrnD9/gYmJUYrFPIuLrVRSomlG6uFomjb9vo8QKqUkYb9alo6UGtu2jQGjSAmLiw0qlUUajRDfV9mIIyNZOp0EqFdqEe10j+k4ibFBIn0Q+H5IpdKi36+RzU4SBCZRNHCRUccwhuz1BntM1eGpLlRKRaap18O4A5WYpkGvF6XHGESDiWX6xFxOUK1KKpVZCgWdiYmdSAmdTp9+v8PFi4uEYUih4OC6OUzTBkTceQ7s8IZdcnI5ZbFXLEpGRyWlkmRkJGBkRJLPD/SMK2tpaYlTp07dE3s3w1h9dJuQavbv37+27kQIpPEEIjgCMg8o3a7UHlU3R1exWv+VGonSRb1HbMBDRDOI6BxSf2xwPCkRjQ8h/O9QzGroogZYSLYBEUbv4/TN94MYjEWltp3A/lXM3v8JdJHaJH7mN5BaCfDICMGOLOvWfF68eJGlpaV7Fvx8s+r3+xw5coSdO3euSXpxK4OIIAjSLwuFQmFdU60ELNf6xeHP/uzP+PSnP82LL774psiffLPVWx4wN1qbYV4wfIyTJ8/xwguvUCqNY5pmbIGm7ud5DrVaFykl2axNq+VjmhqOo8cdl0G/H2BZerrjzOft2LAgw/R0ljDUaLU6tNstZmYa+L6B67pMTir/WdfVsSxFyvA86PVCTNNKj6e6xIBarUa322br1um4E1XRXQkoZjIazWaE6yp2qqYpH9peL8K2DSqVJKRWAcCAdWuknadhLM/OVLFXEtdNOsaIcnkGx8lTKhWGulcTTcvEodERhtFifr4ep7aYBEGOTCaDEBpbtqjnOToasWWLAsnR0dX3jDerxLEmSXW4l5WMbvP5PJ1Oh3w+j+u6nD59evXRrWyj9/8UEZ5H6nvx7f8WU/4OIjwGwiOw/wekvgsAvf95kC3AQgGmRMgyCjQjRDSzDDCbjWtk/e9imHl04YMUQAD0AAfVSXaWASZAZL2HnvnP411lYdX96Vo0n2NjY8zOztJutzl48OB9CX6GgYvQnaSvrNRBVioVrl27xqlTp8hms2vyu52dneXq1atrBss//dM/5Y//+I85fPjwPfX2/adUb3lZiZRJ/uP66tixY+zevfuWDMTb1cmTJ5mcnGRhYYEvfek1er0MmqZRLLqxU49y2RFCj4FHZSt2Oj5hGJHPu9TrA8ZsEtysTA50gmCY6KPmjfm8Gadi9Gk2m1Sr7RiMPCYmiqnVXDZrpkYBasdpcP36AgC7d0/RaKhxsOdpaJqOEMSOQ3qq1VRdolx2jGTsmZiygzJbCAINKSWWJchmEwmL+lkVEj1I4zh/fiEWirvLOk8lUxlY5XU6GpmMZMuWiGKxiZSLQJmJCY3paXXB2SgR5MqVK8zPz3Pw4MH7uh87duzYDcSaZHS7sLAw1I2NstX7LbTorBqlSh+pH8DPfET9kFgOLkbnf0f3DyuGqmyjOlBQkg8DKcbxvf8XqW2nWq1y7o1X+eFHfwMhXCBCyBlAIpkEESG1HfEY98buSIRnEOFZ0EpE+ttvOJfbVaL5vHjxImEYsnXrVkqlEoVC4Z6DZrfb5ciRI7d1EdpoDfvdLi4uAjf3u00CqA8dOrQmsPzsZz/Ln/zJnzwAy0E9kJVsZmmatil+smfPnmVpSRAEau9m2wp8cjmDbrcPSJrNNiAoFDI0m4lTj5WC5Y1OPTatVoDnGViWThiqjq/fD+l0QvwYtUZHxzCMYqxD7XHx4jxhGOB5LlFURAgLIQSZjMalS9cpFFzGx0eIIsUS9X1FoKnXB2CcjHNVgPTgnNSYVv3dtjW6XUk2K+JOEzqdiF5PMVjj6wAAnjd4i+p6l3PnVAyT49ipQTrAyIggkxE8/HBEqSSZmJCMjYUMPvtu/OchWq0WCwsLHDt2DFAXnFKphOd5tx13Jd7CnU6HJ5988r52MUePHmX79u1MTk4uu+1mo9ta5Qh9cQzTaKJrAQgTER4BOQva1huOH5rvQw++pvaLWKhuUQeRQ4ocyCZa/2vMNn6SixdO8uR+QO6G6A3UZSULtBHMI8kTWD9/U7DU+ocxe7+jdqpCEBrvInD+13WJUB3HoV6vMzExwe7du6lWq8zMzHD69OkbNJ93sxLLvbupe12L362u6zQajTU7Kn3mM5/hM5/5zAOwXEO95TtMUBef9dapU6eYmJjY8LfITqfDd77zHbZsGedb3ypTqbSIIhl3jT1Aks06MSgKbNsgCEi7LtfN0G77aJqgUHDiiCwl5VDsVJVLaVlmmkxSKAws9JKMSlDXJts26Haj2Li9T73eotvtYNsW1WqfYnGMbDaL51mrdJACXddXMGETxxqBpimLvTBMzlHdT3WFA8lHJmOkEhNF9FGA1Go1abUalEpTjI+bTE0JRkYEpRKUSjAysjEHpuSCs7CwQLvdZnR0lFKpdFOLsyiKOHnyJKZp8sgjj9w3l5Z2u82xY8fW1cWI8BxW62cBX33RkCqg+lz1N8mPPnNTIo3mv4zR+/+AftxlRoORqqxT6/04py89w7OPfAqNcmyM20cab4OogYguxR1qAHSR+rNExjOE1n+Wdrl24z8CEraVhRQCP/PbN2XV3qxuFfw8rPkc7sbW+uVoPbVRy73NrCiKOHfuHLOzs5immfrdlkqlVVcGn/nMZ/jsZz/Liy++eEfTsn8P66ZvjgeAycYA8+zZs4yMjGzIbqxarXLy5EmKxSInTixx5swSkIxVA5TIXyCEPmQw4OD7EtPUsCylq+z3Q4RQ1mwDIHVotxUo5vOZtAt1HINeT6RG5p5nxwHDAtNUDji9njIET8ahnU6XZrOClBn6/T6FgoWUWTzPwzSNGCDV8QoFM7aII/Zh1ej1lPesGu8OzNsT4o0QKhUl6USV56z6u6bB6KhJsSiIojksq8Y73/ko4+NGHKK9+RWGIdVqlYWFBZaWlshms2l3IoTg2LFjjI2NsWPHjrvy+GupJEPy8ccfXx8pI7yO3foAqlNMymSu9xGuzk3ewLpd2Zlo/a9g9H5XAa2AMNCYqz3D1tHvI6iAKCKxgYBIfwot/H7MJzMRcg61ywQwCPV3Eri/C3IOu/kfM5DgCCQeQeYjROa7b/+UwjB9TYZH0qvVyi9HmyXjaDabHD9+/J7neq6sa9euMTc3l9oPJqPqcrmc+t3m83lGRkawbZs/+ZM/4XOf+xwvvPDCA7C8sR4A5mrV7/e5ze/hhjp37lzq2rGeunr1KlevXuXQoUOcOHGOz3/+OJ6Xi/WOFt2uj64LCgUv3kFKdF2jVusTRRLD0GNruASAMqlf7ErGbAJ8tq3jeSZhSHwMjWpV/Yxp6oShNkS+UakljUYT32+Sz0/FqSKKSLO01MT3W2QygkwmRybjYdsWzeYgWWN5F6ovC39WTFji81Wm7J4nKJU0JicNxsZ0xsc1tmxRRuOnT58G4LHHHrun489kV7SwsJBeYCcmJti1a9d9y29MHGsOHjy4/nOQdezGfwI0UAAlkBTwvT9C6nuXsW6VYcZywwQRXMRs/xKCmvrddPeQy1QQtIAkfVtHXWdE/BgRajQbvwHSa5BGz3seLTiG2ftfgHDoNp1e9iug3SjDGK4gCDh69CiTk5MbMpQflnFUq9UNyzgSf9oDBw7cV9C5evUq8/Pzq3r1Jn63L7/8Mh/+8IcplUrUajW+8pWvsHv37vtwxm/6erDD3MxaL0tWSsmZM2fodrs8++yz6LrOt751EdMUFAoWpmnQbgfousSydCoVxbjRNIFhWGkHmckMM1edlMyj6xr9vsTzVAdmGDrdbki3G2JZJpVKN72fEIOX3XHMNB8zm1XGBtVqFd/vsX37QxiGyqY0TY12W0PTclhWgVYrpNVqMz8/h2mCECpXb8sWL+0mNQ16vYHcZHTUxHF0xsd1SiUj/qPhujcCobogHmdkZIQdO3bc8/FnsivSNI2FhQUef/xx+v1+ykJNRrfrpflvtGZnZ1N5wMaISslIbsiqkC5SKBbnaoYJp04eo+D8Iw9PfRm0JkGUAULymTeQFJGIoSvL8OdBjx+rMfT/BqN3IefQwr9h0F2q85Ji5LZg2e/30/3tzfSNa6nNyPms1WqcOnXqvoZggyKglcvlWxrb67pOqVTip37qp2g2m/z5n/8573//+/nFX/xF+v0+P//zP8+//tf/ek2P94u/+IscPnyY8fFxXnvtNQB+9Vd/lRdffBHLstizZw+f/OQnb7rH3blzJ7lcDl3XMQyDV155ZeNP/D7Ugw6TjXWYly9fBljTKCj5NpzP59M4n2PHLvOZz3yTIAgZH98SC+ujmGTj0OkoICwUPGq1AdGn3VZWeo6jY9smYSgJwwjD0KnVbmTMqt3iwBpPjWnVsVUnqBxtVJ6iwfXrM4DG1q0T6b7TcXR6PW1I5mLSaiWB1Mr5p9Pp0Om0CYIA03TYvj3H3r0jjI5aKTgWCmsbe3W7XY4dO3ZTQsu9rGq1ypkzZ27wY01o/gsLC9Tr9U3xfr1VXb58mXK5zMGDBzes+1W6yl8A6aPGsgYIi37mNwENo/sHiOgsYBEZ7yRw/nsQHmb7X6GFPwCpXu9h1a4Ubvz39o0PeOuzoZ/5OGb3f0bI2aEjRkT6D+F7z636k5sh2bhdJZrPcrm8quYz8ep94okn7rmkaLguX75MpVJZk4xGSskf//Ef84UvfIEXXnghNaGvVqucP3+ep59+ek2P+fLLL5PNZvmFX/iFFDC//vWv86M/+qMYhsGv/dqvAfAbv/EbN/zszp07eeWVV+7aa7eJ9aDDXK0SU+j1lPJTvb0cJcnV3LlzZ2qN1e36fOMbJwARGxFYdLtKHD4g/YBtm/T7IbmcFXvHijjv0sc0TapVdaFyXTsFS00TyxxrcjknvS2TMeOsTANQaRumGeH7IZpmcurURTzPY3x8JB3tAui6iZQJQBppR6rrAtc1mZ42KZVGGB83GRsz0fUm5fIClcoZHMchkymRyZRQXcetKxlx7du37776V87NzXHp0qWb+rEahsH4+Djj4+PLRpnnz5/Htu10lHmn3qVSSs6dO0e73ebQoUN3NJKWogCyhwI3AfRAgojmMLu/AdTS++rB82jNVwic/0btIods/sRgYICQ7YTcGl9ehm681blgYXX/JyQ6kkI81o1QYP0frPpznU6HY8deYf8jbXLZY0TRQdA2/8J7O82n53lUKhWeeuqpu27mfqtaL1h++tOf5otf/OIysAQYGRlZM1gCvPvd7+bixYvL/t973/ve9O/veMc7+MIXvrDm4/1TqgeAucFai6ykUqmkLjDDzLm//duTtFo9hBDoOlSrTTzPwbJ0dF11bb4fYhiCZlONUvN5j0ZDAanjmCmZJwHSpBSz1se2dRxHxSQlxgYg6XZ9ul217xwYuUecPXuVkZFRXNeN94yJQbtFo6FAtlSymJx04q7RolQyMYybfVBHGB0dAUglHEePHgVIweRmEUuJLdjBgwfvagTT7erSpUssLi7y1FNP3bajGx5l7t27l3a7zcLCAsePHyeKopSlOKyRW0tFUcSpU6cwDIMDBw7c+dhX+kjMoQGqBDT04JtAZ+WdEcyj+fHINMFAseK/xO+/iGWD2ZX3Wb7X9BAiD7KDNJ5FC7+PlFl1m9CRsooITiGNfcsO12q1eO34K7xj36cxtSvQFYCJ7/4OUt+7oV/JWmplzuf169c5d+4cruty5MiRZaP5e7ljv3TpEktLS+sCyy996Uu88MILd318/IlPfIIPfvCDN71NCMF73/tehBD8yq/8Cr/8y798V89ls+sBYG6wbrfDvHLlCteuXePpp59e9i30+vUqp09fJ5+38DyDarVOpTLH/HxIqTSKlIoOns+7KaCZpkGrNWgbVVhzQvTJEARKA6nrgl4vQNNCer0Aw3BotRLAtdOu0TT1dGTbbnfoduuUSuNYlsXYmI3nWTz6aJ7xcZtSSf1xnI2NGhPHkp07d9Lr9VKz6W63m7rRFAqFZabhd1svt1pJKTl79iy+72+4o3Ndlx07dqR2bsMauYRVPTIycstjh2HI8ePH09zEzdiRiugKCA+Ji5JxJB/91RjiPjKcuxEsb3ZsDUBDUkDKFlrcvQ7uoMBZHaQPsgxApD1CaPwouv+3aOHLILuY/T+E/sfw7f+RyFYX3WTq8MzjV7HEJaSMw0JlB6P7f904wpUd9P5hkAtI49CNZvIbrPn5ea5evcoP/dAPYVlWSqS515rPixcvUq/XOXDgwJrA8pOf/CQvvPACzz///F0Hy49+9KMYhsHP/dzP3fT2b33rW0xPTzM/P8973vMeHnvsMd797tszot8s9QAwN1irAWYURZw5c4Z+v5+Se5KSUvLSS9+n0WgipaRQyGKaGSYmMjiOycJCjXZ7iSDwqdXycYiyg+PYtFp9XNfEcVR0levqRJGk2ewNMWZd2m0FpIoQpADSMLSUtQoqd7LXi9D1Dtlsh6effoLp6Rylkk02e/dca2zbZnp6munpacIwZHFxkWvXrnHkyBF0XWfv3r33zfsz0fNlMhkef/zxTQEp0zSZmppiamoqZWUuLCxw9uzZ9OK60t7M932OHj3K1q1b2br1RkOBDZe2BUXKsZSWMmojhI9v/IdYwSsMnHySkhhSTQVuBZaDChEsIfW3Q/RdlBVeeihSQpBIvvhp6P3n6ec+i+a/hLLfGxzL7P0WPeunWKq10l2hox1B9sMhUwMztusbPu0eZvu/Q4suqIf1nye0/ktC+2fW8iRWrWFP1uT1Sog0pVLphpxPuDuazwsXLtBoNNi/f/+awPITn/gEL774Il/+8pfvOlh+6lOf4vDhw/z1X//1qs83YTSPj4/zgQ98gO9973sPAPOfWm3kzXwzwPR9n2PHjlEsFnnsscduOO4rr5zj+vUKUkocxxoaiQpAJ5fLkc/nKRZdajUl1K/XaywtVbAsBymz+L6F7yf7RJduV3UI2axDs5nsMTW63Sg+T43p6TzZrEWplKFUctiyJUO5fJluFx5//Jn7AlK6rrNlyxbm5uaYmppifHychYUFLl68iOM46YXoXnSbyes2Pj7OQw89dFceY5iVOXxxPXLkCEKI1Fj77Nmz7N69e0P63luV1KYJrf8Co/9piGpAFyldrN7/Q2i8Fz344vL7SxBCZyWL9dZlEZlPo/W+q/658mMlhw8jkbQQwVG08B9vcqyAauUKZ16fT/fIMngC0f8z5U6EJNF0DpcWvoqILiPJxl1ogNH/NKH1wXVb7iV1/fp1rl+/fktP1uGcz2EHnmQHvRmaz/Pnz9NqtdYMlh//+Mf5yle+wvPPP3/XiUlf/epX+c3f/E2++c1vrgrMrVaLKIrI5XK0Wi2+/vWv86EPfeiuntdm1wPA3GCtBMxWq8XRo0fZvXv3TZmdzWaHv/mb4ym5yDBMIMI0tZjcEwEaQgiWllpIKXDdAoWCRb3eotVq0++36fVE3J2MpDvNhOhTLDqUSi5TU3lGRzOUShnGxhx0ffDhCsOQ1157Dc/zNmc3tsFKOqmJiYkUpEZG1r/3vNNKwsN37dq1plSJzaiVF9der8fVq1f5wQ9+gG3bLC0tYRgGxWJxU1+f0PrP0fyX0OSsOg/aIDX04Bsog3Q/ZcOqx1U6YEXWWouEqoccSq25oYafigRkiysX/pbdE/0bbpfSQDZ/mx8+sBXMCSS7kGIciUQMZ42ufCgZJ6ukv7fk3EPUWHh9legb12ozl5RlWemUYDOiu86dO0en02H//v1rsm/8+Mc/zksvvcSXv/zlTQfLn/mZn+Hv/u7vKJfLbNu2jV//9V/n3/7bf0uv1+M973kPoIg/zz33HNevX+eXfumXeOmll5ibm+MDH/gAoJjmP/uzP8v73ve+TT23u10PZCWoF2+9vrCdTofTp0/z5JNPsri4yOnTpzlw4MBN3VeklBw+/I+88cYsQigT8lqtTRRJLMsYMhqXuK5Lu50kjngpYzaTseh2I3o9H+jjupJczmLXrgn27p1m+/YtWNatP9CJ/+i2bds2d9y3zkqs3fbs2XPbTqrf76fmASv3nncKJm8WRm4iUdi/fz+ZTCaVrNRqNXK5XLoXu9NcRy34B8z2rwItBoxWgfLYtYikRMg6QguHbl9PJR3p2n5OMkJo/gv0/vMImstuC0IX3XDi/WcG3/0DtPBV9N5zQOKmE4GI6GefH/xgtIjV/pcqGQULQY/QeAdB5n9b53NRLNTFxUUOHjy4qVOYRPNZLpdvq/lMmNK9Xo+3ve1tawLLj33sY3z1q1/li1/84n2VvPwTrwdOP6tVGIaxAfnaq9/vp2O8mZkZDh06dFMZQRiGXLw4x7/7dy8jBGiaHlvKJWPVAft1WFJiWQa6bjE25jE+nmViIp/+PZNRO5Rer8fCwgLz8/NppNP4+Di5XO6GD1YCDo8++uhdSVFYayX5keu2doN077kZ+sfENefAgQP3lZGbyFGeeOKJG7oNKSX1ej31Ql3pvrNqRUsImkgxgYiuI+QskbYDLfwBZuf/AIYSvJFIthFGAUIuoevd1Y66yaUhtb1INEQ0A8JByDpR5BNFOpG0iaSFpukYepfI/k+R+iMY3f8bFTQtVDcp8vSzn112ZBGew+j9HiIqE+lPETj/iv+/vfeOj6rM3/evMzMJqQRCChBKgFADIbSfyCpgiSAmg6Jf0VXBRRRxXbFgWQuLrLp2+aywgqx1X6usCwlYAkZZomIBQUOJgKEmpE1CQsikTDnn/P4I55gySSbJTIbyXH/wIjMnM8/MZM59nne530htEw5tGLc7hTUdoaWeT6PR2GaxXLNmDRkZGaSmpvq05eU8QAhmc7RXML/99lt69OhBfHx8kxO2NuzZ4XDy9ttbKC2tO0nV7RrrTkqarZ3JZCAiIpSePbsTHh5MZGQoUVGhdO3q/pdcG+lksViwWq0NKjJPnjzJ4cOHfS4OxcXFHDt2jISEhA5f+dbvfzx58mSb8p6FhYXk5eUxevToDvdKdgStMnj06NFujQjT3HdKSkr0nUlkZORvF0iqitG2CpNjLXXhRyOoCqrkDyjI/vMx2d84E7asoe6c4E9u5UtUVhwnvs9r1O+59CzaAOq6wQJ1RutRoNqQOFW3XlULzWqnnS44le6gVFFQfjEnbTczvNfrdDEWnDnGiDPgKRS/iz22SlVVOXLkCNXV1cTHx3e6HaPW83ny5El9KHh8fHyr31tVVVm9ejVffvmlEEvPIASzOdoqmA6Hg6ysLKxWK1OnTnUZRlEUBUVR+OGHX9m6dS9QZ4weFBRARERXoqLqhh9HRnYlPNyzkxPqV2QWFxcDEBcXR3R0dIfDeu1BVVU9vDVq1CivzI/U8p4lJXUzO13lPVVV5fjx45SXlzNq1CifvBfaOurvYNoT7tN2JiUlJVitVrp160afqONE+D0PGOoERT0F+J0RJgeSBI6AJzDVvoiknkIxDOGQ5W4qrF0YO/ANjMoPHn+tv2EAIqg7pZxEJQIMwXVmCmoFKA5UJAyGxm0u/qhSd+yByzll7UVpyQkMjq/w93PgFzSeruHjPBZ21Ea32e12t3Z03kJVVXJycrDZbHTr1q2Bebqrnk9NLLds2cL69euFWHoGIZjN0RbB1Ip7Bg0axOHDh5k0qWGVnqqqyLKMqqqoqsr33/9KWFgQkZFhRESEYjJ1TkWqoih6T2Hfvn31q1Z/f3+POdG4g+ahK8syw4cP75Qr9sZ5T+1EU1RUhKIonbYOV2jvh6IoHjOUrzPFP4Va9S5RIR+hqn6YjDVIUt3ftEpvkAxI2LEFvw+GnuA4SFHBN9id3ejXfyxdqv9AfbcfT6PSG0mqpc4IQUUlBAnLmZ/P5EylAJqaKPhhD1qDakpscKu22y4tLdXTEZGRkS16v7a4vjM9uNrn4kux/PXXX1FVlaFDh+rr0Ho+tdx2YGAgP/74I8nJyWzYsIGtW7eybt06IZaeQwhmc9SFTh2tHldaWsrBgwdJSEggNDSU7777roFgqqqqC6+vTshQF57du3cv3bp1a9L4Xl1djcViobS0FFVVvVqBqjXgd+3atcmsws5ClmVKSkrIyclBlmUiIiKIiorymu9rS2i9nkFBQQwaNMjj74fB8T/8apYBp+vsd7TnVf3BEIIkhWIPWYdk34RU9UpdAZrJhGIci9G5CyjHO195Ayr9cQbcieL3O4z2imT2jwAAIABJREFUzzHZXgVsZ/yJJSRJK0CqHxKWUAnF3vXrFh9dS0eUlJQ06/3aEqqqsn//foxGo0/nnGoXU0ADsXR1XElJCa+++ioZGRmcPHmSRYsWcd1117VpZ+zKRL2srIzZs2dz7NgxYmNj+eijj/Tq9fq89957PPPMMwA8+eSTzJ07tz0v+WxGCGZztCaYWkixqKioQXFPfcGUZRlFUc7MsfTNFw40v809xMbGtjrJwVUFalRUVLuv0uujVeT27dtX99D1BdpkC63Ev715z46iGfB7s9cTVcGv+k8Y5O/q3wiqRK0jkuwT8/ELGM7wqD8iSUZMpi5nGi6dqKqMpO8w69v7hAMn27GY+lW4gWgjxZxdHkD2uw4/6/WgFAFGJEMIEpXUORBp1ep1F5yKYTSOkHfcfwuaGVMWERHhMnSrqirZ2dkEBAR45SLGXVS1bpSdwWBwS7RVVeUf//gH33zzDStXruR///sfn376KUeOHOG7775zK3rkykT9kUceITw8nMcee4znn3+e8vLyJibqZWVljB8/np07dyJJEuPGjWPXrl0uhfUcRghmc7QkmJqnp6IoTYoAvvvuOy6++GI9X+lrsayoqOCXX35hxIgRbZ76rlWgWiwWKisr6datm36V3tbdstVqZd++fQwZMsSnFbk1NTV6+NxV+0rjvKe2+/T0blu7eOjfv3+7x1G5i+T4Gf+aRdQ5q5vOfIMd2EI+ptYexL49X/P/xf0VRTEhGQyYDDYMhmoaugr4UXe+cND+U0AAdQU+Woiw9sxjBSMbRlFtLSE4IA+DIZS6ySkOHKabMTnSqGt7AUkKwBG4DMV0UTvX0HLoVlVV9u3bR0hIiE9nQmo7XJPJxODBg90SyxUrVvDtt9/y3//+t4E4yrLcpsjJsWPHSE5O1gVz6NChZGZm0qtXLwoLC5k6daq+69X48MMPyczMZPXq1QAsWLCAqVOncvPNHXNTOssQ00qao7k/UG13EhER0aynp5av9LVYahWoiYmJ7SqCMBqN+gQOLSemhTLrJpjUhTFbK9jR2jUaj8TqbE6fPk12dnaLFw/1fW613bbmc6vlPTtqHqD1nHbWxYNqGolqHIAkH6VulJcR2e8KbI5g9uzZTWxsAib/GFCKULFjUK2NfF8ldAu9DhFwJk9ZQ92EFG23KWGQdxAc0AWDQaZu92pCNvwOpcsfcHSZhsG+EUm1IfsloZpGd2gVgYGB9OvXj379+umh27y8PCorK3E6nYSHh7s1os9baGLp5+enj/5r7fjXX3+d77//volYAh1OM2jOWwA9e/bUiwbrk5+f3yBK0qdPH/Lz8zv0vOcKQjCbwWq1smfPHuLi4lw6wKiqislkIicnh+jo6Db3FHoKreKyvLycsWPHeqQC1WAwEB4eTnh4uG7jZrFYyM3NxWQyNdsLWFBQQH5+fgeGHHsGzVGlLYN9/f39G/jclpWVUVBQwIEDB9rd76mJdnt6TtuN5Ic96B8Ybe9jUHJRjAlY5WR2//yzLtoO5WX8ah7HIP9SzxGnbuyIqqpIqCiqgkFS3fSRbbAAVMJQ/KaiGC/Gr/YZflNkA7JSi1FSkAwKvxkdgFHJBvvfcQY8iBzwJ0+8E00wmUxER0cTERHB7t276dGjB5IksWvXrlZDt95AVVV++eUXunTp4lY4WFVV/v73v7N9+3b++9//ej2N4OtNwNmIEEwXaDuNUaNGERoa2uR+rbhn1KhRlJeXk5ubq/c+RkVF0a1bt04p+tHCxQaDocPzEpujvo3boEGD9BCXNpleO8kUFxdjtVoZO3aszwzU4TfR7sjUk8am2o3nXUZFRREREdHiRcHJkyfJyclpk2h7DCkYOWAhMnUXfnv37m0g2qqhD/bg9zFVL8Ho3IJemSr9po8GzlSNN9h9uvPkQUhSF2S/G1GNQ7AbeuJXswTUAiTVgVGfnam1j0iAAVXtgtHxGc4u80Hy3sWFLMtkZWXRs2dP3Qgcfgvd7t+/3yNVt62h5U4DAwMZOHCgW2L5f//3f/z444989NFHXhPL6OhoCgsL9ZCsq81CTEwMmZmZ+s8nTpxg6tSpXlnP2YbIYVL3x2i32/U+PYulzvDZ1R9lc8U9iqLoZd+nTp3qkAuNO2iG4ZGRkfTt29cnV4JaGPPIkSPIskzv3r2JioryiG1dW1FVlaNHj+pjj7wl2u7kPYuKisjNzW32b6iz0Cz3mjOskOSj+FffBWolvxkKQBNbvHr/VVQTdYU6XZDwA5zUtaOYAAWVQFTDQAzKIcCBSigyfTAqvyBJcjOi260ufCvZsAV/AAbPGs9rOJ1OsrKyiImJabEQraNVt61RXywHDRrk1vHLly9n165drF271qN/U41zmA8//DA9evTQi37Kysp48cUXG/xOWVkZ48aN46effgJg7Nix7Nq1y6f1Cl5AFP20RE1NDb/88gsAI0aMaLJbq29G0FqoQtuVWCwWysrKCAwM1HclngiZVlVVsXfvXre8WL1JfdGOiYmhrKwMi8XC6dOnCQsLa2Dx5U0UReHAgQNIktSpPXSu+j0VRaGqqorRo0f7zBgB0CdlNLDcUxVQLdQV2fQASUJS8jDYP0dScjE6/0ddwU1zX3sJlWBk2R9UG4rqh7+pot68S3DlFCTLfhgNjmZOQcY6EwPJiWoYgiNoZbunirSEZjbSr1+/NhVetbXqtjUURSE7O5vg4GC3Co1UVeW1117j559/5sMPP/SoWNY3UY+Ojubpp5/m2muv5cYbbyQ3N5f+/fvz0UcfER4ezs6dO1m1ahX//Oc/gboh0c899xwATzzxBH/4wx88tq6zBCGYzSHLMt999x1RUVH079+/WeceWZYxGAxtOiGrqkpVVZXe+6gV17TqB9oM5eXlulG3q3BxZ6G1r7ia8qGqql40dPLkSYKCgjx6wVAfWZb1kWqeGrbcHpxOJ9nZ2VRWVmIwGPQLBl/0exYVFenWf/oJVq3Cr3oxBuUAoCIbL8EZuLSukhYw1byI0fEpdTvFshYe3YCjy8OY7B+CakVSy1HP5D/rp0N1VFAlExKujEECUQ0DAFCMw3EGLPJKONZut5OVlcWAAQM6fIHZEcMErQ83NDSUAQMGtPpcqqryyiuvsGfPHj744AOfRisuQIRgtkRZWZnLsFV95x5PJMHr+4EqitKmVoaCggJOnDhBQkKCTx092tK+4uqCQcsPdrS4QqtijomJ8en0FS2XbDKZGDJkCECDfs8uXbp0mrtSXt5x/B3v0DfyR8CEs8tdKP7XYKp5AaMjnbqWEUBy4vRfoA9WNtW+htGeRl1o1tbMrJI671l70FsY5H0Y7W8jqeXUtZ+4/IUzpx0DdUKsjdmqu83pPx+5y91e2VFq2Gw2srKyiIuLo0ePHh59bC10W1pa2mAYgKvQraIo7N27l7CwMGJjY1t9bFVVefnll9m7dy8ffvihV+wkBS0iBLMltBxmfbzt3NM4pKdNaG98taqN+NGGx/qyqEbLWbbXQL22tlafsKIZiEdFRRESEtKmixGtXWPw4MEePxG2BW2H2717d5fRCXCd99TclTy1I9ZyuMGG/9AvPJ3fhMmII+h5jLY1GORjIJ058ao2ZL8pOAP/CoAkH8O/aj5Q2nRsJX7UjQAzImHA6X8HJvvqM0coNJx+QpOzhqpKyGo3FGMCJqkKjJE4AxaiGvqBKiOpRaiYQIqqV7XbcWpra8nKyuqUlp6WQrddunTRnbf69+/v1mO99NJLZGdn88EHHwix9A1CMFuisWB2tnOPq2kj2qiu/fv3ExAQ4FZTszfJy8vDYrGQkJDgkS+xw+GgtLSUkpISqqqqGvQ+tnSBou1wfR2Wbs8O1263U1paisVi8Vi/p+Y/6nQ6GdP/GSTlOHUtGwAOZL/pgIrBsRVJOuPugxNnl9uQu9yhP47k+BH/mgUNBjTXfSOkM0U5/sjGcUAwRucXoD9WvRBu/bohHT8UxYSiGDld04+Ttj8QFj6Srl2D8a95AINyFFCQjb/DGfi0HibuCJppxbBhw3wy67R+JEnbfcbFxbUaulVVlRdffJH9+/fz73//W4il7xCC2RIOhwNFUdpU3OMttGkjhYWFFBcXExoaSmxsrE/yYfDbCdnhcLgsiPIEWpWxxWKhoqKi2Srjju5wPUVtbS27d+9m4MCB7c6LNTbUbk9ltaIoei9fXFwc/tV3YZD3oodecSL7X4/Tfx7+1QuR1JOAimKIwxG0vOGcSFXF33oLkvpLvZCsAQhBMY1HMV2K7JeM0bYak31tU8FUDdQNdYa6f4zUVdF2B8kIajVQjaIGoSgmTllj6R5yGAz+GCQDkiTj9L8HucuN7Xo/NbSiuBEjRvisPxrqPpvdu3fTvXt3AgMDWw3dqqrKCy+8wK+//sq//vUvIZa+RQhmSzgcDn1X2Z7iHk+j2cvFxcVhMpn0fFhgYKCeD+uML5Qsy+zbt4/g4OBO89p0NesyKipK3525Oz/SW2i9jcOHD/fY7qXxa3Yn76mZ22sFTwCSMwv/6kXU5SIlkILPTCjpDaoNST4IkhHVMNT1Tk6poIt1OmAHPRRrxxHwAIr/9WeOKcW/6g9IagWag4+q1tQV9kh1sy6RglHVICROn/lZBv14rXhFOSOeRhRFwWhwUCVfghqyrN05eu2z8XX0QQvVR0RENHDFaRy6lSSJr776imuvvZZ169Zx6NAh3n//fSGWvkcIZkvY7XYcDsdZYXOnOdU0tpfzdMVta9Q3Lq/f5N3ZWK1WDhw4gNVq1W36IiMjO98QgLrexv379zNq1CivWv9peU9tqkzjvKfW0tO4AR9Akg9hcGwByR/ZbwYY2uZfa3Bsw1T7VyS1iro2Ez8gAKf/DcgB99UdpJw604biILeoP+UVMiOHGpCMPVENfc/0dobiX3MHyEfOhHmr+G2QtATYUQlCkgLOjPxyUFp9Azn5k9qV366srGTfvn0kJCT4dFC6LMu60X6fPn1aPLasrIzVq1ezYcMGCgsLueuuu5g5cyYTJkxodyTn4MGDzJ49W//5yJEjLFu2jPvvv1+/LTMzk5kzZ+rVurNmzWLJkiXter7zFCGYzWGz2bj11lu56qqrmDFjhk9d9/Py8iguLiYhIaHVMvLa2losFgslJSW6646nzMO1sJavi2q0kKOfnx9DhgzRC6UsFote1q/ler19kWOxWDh69GjD3sZOQNtZl5SUUFNTQ1hYGOXl5QwaNMh7Zu7ObLpUzz/zgx/aqcAeshbVUCfQWjFabW1tk1C95MzC6MwAVUVScpGUHCS1lLpqWSMggxSESiQSZYCKYhyOI/A1kPz1/HZpaak+ILulYQAVFRXs37+fhIQEn1xIaWhiGR0d7dZFpqqqPPvssxw7doyVK1eydetWPvnkE7Kysvjuu+86nHaQZZmYmBi2b9/eoOAoMzOTl19+mU8//bRDj38eIwSzOVRVZe/evaSlpfHZZ58RFhZGcnIyKSkpREdHd1oY8tdff9Wnvbc1V9m4mKQjo7rKy8s5ePCgzw3UnU4ne/bsoUePHi6rC10VSkVGRtK9e3eP51nz8/MpLCw8K8LBWVlZBAcHU1tb6zVHKUnOOeMCJNe70YQ96HVUY7w+u1FV1SZmEQbnd/jVPAGqHQBVCsIR/DYG+yZM9vfqKnVVFXvQK6jGUUjKIcCEaoiry3U2ov4wgLKyMoKCgvQKVH9/f/3vdfTo0T7Na2u2e7169XKrCExVVZ555hlyc3N57733muQzPXHeycjI4Omnn+bbb79tcLsQzFYRgukOqqpy5MgR0tLS+Pjjj1EUhWuuuYaUlBSvDUF2Op16Q7M7vpKtIcuyviOprKxsk5AUFhaSl5fn815PbSRWv3796NmzZ6vHa4VSJSUllJeXExoaqgtJRxx3Ostyzx20/JzW/9qevKfbqLX4W2ciqaep2xU6QQrBFrIBRQ1k//79+Pv7u5yw4Vf1BwzyIZD89ceS/WfjDLgPSckHpRTVGAtS20bQwW9pCS1c7XQ6cTgcjBw50qfWbO0Vy7y8PN59912vuULNmzePsWPHcu+99za4PTMzk+uvv54+ffrQu3dvXn75ZeLj472yhnMUIZhtRVVVioqK2LBhAxs2bKCsrIzp06djNpsZPny4R3YxtbW17Nmzx2uDljUhsVgsnDp1itDQUH1UV/2Tvzb15NSpU4waNcqntm5aOLi9/XOqqnL69GldSPz9/dslJNouSlEUhg0b1imG+s2hhRyb84WF1vOebUWSc/CreRRJKUA1ROMIfAFZGsLevXvp2rVrs241/tbfIykn6vV81iL7z8QZ8Eib19ASpaWl5OTk0Lt3b8rLyxu06YSFhXXa5+WuR62Goig888wz5Ofn884773jtu2a32+nduzfZ2dlNQvenT5/GYDAQEhJCeno6ixYtIicnxyvrOEcRgtlRysvL+eSTT0hLS+Po0aNcfvnlpKSkMH78+HbtPLTxT56stmwJTUgsFkuD6tMePXpw+PBhJEli6NChPhUGzTDck+Hg6upqvVBKVVVdPFvK9Wo2ZkFBQZ1WHdwc9SefuBtybJz37FC/p6qAZGi28rMxRtt/MNnfqPs9VJCM2AP/r8OzLetjsVj0+a9arr9xm46nogwtoYllnz593I6ELFu2jKKiIt5++22vXphu3LiRlStXkpGR0eqxsbGx7Ny5k4iICK+t5xxDCKYnqaqqYvPmzaSlpZGVlcXvfvc7zGYzl1xyiVs5LovFovcT+qpIwWq1UlxcTG5uLn5+fvTr14+oqCifhWK1IdjeLKpp7K7kKtfrdDr1KseWhKEzKC4u5vjx4x2afOJKSFxFGVpCE4bevXu3HnJUVYz2jzA6PkGV/JG7zEcxTWrX2l2heeUmJiY2+11rHGXwxrzLthq6K4rC008/TXFxMe+8847Xw/s33XQT06ZNc2mMXlRUpNdn7NixgxtuuIHjx4+L+Ze/IQTTW9jtdrZu3UpqairffvstiYmJmM1mrrjiiiZfTm2E2MmTJz3mmNNetOb72NhYwsLCmlTcRkZGdlrRT25uLiUlJZ36nsiyrBcNVVZW0q1bN7p160Zubi6xsbHeq0B1kxMnTlBcXOzRySftyXtq5uX9+/f3+XtSUFCgF1+15T1pbJoeERFBREREu+ddtlcsLRYLb7/9ttfFsqqqin79+nHkyBHd73nVqlUA3H333axYsYI33ngDk8lEYGAgr776KpMmee6i5jxACGZnoE0+SUtLY8uWLQwaNIiUlBSmT59OQEAAjz76KLfeeitjx471aehT61lzFQ52OBx660ZHK25bQ1VVcnJysNlsxMfH++w9URSF4uJiDh48iMlkomvXrvourLMvarR8ckVFhdcLjaqrq/Udt6u8p2ZePmjQoJbDdapaV+2q1qAaBzd0EPIQJ06cwGKxMHr06A69J43nXbZ1FJ0mlv3793c5YLkxiqKwdOlSTp48yT//+U+fFo4J3EYIZmejWWOlpqby6aefcurUKS666CKee+65TmtXcYVmjOBOONjVLiwqKsojrRvabMCAgACX1ZadiZZP1nKnVqtVz3tq4TxvGUTUR7uAcDgcHissc5fGec/Q0FDKy8sZMWJEy8VXqhO/mocwOHcBhjNtJG/p/ZqeIDc3l7KyMo9fQCiK0sB5JyAgQP+sXYXAHQ4HP//8s9ujwhRF4S9/+Qvl5eWsWbNGiOW5gxBMX3H06FFuvPFG5s6di9Vq5eOPP8ZkMpGcnIzZbKZv376dJhYnTpygqKjILWOExjTXuhEREdHmE4HmVHM25AlbK6qpb6RdP1ztyWkj8NuYMD8/P58b7VdWVrJ7925CQkJ08Wwu72m0r8dU+yp1vrESoKAYE3EEv+mRtdRv6/H2BURLk2W0nWVbxHLJkiVUVFTw5ptvCrE8txCC6Quqq6uZMmUKq1atYty4cUDdLiI/P5+0tDQ2bNiA1WrV21UaN4F7ClVVOXToEDU1NcTHx3f4y9tcxa3WTN4SWu7U1fDpzqaoqIjc3Fy3i2pcVZ9GRUURFhbWoc9N84XV5iWeDbttzf6v8WfdOO9pqn0Jo/0/1PVrAiioUnfsoZ93aB1aT3R1dbVPwvX1P+vq6mrsdjv9+vWjf//+ra5FURSefPJJrFYrq1evFmJ57iEE01fYbLYW+/9KS0v5+OOP2bBhA3l5eVx55ZWYzWbGjBnjkZOELMtkZ2cTGBjotdCn5nFbUlKiD4l2VXHrDePy9pKbm0tpaSkJCQntKqrRqk8tFgunT59ucy5MQ6vKjY6ObtV71NtobT0thesb5z0H9d5Lz9B/IvGbK5BimoAjaEW716Fd4GmhaV9eQNjtdn766SeioqKw2WycOnWKkJAQvWWlcY5bURSeeOIJqqurWbVqlRDLcxMhmOcClZWVpKenk5aWRnZ2Npdeeilms5lJkya166Rut9t1k+7OOhk3HhIdERGhn2xycnJabL7vDLSTcW1trcd2LqqqNrBvCwwM1HfcLRUNnU0VqCdPnuTQoUNtauup24VZCFGfJzzox7pJKFIEzuA1SKb2vR7NMAJg6NChPhVLregpLi5O91RWVZXKykq90thoNCJJEkFBQQwZMoTHH3+c2tpa3njjDSGW5y5CMM81bDYbW7ZsITU1le+//54JEyZgNpuZOnWqWye06upq9uzZQ1xcnM8akrWK27y8PKxWKzExMfTs2bPDIcz2ouUJTSYTQ4YM8Vr4u/FUGVc7bm3Isa8N7sG1EUBbURwFVFQUUWjxo6LC2i7jAFVV9c/H13lcTSwHDx7cYtFTbW0tmZmZvPTSSxQWFhIeHs6KFSuYOHFihy/GYmNjCQ0NxWg0YjKZ2LlzZ4P7VVVl0aJFpKenExQUxLvvvsvYsWM79JwCQAjmuY3T6WTbtm2kpqaSmZnJ0KFDMZvNXHXVVS7n/mljqHw9F1DrOy0rKyM+Pp6KigqvVNy6g+ZU0717d/r3799pJ2NXO+7g4GCOHDmi+8L6ksLCQvLz8z1qLF/fOKC0tNStfk9tMk1AQIDP3ZVqa2vJyspy255RURQee+wxampqmDFjBp9++im7du0iJSWFZ599tt3raM2BJz09nddff5309HS2b9/OokWL2L59e7ufT6AjBPN8QVEUfvrpJ9avX8/nn39Or169SElJYcaMGURERPDuu+/i7+/PrFmzfGqgrk1gcTqdTVoktAkUFouF8vJyQkJC9BCmN8JY2mzPmJgYt8yxvYXD4SA3N5fc3Fz8/f31cHW7LOs8QF5eHiUlJR3ubWyN1vo9NSvC0NDQZj1qOwtNLIcOHerWqD9FUXj00UdRFIWVK1fqf+eyLJOXl6cP924PrQnmggULmDp1KjfffDNQF8LOzMz0ii/1BYYQzPMRLYSl9XrW1NQA8NZbb/m0WEKWZfbt20dwcHCru4XGu5HWeuHaihb6HDRokFvtAN6kfgtLly5d9KKhiooKr43qao7ObNeoT+NK4+7du1NRUUFUVFSHxMUTaGI5bNgwt4rSFEXhkUfqTOVXrFjh8fdxwIABdO/eHUmSWLBgAXfddVeD+5OTk3nssce45JJLALjiiit44YUXGD9+vEfXcQHi8oTlu5EUAo8gSRIjRoxgyJAh5OfnU15ezoQJE1i8eDE2m40ZM2aQkpLSqfkgh8PB7t273S40kiSJsLAwwsLCiIuL0/N/u3fvxmAw6OLZHg/Qs6kqV/OFHTt2rH4hoFm01besO3LkSJvadNpK/cHPnS2WAP7+/ronrVaBajQaKSwsxGq1et0wvTm0C6u2iOXDDz+MwWDg9ddf98r7uG3bNmJiYrBYLCQlJTFs2DAmT57s8ecRuIfYYZ4nzJ8/nwEDBvD4448jSRKqqlJSUsLGjRtJS0ujuLiYpKQkZs6c6dWTZE1NDXv27GHgwIEe2c1p+b+SkhKcTqcewnTHNEAbLOzrqlyoG0CtGUa4kyesXzQkSZJeNNRR4/CzqQJVa6fp2bMnMTEx7cp7egpNLIcPH+5WTllRFBYvXozJZOLvf/97p1x0LF26lJCQEBYvXqzfJkKyXkOEZM9nKioqWvyiV1RU8Nlnn5GWlsbBgweZOnUqZrOZiy66yGPhP82f1luFLA6Hg9LSUiwWS6umARaLhaNHj3p18om71J8z2p732maz6UVDmnF4ZGQkoaGhbRI8raimS5cuPrci1KIQLc2QrJ/3VBTFaw5LWjV5W8TyoYceokuXLixfvtxrYllVVYWiKISGhlJVVUVSUhJLlixh+vTp+jGfffYZK1as0It+7rvvPnbs2OGV9VxgCMEU1FFTU8MXX3zB+vXr2bVrFxMnTiQlJYUpU6a0O/yn5eY6a1yZ5nFbUlLC6dOn6datm24aUFBQQFFRkUerPtuD5gtrt9sZMWKER06smnG4xWLBarXSvXt3vWiopcdXFKXVwc+dRVvNy6Gp6079+Z4deV+rq6vZvXs38fHxdO3atdXjFUXhgQceICgoiNdee82rO8sjR45w3XXXAXWf++9//3ueeOKJBlNHVFXl3nvvZfPmzQQFBfHOO++I/KVnEIIpaIrD4eDrr78mNTWVr7/+mpEjR5KSkkJSUpLbYcyCggK9LcHT+TZ3qF9xW1xcjCRJDB48mMjIyE7Pg9Vfk7f7PZvz9m2c/5Nlmd27dxMZGelz317NqMFdP1ZXyLJMeXm5XizV3kHRVVVV7Nmzx+3WK1mWeeCBBwgJCeHVV1/16bQhgdcRgiloGUVR2LFjB6mpqWRkZNC/f3+Sk5OZMWOGy/J6bQzVqVOnSEhI8KmriZabk2WZmJgYSktL9TxYVFSUxypu3UGrENZaJDoj9Nl4YLK/vz+RkZF0796d/fv3uzf42cu4cs3pKM297tbynu0Vy9DQUF555RUhluc/QjAF7qOqKtnZ2axfv5709HS6du1KcnIyKSkpREdHI8syq1at4vLLL2fYsGE+PYFoPXzBwcEMHDiDWCziAAAfh0lEQVSwgUDVnz4hSZIunh0tnmkOrZDF11NYqqurKSws5Pjx4wQEBNC7d289/+cLtKIad3sb24s7eU+tclozl28NWZa5//77CQsL4+WXXxZieWEgBFPQPrSpEWlpaWzcuBGn04nNZmPcuHG8+uqrPt1ZtmVMmM1m0w3i21px6w6aOULfvn3p2bNnhx+vI2gTYeLi4ggNDdWLhmw2m1405I2B4K5oa1GNp3CV9wwJCeH48eMkJCS4LZaLFi2ie/fuvPTSS0IsLxyEYHqL2bNn66X6p06dolu3bmRlZTU5rjVfyHOBkpISUlJSGDp0KEVFRZSVlTF9+nRSUlI8VtjiLjabjd27d7fLuLwtFbfuoAnUoEGDfObbq9HSbs6bA8FdoYU+3S2q8RayLJOfn8/hw4fx9/fXJ8u0lPeUZZn77ruPiIgIXnjhBSGWFxZCMDuDhx56iLCwMJYsWdLkvtZsrs52CgsLSU5O5rnnnmPatGlAXa/jJ598woYNGzhy5AiXXXYZZrOZ8ePHe3XnWVVVxd69e932+mwJV2O6oqKiCA8Pd+skqa3F3YZ3b2K1WvXWntYESiuW0iasBAcH62YJniiWamvo05toLU9aFXf9vKefn5/+urUWJFmW+dOf/kRUVBTPP/+8EMsLDyGY3kZVVfr168f//vc/Bg8e3OT+c10wnU4nhw8fZujQoS7vr6qq4vPPPyctLY2ff/6ZSZMmMXPmTC655BKPtndUVFTwyy+/eMVYvrGIaB63ze1EGg9b9iWnT5/W35e2rkVVVaxWq26W4Ofnp+f/2tPHqr0vCQkJPjeNaG0t9fOejz/+OGPGjKGoqIgBAwYIsbxwEYLpbb7++msefPDBZkOtrflCnk/Y7Xa2bt1KWloa27ZtIzExEbPZzBVXXNGhgpv6XqzeKtzR0OYeWiwWvQKzfsVtWVkZv/76a6espTW0wc+eWktNTU2D4pnGZuktUVFRwf79+zutJ7cltIsId9dSWFjIgw8+SE5ODv7+/lx22WX6RV97dt15eXnMmTNHb3e66667WLRoUYNjMjMzmTlzpt4fO2vWLJcRKkGnIgSzI1x55ZUUFRU1uf3ZZ59l5syZACxcuJC4uDgeeughl4+Rn5/fwBfy9ddfvyB8IWVZ5vvvvyc1NZUvv/ySuLg4UlJSmD59epuKQAoLC8nLy+vQzMaOUF1drRcNORwOZFkmISHB5+O52jP4uS00Nkvv0aMHkZGRLvO9mh1hYmKizx2WNOF29yJClmXuuece+vTpw7PPPovD4WDr1q1s3LiRBQsWkJiY2OY1FBYWUlhYyNixY6msrGTcuHFs2LCBESNG6MdkZmby8ssv8+mnn7b58QVeQwimN3E6ncTExLBr1y63DMdd+UJeCCiKwp49e1i/fj2bNm2iR48epKSkkJycTGRkZLO7l+PHj3Py5EkSEhJ8ZkagUVBQwIkTJ4iOjubkyZO6XV1UVBQhISGdajnnicHPbcFVvldzWDp16hSHDh0iMTHR696vrdFWsXQ6ndxzzz3079+fv/71r14Lw86cOZN7772XpKQk/TYhmGclQjC9yebNm/nb3/7GV1995fJ+d3whLzQ067jU1FQ++eQTjEYj11xzDTNnzqRv3776nMRvvvmG8PBw4uPjfZ5P0oZh1zdq0Cpu67cvdKTi1l0KCgooKCjwmQWgqqp6vre4uBin00lcXBw9e/b0qSVhW8PTTqeThQsXMmDAAP7617967TM7duwYkydPZt++fQ0KsjIzM7n++uvp06cPvXv35uWXXyY+Pt4raxC4jRBMb3L77bczceJE7r77bv22goIC5s+fT3p6erO+kII6VFUlPz+ftLQ0NmzYgNVqJSkpiR07djBw4EBeeeUVn5qFq6rKoUOHsNlsLbbPdLTi1l06a/CzO2hG90OGDKG8vJzS0lKMRqM+YaUzQ7OaWLobEnY6nSxYsIBBgwZ5VSytVitTpkzhiSeeYNasWQ3uO336NAaDgZCQENLT01m0aBE5OTleWYfAbYRgnsssXbqUNWvW6P6bzz33HDNmzGhy3ObNm1m0aBGyLDN//nwee+yxzl6qR8jNzSUlJYWAgADsdjtXXnklZrOZMWPGdPouUxvSbTAY2jQSS9uBWSwWj7Zt+GrwsysKCwt1H+H6u0ptLJvFYkGWZb1oyJsh67bmTzWxjIuLY9myZV5bl8PhIDk5mWnTpvHggw+2evy5Xk1/niAE81zGnZynLMsMGTKEL774gj59+jBhwgQ+/PDDBgUG5wKlpaXMmjWLO++8k9tuu43Kyko2bdpEamoq2dnZXHrppZjNZiZNmuT1fKY25aOjvrCN2zY0z9OoqCi3c4/u7nI7i4KCAgoLCxk9enSLn0PjkHX9CSueEimtYnnMmDFu5U+dTid33XUXQ4YM4emnn/aaWKqqyty5cwkPD2f58uUujykqKiI6OhpJktixYwc33HADx48fb7CmvLw8Jk+ezK5duwgPD6e8vJyxY8eydetW7r77bn744QcuueQSkQf1HEIwz2XcEczvv/+epUuX8vnnnwPwt7/9DYA///nPnbJGT3HgwAGOHTvmMr9rs9nYsmULqamp/PDDD4wfP56UlBQuu+wyj4f+nE4ne/bs8cqUj/oVt+4MiD6bBj9D+0PCiqLoIeuKigq6du2qO+60N7RcVlZGTk6O28VGTqeTO++8k2HDhrF06VKvvpfbtm3j0ksvbRANeO6558jNzQXqRnStWLGCN954A5PJRGBgIK+++iqTJk1q8lgvvvgihw4d4s0332TBggXExsby5z//mS1btlBdXc3q1auFYHoOIZjnMkuXLuXdd9+la9eujB8/nldeeaWJ7dm6devYvHkz//znPwH417/+xfbt21mxYoUvlux1nE4n27ZtIzU1lczMTIYOHYrZbOaqq67qsKGB5gvbp08fr0+vdzUgun7FrTb4OSAggEGDBvlcLI8fP055eTkJCQkd2uWqqkpFRYXuuBMQEKCHrN3ddWstNWPGjHHrdxwOB3feeSfx8fEsWbLE5+9lW3A4HIwbN4558+axZs0asrKy9DC4qLT1OC7/MHxbny9oQEu9ngsXLuSpp55CkiSeeuopHnroId5++20frPLswWQyMXXqVKZOnYqiKPz000+kpqby2muv0bNnT8xmMzNmzGhzLqizfWG7dOlCnz596NOnD06nk9LSUo4ePUpVVRXh4eGcPn2aHj16MHDgQK+vpTWOHj1KZWVlh8USQJIkunXrRrdu3Rg8eDBVVVVYLBZ2797t1q67tLSUw4cPt0ks58+fz6hRo/Tv0rmEn58fL730EtOnTycjI8OnlcgXKkIwzyK+/PJLt4678847SU5ObnJ7TEwMeXl5+s8nTpwgJibGY+s7mzEYDIwfP57x48fz7LPPcuDAAVJTU5k9ezYBAQEkJydjNpvp3bt3iydKX/vCmkwmevbsSc+ePbHb7fz0008YDAaKi4upra3Vw5e+KHw6fPgwtbW1jBw50ivPHxwczIABAxgwYIC+696/f7++646MjCQ0NBRJkigtLeXIkSNtEss77riD0aNH8+STT55zYqmxadMmevXqxb59+xr0cgo6BxGSPUcoLCzUQ4OvvfYa27dvZ+3atQ2OcTqdDBkyhC1bthATE8OECRP44IMPLuieLlVVyc3N1dtVbDYbM2bMICUlhcGDBzc4cXrTo7atOBwOdu/eTUxMDL169fJaxa07aP2yTqeT4cOHd7rYaLvukpISrFYrAQEB1NTUMHbsWLfy1g6Hg3nz5jFmzBieeOKJc1Yss7KyuOWWW9i0aROXXHIJ27dv188JIiTrcUQO81zmtttuIysrC0mSiI2NZfXq1fTq1atBrydAeno6999/P7IsM2/ePNHrWQ9VVSkpKWHjxo2kpaVRXFxMUlISZrOZgoIC3nzzTT744AOf+5/a7XaysrKIjY0lKiqqyf2ujNI1j1tPO+ycbcVGRUVFHD58mG7dunH69GlCQ0NbHNOlieXYsWN5/PHHfb7+9qKqKpMmTWLZsmW6reYPP/zAv//9b0AIphcQgilonYcffphPPvkEf39/Bg0axDvvvOMyNHk+zPasqKjgs88+Y+XKlRw+fJhrr72W66+/nokTJ/rMDKD+4OcePXq49Tv1p22oqqrn/joq/Fr/qZ+fH3FxcT4XG4vFwvHjx0lMTMTPzw9VVRuM6dLM8cPCwggJCcFutzNv3jzGjx/Pn//8Z5+vvyO8+eabbNmyhf/85z9AXQvZhAkTeO2113jyySc5cOAAVquVHj168NZbb+nj9wTtRgimoHUyMjK4/PLLMZlMPProowC88MILTY47X5qr33//fd566y0+/PBDdu7cSWpqKjt37mTixImkpKQwefLkTvNFra6uZs+ePR3Kn9rtdr1dxW63t9vjVlEUsrOzCQoKYuDAgT4Xm+LiYnJzc3WxdIXWqvPoo4+Sm5tLcHAwkyZN4qWXXvLI+lszBbHZbMyZM4ddu3bRo0cP/vOf/xAbG9vh5xX4BCGYgraRlpbGunXr9LBPfc4HwczNzeW+++7j3//+d4M5iQ6Hg2+++Yb169fz9ddfEx8fj9lsJikpyWuzHdsy+NldtNyfxWLRK27dMQzQzBq6du2qj5zyJUVFReTl5TFmzBi38rV2u53bb7+dLl26UFNTQ0FBAdOmTWPu3LkMGTKkXWtwxxTkH//4B3v27GHVqlWsXbuWtLQ0fUcoOOcQgiloGykpKcyePZtbb721yX3ny2xPVVVbFY8ff/yR9evX88UXX9C3b19SUlKYMWNGkz7Y9tKRwc/u4sowQPO4rR9+lmWZvXv3Eh4eTr9+/byylragWe8lJia6LZZz587ld7/7HQ8//DCSJFFVVUVGRga9e/fmoosuatc63DEFmTZtGkuXLuXiiy/G6XTSs2dP3ZhCcM4h+jAFdbgz2/PZZ5/FZDJxyy23uHyMbdu2NZjtOWzYsHNytmdrJzODwcBFF13ERRddhKqqZGdns379embNmkVoaCgpKSmkpKTo1mZtRfM/9fYQaoPBQEREBBEREbphgMVi4fDhwwQFBekjurKzs4mKinJrRJ23aatY2mw25s6dy6WXXsrixYv1zyM4OFgffNBe8vPzG7g99enTh+3btzd7jMlkIiwsjJMnT57TURhBQ4RgXoC01u/57rvv8umnn7Jly5ZmRUDr74yKiuK6665jx44d56RgtgVJkhg5ciQjR45kyZIlHD16lNTUVG6//XZkWeaaa64hJSXF7Zyf1njf2cOW6xsGaBW3RUVF7N+/Xxdtm83m05mWmk/tmDFj3CrA0sRy8uTJPPTQQ2JXJ/AKvnVvFpx1bN68mRdffJGPP/642SrLqqoqKisr9f9nZGQwcuTIzlymz5EkiYEDB7J48WK++uor1q1bR/fu3Vm8eDFTp07lueeeY9++fSiK4vL3i4uL9cb7zhTLxkiSREBAAKdOnWLEiBEkJibqYdkff/yRY8eOUV1d3alrys/Pp7CwkMTERLfFcs6cOUyZMsVrYumOKUj9Y5xOJxUVFW5XOgvODUQOU9CAuLg4bDab/kWfOHEiq1atErM920B5eTmffPIJGzZs4MiRI1x22WWYzWbGjx+P0Wjk7bffpn///kyZMsXrpgOt0VLPp91u1z1u7XY7PXr0ICoqSnfb8QYnTpzAYrG4bepus9m47bbbuPzyy3nggQe8ti53TEFWrlzJ3r179aKf1NRUPvroI6+sR+B1RNGPQNDZaDvw1NRUfv75Z3r37k1ZWRkbNmwgPDzcp2uz2+38/PPPbnnmOp1OTp48icViwWq1Eh4eTmRkpF745QnaKpa1tbXcdtttXHnlldx///1eD8O6MgVZsmQJ48ePx2w26+v5+eefCQ8PZ+3atWeF/6+gXQjBFPiWC72P7ZlnnuHzzz9n+PDhfPfddyQmJpKSksIVV1zR6e5CmkHC4MGD2yzc7lbctoW8vDxKS0tJSEhwWyxvvfVWrrrqKhYtWiRylgJPIwRT4Dsu9D62p556ihMnTrBmzRpMJhOyLPP999+TmprKli1bGDRoEMnJyVx99dWEhYV5dS01NTXs3r2boUOHdrg1pn7FbVlZGYGBgbrHrbvTNHJzcykrK3N7AkptbS233HIL06dP57777hNiKfAGQjAFvuNC72PbtWsXY8aMcSkIiqKwZ88e1q9fz+bNmwkPDyclJYVrrrmGqKgoj75+zU1o+PDhHhdmVVX1EV2lpaWYTKZWPW7bOltTE8urr76aP/3pT+fF34bgrET0YQp8x4XexzZu3Lhm7zMYDCQmJpKYmMiyZcs4dOgQqamp3HrrrRiNRq655hpmzpxJ3759OyQQVVVV7Nmzx2vTWCRJIiQkhJCQEAYOHEhNTQ0Wi4W9e/e69Lg9duwYFRUVbotlTU0Nt9xyC8nJyfzxj38UYinodIRgCgRnEZIkMXjwYB599FEeeeQRCgoKSEtL49577+X06dNcffXVpKSktHnMVmVlJfv27WPUqFFecxNqTGBgIP3796d///56xe3Bgwex2Wx6uDYxMdFtsfz973+P2WzmnnvuEWIp8AmiD1PQKYg+trYjSRIxMTHce++9fPnll2zatInY2FiWLVvGJZdcwl/+8hd27tzZbK+nxunTp9m3bx8JCQmdJpaN8ff3JyYmhjFjxhAZGYksy/j5+bFjxw4OHDhAWVlZs6+jpqaGm2++mZkzZwqxFPgUkcMUdAqij82zVFZWsmnTJlJTU8nOzubSSy/FbDYzadKkBr2dJSUlHD582OvWe+5y5MgRqqqqiI+Px2Aw6BW3JSUlnDp1Sq+47datG35+frpYXnvttSxcuFCIpaCzEEU/At8i+ti8g81mY8uWLaSlpfH9998zbtw4zGYzDoeD1157jfT0dJ+LpaqqHDlyhJqaGuLj410Kn1ZxW1xczPz58+natSs1NTXceOONHjcluJDmvgrahRBMwYVBXl4ec+bMobi4GEmSuOuuu1i0aFGDYzIzM5k5c6Y+vmrWrFksWbLEF8v1KE6nk23btrF8+XK+/fZbJk+ezLXXXstVV13llUIfd1BVlcOHD2Oz2RgxYoRbwme1WrntttsIDAykuLiYrl27cu211/L//t//80gR2IU291XQZkSVrODCwGQy8corrzB27FgqKysZN24cSUlJDXo+AS699FI+/fRTH63SO5hMJt1Mfd++fZw4cYL169ezfPlyoqOjMZvNzJgxo9MEQFVVDh06hN1ud1ssq6qquPnmm5k9ezZ33nknkiSRm5vLhg0byM3N9cjar7rqKv3/EydOZN26dR1+TMH5jxBMwXlHr1696NWrFwChoaEMHz6c/Pz8JoJ5PlJVVcWaNWvYtGkT3bt3Jzo6mnHjxvHss89y4MABUlNTmT17NgEBASQnJ2M2m+ndu7dXcoOaWDocjjaJ5ezZs7n55puZP3++/jv9+vXjvvvu8/gaAd5++21mz57t8j5JkrjqqqvO+bmvAs8gQrKC85pjx44xefJk9u3bR9euXfXbMzMzuf766+nTpw+9e/fm5ZdfblCAdD6jqiq5ubmkpaWxceNGamtrmTFjBikpKQwePNgj4qmqKr/++iuKojBs2LA2ieXvf/977rjjjg6vw925rzt37iQ1NdXl8+Xn5zeY+/r666+f92PsBIDIYQouNKxWK1OmTOGJJ55g1qxZDe47ffo0BoOBkJAQ0tPTWbRoETk5OT5aqe9QVZWSkhI2btzIhg0bKCoqIikpCbPZ7LahgKvH/PXXX1FVlaFDh7ZJLG+55RbuuOOO9ryUNvPuu++yevVqtmzZ4paX79KlSwkJCWHx4sWdsDqBjxGCKbhwcDgcJCcnM23aNB588MFWjxfFHXVUVFSQnp5OamoqBw8eZMqUKZjNZiZOnOiWKbqqqhw8eBBJkhgyZIjbBT433XQTt956K/PmzfPEy2iVzZs38+CDD/LVV18RGRnp8piqqioURSE0NJSqqiqSkpJYsmQJ06dP75Q1CnyKEEzBhYGqqsydO5fw8HCWL1/u8piioiKio6ORJIkdO3Zwww03cPz4cdHnV4/a2lq++OIL1q9fz86dO7noooswm81MnjzZpTesqqocOHAAg8HQJrGcPXs2c+bM4Q9/+IM3XoZLxNxXQSsIwRRcGGzbto1LL72UUaNG6SHF5557jtzcXADuvvtuVqxYwRtvvIHJZCIwMJBXX32VSZMm+XLZZzUOh4NvvvmG9evX8/XXXxMfH4/ZbCYpKYng4GBkWeadd95h8uTJbudBrVYrN954I7fffju3336791+EQOA+QjAFnU9eXh6TJ09m165dhIeHU15eztixY9m6dStfffUVzzzzDABPPvkkc+fO9fFqBe6gKAo//vgj69ev18e1Wa1W+vXrxz/+8Q+3xLKyspIbb7yRefPmic9dcDYiBFPgG1588UUOHTrEm2++yYIFC4iNjWXBggWMHz+enTt3IkkS48aNY9euXR2ez9jZtOYEo6oqixYtIj09naCgIN59913Gjh3ro9V6HqfTyQ033EBFRQVVVVV07dpVb1fRQt6N0cTyjjvuYM6cOT5YtUDQKsK4QOAbHnjgAcaNG8fy5cvZtm0bK1asYN26dSQlJREeHg5AUlISmzdv5uabb/bxatvO1q1bmy0W2rRpEzk5OeTk5LB9+3YWLlzYZKzZuYpmcZiYmMhf/vIXAI4ePUpqaiq33347sixzzTXXkJKSwsCBA5EkSRfL+fPnc9ttt/n4FQgEbUMIpsDr+Pn58dJLLzF9+nQyMjLw8/NzOR8zPz/fh6v0Dhs3bmTOnDlIksTEiRM5deoUhYWFurHCuYwsy1x99dUNLnIGDhzI4sWLeeihhyguLmbDhg0sXryYsrIypkyZwldffcWiRYu49dZbfbhygaB9iPFegk5h06ZN9OrVi3379vl6KR5Fc4IZN24cb775ZpP7z+cLA39//2YjApIk0bNnT+6++24+//xzMjIyiI6O5oorrhBiKThnETtMgdfJysriiy++4IcffuCSSy7hpptuIiYmhszMTP2YEydOMHXqVJ+tsb1s27atgRPMsGHDhBOMC7p3787DDz/s62UIBB1C7DAFXkVVVRYuXMjy5cvp168fDz/8MIsXL2batGlkZGRQXl5OeXk5GRkZTJs2zdfLbTPaEOyoqCiuu+46duzY0eT+1gZnC9rH0qVLiYmJITExkcTERNLT010et3nzZoYOHUpcXBzPP/98J69ScD4hBFPgVdasWUO/fv1ISkoC4J577mH//v3s3buXp556igkTJjBhwgSWLFmiFwCdK1RVVVFZWan/PyMjg5EjRzY4xmw28/7776OqKj/88ANhYWHnRf7ybOGBBx4gKyuLrKwsZsyY0eR+WZb54x//yKZNm/jll1/48MMP+eWXX3ywUsH5gAjJCrzKXXfd1WDCg9Fo5KeffgJgypQpnWaF5g2Ki4ubOMFMnz6dVatWAXUGCTNmzCA9PZ24uDiCgoJ45513fLnkC44dO3YQFxenDyK/6aab2Lhx4wUxuUbgeYRgCgTtZODAgezevbvJ7Xfffbf+f0mSWLlyZYef6+DBgw1GUB05coRly5Zx//3367edr0OxW2LFihW8//77jB8/nldeeaVJH6+roqvzpa1H0PkIwRQIzgGGDh1KVlYWUBdmjImJ0Xe39TnfhmK3NKJr4cKFPPXUU0iSxFNPPcVDDz3E22+/7YNVCi4UhGAKBOcYW7ZsYdCgQfTv39/XS/E6X375pVvH3XnnnSQnJze5XRRdCTyJKPoRCM4x1q5d22z/4/fff8/o0aO5+uqryc7O7uSVdS6FhYX6/9PS0poUXAFMmDCBnJwcjh49it1uZ+3atZjN5s5cpuA8QnjJCgTnEHa7nd69e5OdnU10dHSD+y60odi33XYbWVlZSJJEbGwsq1evplevXg1GdAGkp6dz//3361Z+YkSXwA2E+bpAcK6zceNGVq5cSUZGRqvHiqHYAkG7cSmYIiQrEJxDfPjhh82GY4uKitAugHfs2IGiKPqAZIFA0HFE0Y9AcI5QVVXFF198werVq/Xb6vd8rlu3rsFQ7LVr17o1m1IgELiHCMkKBAKBQNAQEZIVCASumTdvHlFRUQ0qTcvKykhKSmLw4MEkJSVRXl7u8nffe+89Bg8ezODBg3nvvfc6a8kCQacjdpgCgYCvv/6akJAQ5syZo49ge+SRRwgPD+exxx7j+eefp7y8nBdeeKHB75WVlTF+/Hh27tyJJEmMGzeOXbt2NXHcEQjOMcQOUyAQuGby5MlNzO83btzI3LlzAZg7dy4bNmxo8nuff/45SUlJhIeH0717d5KSkti8eXOnrFkg6GyEYAoEApcUFxfrk1V69uxJcXFxk2PO5wHZAkFjhGAKBIJWkSRJVNwKLniEYAoEApdER0fr9nOFhYVERUU1OUZ4tQouJIRgCgQCl5jNZr3q9b333mPmzJlNjpk2bRoZGRmUl5dTXl5ORkYG06ZN6+ylCgSdghBMgUDAzTffzMUXX8zBgwfp06cPb731Fo899hhffPEFgwcP5ssvv+Sxxx4DYOfOncyfPx+A8PBwnnrqKSZMmMCECRNYsmRJk+IhgeB8QbSVCAQCgUDQENFWIhAIBAJBexGCKRAIBAKBGwjBFAgEAoHADYRgCgQCgUDgBq2N9xKdygKBQCAQIHaYAoFAIBC4hRBMgUAgEAjcQAimQCAQCARuIARTIBAIBAI3EIIpEAgEAoEbCMEUCAQCgcAN/n9yRLOdydyjFQAAAABJRU5ErkJggg==\n" - }, - "metadata": { - "needs_background": "light" - } - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAHBCAYAAADkRYtYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydeZAcZ3n/v31Mz32utFrtrk7bko2ELGt1FMZg/cLP/MBgHIoAJiSYhAohhCROijhAXOQoEhtXTEJBqlKposABBwLkD2wMVBKCzWnLkpG0h7SHdrX3PffV1/v+/ujtZmZ2drfn3Nnd91Plso6d7ndaM/3t53mf5/twlFIwGAwGg8FYH36zF8BgMBgMxlaACSaDwWAwGDZggslgMBgMhg2YYDIYDAaDYQMmmAwGg8Fg2IAJJoPBYDAYNhA3+HvWc8JgMBiMnQZX7g9ZhMlgMBgMhg2YYDIYDAaDYQMmmAwGg8Fg2IAJJoPBYDAYNmCCyWAwGAyGDZhgMhgMBoNhAyaYDAaDwWDYgAkmg8FgMBg2YILJYDAYDIYNmGAyGAwGg2EDJpgMBoPBYNiACSaDwWAwGDZggslgMBgMhg2YYDIYDAaDYQMmmAwGg8Fg2IAJJoPBYDAYNmCCyWAwGAyGDZhgMhgMBoNhAyaYDAaDwWDYgAkmY0fzwQ9+EI899lhNxzh//jxcLhf8fj8CgQB6enrwxBNPQJblOq2yMXzwgx+EJEnw+/3w+/04fvw4PvnJTyKRSGz20hiMloQJJmNLo2naZi8BAPDFL34RqVQKs7OzeOqpp/CNb3wD999/Pyilm720dXn00UeRSqWwuLiIL3/5y3jppZfw+te/HplMZrOXxmC0HEwwGVuOgwcP4rOf/SxOnDgBr9cLTdPw7LPP4tixYwiFQjh//jyuXbtm/fy1a9dw/vx5hEIhHDt2DM8++ywA4F//9V/xzDPP4Mknn4TP58MDDzxQ89q8Xi/Onz+PZ599Fr/4xS/w/PPPAwBkWcYjjzyCzs5OdHZ24pFHHrEi0HvvvRf/+Z//CQD42c9+Bo7jrNf98Ic/xMmTJwEAX/nKV3DPPffg4x//OMLhMA4dOoTvf//7Na8ZAFwuF86cOYNnn30Wy8vL+PKXvwwAIITgM5/5DA4cOID29nZ84AMfsCLQhx9+GE899RQAYHp6GhzH4Z//+Z8BADdu3EAkEgEhBC+88AK6u7vx1FNPob29HXv37rWOz2BsJZhgMrYkX//61/H8888jHo9jdHQU73vf+/BP//RPWFxcxP33348HHngAiqJAVVU88MADePOb34yFhQV84QtfwPvf/34MDg7iwx/+MN7//vfj0UcfRTqdxnPPPVe39e3fvx+nT5/GT37yEwDA3/3d3+Gll17C5cuXceXKFVy4cAGf+cxnABiC+cILLwAAXnzxRRw+fBg//vGPrd/fe++91nFffvllHD16FEtLS3j00UfxoQ99qK5RrN/vx3333Wet+ytf+Qq+8pWv4Ec/+hFGR0eRTqfxsY99zNa63/CGN4DnjVvM3NwcEokEpqen8aUvfQl/+Id/iFgsVrd1MxjNgAkmY0vyx3/8x9i3bx/cbjf+4z/+A29729tw3333weFw4OMf/zhyuRx+/vOf46WXXkI6ncYnPvEJSJKEX/u1X8Pb3/52fP3rX2/4Gjs7OxGNRgEAzzzzDD796U+jvb0du3fvxl/91V/hq1/9KgBDeF588UUAwI9//GN88pOftH5fKpgHDhzA7/3e70EQBDz88MOYnZ3F/Px8Q9f9Z3/2Zzh8+DB8Ph8ef/xxfOMb34Cmabj33nvx05/+FIQQ/PjHP8ajjz6Kn/3sZ2XX7XA48OlPfxoOhwP3338/fD4fBgcH67puBqPRMMFkbEn27dtn/XpmZgYHDhywfs/zPPbt24fp6WnMzMxg3759VqQDGKIzPT1t6zx///d/D5/PB5/Ph4985CMVrXF6ehqRSKTsGg8cOICZmRkAwOte9zoMDQ1hfn4ely9fxgc+8AFMTk5iaWkJFy5cwBvf+EbrdR0dHdavPR4PACCdTq869zPPPGOt+61vfWtd161pGubn53HLLbfA6/Xi8uXL+MlPfoK3v/3t6OzsxODg4CrBbGtrgyiKRWsvt24Go5VhgsnYknAcZ/26s7MT4+Pj1u8ppZicnERXVxc6OzsxOTkJQoj19xMTE+jq6lp1nHJ86lOfQjqdRjqdxr/8y7/YXt/k5CQuXbqEN7zhDWXXODExgc7OTgCGePT09ODzn/88jh8/DkmScPfdd+Nzn/scbrnlFuzatcv2eU3e//73W+uuZJ8znU7jf/7nf9ZdtyiK2LNnDwAjOv72t78NRVHQ1dWFe++9F08//TRisZi198pgbBeYYDK2PO95z3vw/PPP44c//CFUVcVTTz0Fp9OJu+++G+fOnYPH48GTTz4JVVXxwgsv4LnnnsNDDz0ESina29sxOjpat7Vks1m8+OKLePDBB3H27Fncf//9AID3ve99+MxnPoPFxUUsLS3hb//2b/Fbv/Vb1uvuvfdefPGLX7SisvPnzxf9vtHIsoxLly7h13/91xEOh/E7v/M71rr/8R//EWNjY0in0/jUpz6F9773vVa0aK7bjILNdd9zzz0QBKEpa2cwmgUTTMaW5+jRo/ja176GP/qjP8KuXbvw3HPP4bnnnoMkSZAkCc899xy+//3vY9euXfjoRz+Kf/u3f8ORI0cgyzLe/e53o6+vD6FQCO94xzuqLqD52Mc+Br/fjz179uCRRx7Bu971LvzgBz+wUsGPPfYYTp8+jRMnTuC1r30tTp06VdT/ee+99yKVSlnCU/r7RvHkk0/C7/ejra0NH/jAB9DT04Of//zn8Hq9AIDf/d3fxW//9m/jjW98Iw4dOgSXy4UvfOELa677nnvuQTabbfi6GYzNgNvgBtHaTWQMRoVQSqHrOlRVBaUUiqKA4zhQSkEpBcdxEAQBoihCFEUIglC0/8lgMHYEZfdqmGAydgymQBJCLJFUFKVIEE3hLPxe8DwPh8PBBJTB2DkwwWTsXDRNg6ZpVhTJcRwIIasEs5S1BFQURTgcDiagDMb2hAkmY+dBKYWmabhy5QqOHz9eVBVrRzDLHW8jATUFmcFgbFnKfoHFcn/IYGwHTEGklCKVStVFxErF0BRORVGgKIr1M6UpXCagDMbWhwkmY9thRpWapoHjuIamTE0hNFsoCgVUlmUoioJMJoOOjg4moAzGFocJJmNbUVrY02xhKhXQXC6HxcVFRCKRogjUrMIVRZEJKIOxRWCCydgWFLaLAKtTp5tFqYACxlpVVS1aKxNQBqP1YYLJ2PKYAqTressI5XqYvZ4mZgq5UEAFQbD2QZmAMhitARNMxpamsLBnI7E0f6aQZgjRRu5B5QqJdF0vaoMpjEDNSlwGg9FcmGAytiSVFvaYRgWbtadZ6WvKCaiqqtafMwFlMJoPE0zGloMQAlVVKyrs2cqCYr5H86GgnIBmMhlrhBYTUAajMTDBZGwZainsMSPM7UA5Ab1+/TpOnTpVVGRU2AvKBJTBqB0mmIwtQT0Ke8oJZjPStI0WavN6mCO3KKUghCCfz1s/YwqoaSzPBJTBqBwmmIyWhxCCqakpcByH3bt3V70vWE64Gi0cmyFM5fZATQE1r0HpHijzw2UwNoYJJqNlKSzskWW5ppaRUsGklGJsbAxzc3MIhULWfw6Ho17LbxnWElBZliHLMgA2kYXBsAMTTEZLUq6wp5bUZuHr8/k8ent7EQwGcfLkSaRSKcRiMUxMTIBSikAggHA4XDcBbbW903ICSildJaDMUJ7BKIYJJqOlWKuwxxzHVS2mYM7NzeHGjRu44447EA6HoSgKIpEIIpEIAEDXdSQSCcTjcUxOTkLXdQSDwaoFdCuIzFoCWmgozwSUwWCCyWgh1vOB5XkemqbVdPzBwUEQQnDmzBlIklQ28hMEwZaAmilcSZJqWlMrstZElunpaeRyOezfv59NZGHsSJhgMloCM6pcy7GnlpRsMplELBbD4cOHcejQoVVisN6NvpyAmsebmpraMQJq/p/neWt/05zIApTfA2UCythuMMFkbCp2HXuqSclSSjE+Po7Z2VkEg0F0dHTUbI0nCALC4TDC4TCA8gJauAdqrmM7sZahfOlMUGYoz9huMMFkbBqVOPZUGmHKsoy+vj54vV6cO3cOV69ebYhwrSWg8Xgc09PTUBQFuq5jfn4e4XB4S0eg60Xj5Qzl2UQWxnaDCSaj6ZQW9thpYahEMBcXFzE0NIQjR45g9+7dFb++FkoFNJvN4tq1a8hms5iZmYGmaQgEAlYK1+l0NnxNm0ElE1kEQWBuRIwtARNMRlOpdsCzHcEjhGBwcBDZbBanT58uEqPNssYznXUOHTpkrdFM4W41Aa3FFWm9iSwmzFCe0eowwWQ0DXOv0s4orlI2Erx0Oo3e3l7s3bsXt99++6aM8bIDz/OWOAK/EtB4PI6ZmRmoqmoJaDgcbmkBrYX1JrIsLy/D6XRabTxMQBmtAhNMRsOhlCKVSiGVSqGtra0qF5m1BJNSiqmpKUxOTuL48eMIBAIVvX6zKRTQgwcPghBiGSkMDAy0lIA20ne30FA+k8mA53kQQpDL5ZihPKNlYILJaCjmgOdUKoXFxUXs2rWrquPwPL9K8BRFQX9/PyRJwrlz54r2zMrRioJZCs/zCAaDCAaDqwT02rVrUBQFfr/fqsJ1uVybveS6Qym12lcKJ7IwAWVsNkwwGQ2htF1EEIS6WdsBwPLyMq5fv45bb70Ve/bsqfj1zaLW8xYKKIAiAb1+/boloKqqIp/PN1RAmzWAu9x5yo00W28iC/PDZTQCJpiMulOusKceXrCEEBBCMDIygkQigZ6eHtsC0aop2UpZS0CXl5cxODgIWZbh9/utFO5WjEDtCPN6E1lMmKE8o94wwWTUjfUGPNdDMFVVxSuvvILdu3fj9OnTdS0aaiSNPK8poE6nE3feeScIIUin04jFYqsENBQKwe12V30uM1XaaKq5XtUYyjMBZVQKE0xGXShNwZaKmVnEUS2Li4uIRqPo6emxKkwrYTNTss2E53kEAgEEAgEcOHCgSECHhoYgyzJ8Pp+1B1qLgDaSWsXMjqG8pmkQBAE+n48ZyjNswQSTUTNmYc967SLVCpamaRgYGICmaYhEIlWJpXn+nchaAhqPx8sKqMvlWvNaNXMPs96UE9ClpSUQQtDZ2QmATWRhbAwTTEbV2PWBBcpXuW5EPB7HwMAADh48iGAwiOHh4ZrXu9MpFND9+/dbLT/xeBzDw8PI5/Pw+XxFe6DNFo1mCLP5AGcWCJmfDdNQ3hRLZijPKIQJJqMqKvGBBSozT6eUYnR0FEtLSzh58iQ8Hg+y2Wxdq2ybRasXG3Ect0pAzRRuqYAqigJRbPwtYzOqcUsN5dcS0NI9UCagOwsmmIyKWK+wZz3sCkc+n0dvby9CoRDOnDljRa31KBpqZeFqFTiOg9/vh9/vLxLQeDyOpaUlaJqGaDRatAdab9FolmCaD3vlWGsiCzOU39kwwWTYxrxh6Lpe8f6OnaKf+fl5jIyM4I477rDmT5owwdwcCgWUEAKn0wmv14t4PI6RkRHk83l4vV4rhVsPAW1mhFlJcRGbyMJggsmwBSHEKs+vphhiPcHSdd1qwj9z5kzZEVjV7IHaPX+j2U5CXSig+/btA6UUmUwGsVgMN27cQDabLdoDrUZAN9MgoRI2msgCoCiFy9yItj5MMBnrYt4ExsbGwHEc9u/fX9Vx1hK8ZDKJvr4+7Nu3D93d3eumyGoVzFIopYjH4/D5fHA4HFUfu9LzblXWcuDx+Xzw+XxrCqjX67VSuB6PZ8Nr0gop2WpYz1B+eHgYR44cYRNZtjhMMBlrUljYU48IrzAlSynF+Pg4ZmdnceLECfh8vopeX835C9cvyzKuXr0KQRAgyzIopVZzfygUakpxy3ZkLQGNx+MYHR21JaDNisgbbcRQKKCmobwpoMwPd2vC7gqMVZQr7BEEwWr4roZCwZJlGX19ffB6vTh37lzdB0ivhfn6wgHTpsWcpmmIx+OIx+O4efMmOI4rEtCNjN13AtVEfoUC2t3dXSSgY2NjyGQyRXugHo8HQO3GBXZodiS7lh8uM5TfOjDBZBSxVmFPPSI8oFisdu/eXdHr6xHhDg4OIpVK4fTp05AkyXooEEURu3btsqapqKqKeDyOaDSK0dFRawxXOBxGMBi0LaCs2KiYcgKazWYRi8UsAVVVFbOzs9i1axe8Xm/DRGOzi4vWEtByhvJMQFsDJpgMi/Uce2pNyZo3gomJCZw+fbriuY61Co+qqpiYmEB3dzd6eno2PJ7D4cDu3bstUTcFdGlpCTdu3IAgCEUCuhN8SRshMBzHwev1wuv1WgL66quvguM43Lx5E5lMBh6Px0rh1lNAza2GRmP3POX2QNlEltaCCSbDlmNPLV6w6XQavb294DgOp06dquqGV8tNcm5uDtPT09i7dy8OHz5c9Hd2RaBUQBVFQTwex8LCAkZGRiCKoiWggUCA3ciqxPz8dXZ2wuFwWBGomSo3BdS81rUIaDNTstUOTd9IQNlElubCBHOHY9exp5qULKUUU1NTmJycxPHjx9HX19fUlJKu67h27Ro0TcPBgwfrejORJAnt7e1ob28HYOzLxmIxzM3NYWhoCJIkIRQKIRgM1pTKbiU2y4HHjEC7urpAKUUul0MsFsP4+DgymQzcbndVArrVqnHLCWjpRBZd18HzvGUozwS0vjDB3KGUFvZs9MWqNMJUFAX9/f2QJAnnzp1retFMKpVCX18furu70d3djenp6YYKl9PpREdHBzo6OgAYjkXxeBxzc3PIZrO4cuWKdVP3+/1sL2od1hMyjuPg8Xjg8XjWFFCXy2WlcH0+35rHalZKtlHVuOUEdHFxEblczmr/Yoby9YUJ5g6k3IDnjahkDzMajeLatWu49dZbsWfPnlqXWxGFUe1rX/ta+P3+or9rFi6XCx0dHdizZw/S6TSOHDmCeDyOqakppFKpoqhovZt6K9GKhgJrCWg8HsfExMS6AtrqKdlKMfflzfRsoR+uWeFuCqj5HxPQymCCucMwo8r1RnGVw05KlhCCkZERJBIJ9PT0wOVy1WPJtlFVFf39/RBFcVVUW67Ip5k3TrfbDbfbjb179666qafT6brty20Havn3KBTQzs7Ooms9OTmJdDoNl8uFUChU5MjTSJolmKXnKmxVAVYbygPl90B38mdvI5hg7hAqGcVVjo1SstlsFr29vdi1axdOnz7d9C9dPB5Hf38/brnlFistWshaVbGNbvsodx3K3dTLFbaEw2GrN7EVbmLNisjqSblrnc/nEYvFrFS5+bASCoUaki5v5nUjhKxpulEqoOba2EQW+zDB3AEQQjA/P49QKFR1CmY9YZmZmcHY2BiOHTtW9YDnaqGUYmxsDIuLi7jrrrusxvdSWrkfslxhi9mbWOqOUy+D81anUe+P4zgr2p+fn8exY8eg67qVLk+n03A6nUUp3Fqjw82KMO1gmpKYMEP59WGCuY0pLOy5fv067r777qqPVS7C1DQNAwMDAIBz58413U5OlmX09vbC7/cXjQIrRysLZinlehNNf9aRkRHkcjn4fL4iAW0GWzHCXA+zGEeSJCtdDsBK4dZLQFtZMEthAro+TDC3KaWFPbVSWvRjpkAPHTqEzs5OW8cwRase61laWsLg4CCOHj1qufNsdO6tSqE7junPag55HhoagizLyOfzmJ2dRTgcbvre8VZlre9G4X4z8CsBnZ6eRiqVgtPpLCrY2kigmp2Srac4lxNQcyJLMpmEruvYvXv3jpnIwgRzG2LuVZYW9tTyxTUjTEopRkdHsbS0tG4KtBxm4VAtLSaEEAwPD1v2dnYdg7ZShLkRHFc85JkQggsXLkBRFGtMmt/vtyLQSl2V1mK7RpgbUSqg5h5oqYCae6Clx2xmhGn2YTaKwvtJLpeDruvQdR2aplk/s50nsjDB3EasV9hTa3THcRw0TcPFixcRDAY3TIGudYxa7fVeeeUV7N6927K3q4TtIpil8DwPQRBw4MABHDhwAIQQpFIpxGIxDAwMQFVVBAIBS0DLzRvdqVTzfXC5XNi7d2+RgMbjcczMzCCVSlmmFWbPbbNTss3qeTbPVfjeCreBzGv79a9/HQ8++KDtTFQrwwRzm7CeDyzwqwix2i/u0tISUqkUenp6EIlEqjpGLfZ6pgHAmTNnEA6HK379doowN4LneQSDQQSDQRw8eBCEECSTSSsq0nXdEtBQKFSRgG6naKFemD23paYVpoASQuD1eq2sQCPFs9nRbOkc2XKG8j/4wQ9w3333NWVNjYYJ5hbHbrtItWKl6zquX78OWZbh8XiqFkugOtEyz68oijUGqlnn3i6Yk1ZCoRAOHToEXdctAZ2amoKu6wgGg5aArjVMe6dev0opFdCxsTHIsozZ2VkMDg7C4XBY0X69BbTZgrlRNMtxHLLZbEVbN60ME8wtTCWOPdUIZjKZRF9fH/bt24fu7m784he/qGm9lYqWadre1dWFffv24aWXXmraubczgiBYN2zAuPElEgnEYjFMTEyAUlokoGb183bbw2wWPM8jHA5brlem73CpgIZCoZqN+1uxIjebzW44IH6rwARzC1JuwPNGN7JKBJNSivHxcczOzuLEiRN1+7DbXcNa9na17MMywVwbQRAQiUSs7IGmaZaA3rx5EwAQCoWQz+eh6/omrnRrUiospb7DsiwjHo9jfn4ew8PDNU2+abUIEzCKg5rV+tRomGBuMdYa8LwRdsVKlmX09fXB4/Hg3LlzdS9R30i0NrK3q2VUEsMeoiiira0NbW1tAAwBNWeBDg4OFt3QKxmmvVPZqLXL6XRiz549RRFoOQE1p9+s9/lvdJVsIXa/i+u5D201tse72CFsVNizHnYEc3FxEUNDQzhy5Ig197GebGTgHo/HMTAwgEOHDlkViIXUGiWyCLM6RFHErl27sLCwgP3798PpdK45TDsQCGwZAW3W56HSaSWlArrW7FUzhVt4vVsxwtxOMMHcAtTqAwusL5iEEAwNDSGTyVTU21gpaxm4U0px8+ZNzM/P4+TJkw2xt9ssL9nthPmgttEw7cI9UjZMu3YRK529Wu56mw8sjRolVg47LSzb7bvFBLPFIYRgbm4OPp8PkiTVbDxQillYs3fvXhw9erShqcty4lRob3f27NmG2duVe200GsXAwIBVlMFSjNVR7oZeOEy7kVWhtbBV3XfWEtDFxUVks1m8+uqrTYn4K0n/bpctESaYLUphYc/U1BQOHz5cU+RXKpiFhTXHjx9HIBCox7IrWsPy8jKuX79uOwVcL8E03YqWl5dx5513guM4JBKJohQji5BWY7fgSpKkVXtysVisqLHfvL71MDdvdeplT7kWhQKaSCRw/PhxS0ALI1BzD7ReAmonJdvMFHEzYILZgpQW9giCUHXDv0mhWCmKgv7+fjgcjlWFNY3EFK1q52ZWMsR6rXObEW0gEMDp06eh6zoIIatSjIURUuENvhHjn7Y7pVWhprVcqbm5OQu0GTQzVdjMNCmwOgJVVdXacx4dHS3qy61FQO08QG2nClmACWbLUa6wpxaHHBPzGNFoFNeuXVtzbuRG1OpHm8/n8corr1Q1N7PWCFOWZVy8eLEooi3XJlEaIRXe4FOpVEvOqtxKlFrL5XI5qwc0nU5DlmVMTk5a00EacX0bHfWVnmszo6zSPWdTQJeXlzE6OgqO46quet7oGmazWSaYjPqzXmFPPSJMjuMwMzMDTdMqiupKj1GLYGazWczNzeHEiRNV29tVcx0opZiYmEAqlcLdd99d8XsvvMFTSq0b/NjYGDKZzKaM2toMGmVcYJqbd3Z2QtM0vPrqq+B53hJQ8wElFArB6/XWZQ3NLo5ppbRkIwW0lEwm07SsQTNggtkCEEKgquqajj08z9fUMJ7NZjE5OWnNjawlQqwmwjPt7dLpNG677baqxBKoLsKUZRlXr161brq1jr7iOA4ejwcej8ca9mzOqhweHkY+n2/IpJCdhCiK6OrqWjVM++bNm9YN2BTQaiP8Zo/casa5qj1POQFNJBKrBNRM4VbSU5nL5baNLR7ABHNTsevYU0tKdmZmBmNjY+jo6IDb7a7pi2uuo5InzkJ7O6fTWfNw20oE0ywqOnr0KDweDwYHB6s+93prKpxVWW5SiCzLWFhYQDgcXtOndSvQDJEpPcd6w7RHR0ct2zVTQO1+xpspmM2KZusVyTocDuzatcuaM2sKaDQaxdjYmCWgqqpC07R1BXQ7+cgCTDA3jUb7wGqahoGBAQDAuXPnMD8/bwlztVSSEqWUYnp6GhMTE5a93ejoaE3FFnYFk1KKkZERxONxK/2cy+WaUuhRblLIyy+/jHQ6bRmdm+muQp/WrUIzBHOj85cbph2PxzEyMoJcLge/329d47VS5K3oudqq5ykVUE3TrKrny5cvg+M4y3u4NAJlgsmoGTOqtOvYU+kepumYc/DgQWsGXS0VpiZ2j6FpGvr7+8HzPM6ePWt9gWo1CbDz+nw+j97eXoRCoaKios0yKOB5HqIo4vDhwwBW+7TWc7+o0TTr+lVy0y8cpm0KaCqVQjwex9DQEGRZLhJQMyXf7AizWSnZZgizKIpWwVtPT49lnWju6wNGZfS1a9cgCEJVe5gHDx6E3++HIAgQRREXL15ENBrFe9/7Xty8eRMHDx7EN7/5zaq3d6qFCWYTqdaxx+4eptlfuLS0tMoxp56VtuuRSCTQ399fJNb1WsNGomd6nd5+++2WD2rha1uBUp/WwpL/wh7QSCTSUk3+JpsdYW4Ex3EIBAIIBALYv39/UYrcHBMXCATg8Xhq/j7YZSsIZj4eB8dxcAaDts9lPtyZ1omFEejNmzfxk5/8BC+99BKy2Sx0Xcf58+dxzz33IGjzHD/60Y+sYwLAE088gTe96U34xCc+gSeeeAJPPPEEPvvZz1b4TmuDCWaT2KiwZz14nt8wnWpGVsFgEGfOnFn1xamHYK6XkrVjb9eoCLOwr3Mta79WtcArLbgobfIv7FFsVIuFXZpx/eotLoUpcgDWMO35+Sx/iY0AACAASURBVHmkUim88sorCAQCVgRayTBtu7Ry+0pifBxzFy9Cl2Xc8b732X7deqYFoiji1ltvxRe+8AV87WtfQzQaRU9PD1544QU8/vjj+M53vrPqgdYO3/nOd/DCCy8AAB5++GGcP3+eCeZ2o7Swp94+sAAwPz+PkZGRspGV3WPYXUe5m6aiKOjt7YXX613X3q7WNZQ7fz6fx9WrVxGJRDbs6yy39npcl3pS2uRf2qO4mT2gm1H0U2/Mpn1zm+Po0aNIJBKIx+OYnp62hmmbAlqPIq1mPajZnh6iaVjq68P85ctIzczA4fHgzg99qKLrbvdcmUwGbW1teMtb3oK3vOUtto/PcRze/OY3g+M4/P7v/z4+/OEPY35+3urd7ejowPz8vO3j1QsmmA2EUorl5WV4PB7wPF/1jWCtPUyzXUNRFJw5c2bdp+NGRZiV2NtV20e51uvN6SrrPSgUvrbcjasVo85CCnsUC1ssSitEW0n0a6FZ6UvzPIU+wocOHbKGacfjcUxOToIQYrVUhEKhlq5y3siqTkkmMX/pEhavXAFEEflkEpLPh8NvfSuklZmz9TqXSS6XswxAKuGnP/0purq6sLCwgPvuuw+333570d9XmqWrF0wwG4S5VzkwMIC77rqrpmKOcmKXTCbR19eHffv2obu7u64DpO0cgxCCGzduFFWibkS9UrJmCjaZTNqertKqKdlKKNdikU6nEYvFkM/nceHChYb2gG6HCLPwPOUipNJh2rquIx6PIx6PY2JiApRSqyLUbpXzZqdk05OTWLx8GUvXr4OoKkSvF+A4OFwutB09ishtt1V8LrvG69VWyXZ1dQEA2tvb8c53vhMXLlzAnj17MDs7i71792J2dtay/msmTDDrTGlhjyAIdalONYt+KKUYHx/H7OwsTpw4AZ/PZ/sY9RLMXC6Hq1evVmxvV4+iH9Perq2tDT09PbbPvR0Es5TCCtH5+Xn09PQU9YBqmlZ0c2/l6MikmQUyds4jCMKqYdqFVc4AitqENrPKuVAwiaYhNjCAhYsXkZufB9xu8BwHKRSCnM1Cz2TgaW/HgTe9qepz2Xmv2Wy24irZTCYDQgj8fj8ymQz+67/+C5/+9Kfxjne8A08//TQ+8YlP4Omnn8aDDz5Y1dprgQlmHSlX2CMIQk0uPcCvhEaWZfT19cHj8eDs2bMVez7WIyUbjUZx/fp1vOY1r6m4pLtW0cpms5iamsKJEyesCKAe525mi0EjKe0B1XUdyWTS2gOllBa1sLRiD2izU7KVUq7KuVxT/2a0CRFCQHI5zL34IuLDw8gsLAAAHG1tILJsGQ0QXYc7EsFtDz4IvsrPgN09zGoEc35+Hu985zsBGA8ov/mbv4m3vOUtOHPmDN7znvfgS1/6Eg4cOIBvfvObVa29FlrvG7MFWa9dpB6RnSAIyGazq4zDK6HWdei6juXlZXAct+F+6XprqEYwCSEYHh5GPB7HLbfcUrFYAq3TVtJMCseUAcXRkXlzLxxjZmcY8HZJydbLrq6cK05pm5BZ+RwMBhvWJpSdnsbc//wPUoODCLa1QSMEUiAAThCQi0YBSiGFQtAJAQ+g89w5eKq4j5hUsodZaUr28OHDuHLlyqo/b2trww9/+MOKjlVvmGDWyEaOPbVGmIQQjI2NIZ1O4/Wvf33V+1K1CKZpb+d0OtHV1VV16X01Ua6Z/t29eze6u7tremLfbinZSikXHcViMSwsLGBkZMRqSN/MQc+bvYdZK6VtQrlcDleuXCm6xoXDnWtZA9V1JK5dQ/TiRSjpNFLT0+BEEbzHAz6VAsnloAFweL0QJAm5eByUEERuvx3td91V0/u0K5jVRJitDBPMKmmGD6wpVLt27UIgEKjrAGk7FNrbHT9+HMvLy02xtjNZWFjA8PCwlf69efNmTeO9GMU4HI6iuYkb9YA2S8xaOSVbKaIowul04ujRowCMaxyPx61Zqw6Ho+KHFC2dRry3F9GLF6GmUhADAaMIx+0GJ4pQYjFAEOAIBkHSaei5HHRVhSBJcEUiOHj//TW/L0KIrZS+Oc1nu8AEswpKU7DrffGqiTAppZiamsLk5CSOHz8Ol8tVNkVRCZUKZjl7u2g0WnMfpZ3XE0IwNDSETCZTlP7djoU7rcRGPaCyLGN6ehqRSKRhPaDNao9p1gSRUmF2Op2rZq3G4/GihxQzAi0dVp6bnUXs4kWkBwdBeB5EUeAIBqEqCvRcDoRS8KoKqa0NlOeRX14GAEiRCHRFgZbNYv///b9w1DixBzAiTDsP8GxayQ6n3IDn9ahUqBRFQX9/PxwOhyVUuq43xdbOZC17u1r9aO0InpmCbW9vx9GjR1dNrmCC2TxKe0BffvllAFjVA1rvOaBbOSVbykbFMS6Xa9VDSjwet4aVu5xOeJaXwU9PQ5maAgdADIfBEQKq69BUFXouB4fPBz0aBa/rIJoGVVEMmzuOM/YwAXS98Y3wd3c35X2ZsJTsDqVaH9hKIsxoNIpr167hlltusb5AQP1MBzYSG7NlZW5uDnfeeeeqD3qjvWBLU7CltJorz07CrPju7u4umhISi8Usk/NAIGAJaLX73K1eJVspldrVmQ8puwMBJC9fxvLPf45MMolUMgkFgOTzwTE+DpfLBdfu3eAohehygQDQ02k4QyFwkgROlqHn81A1DZLfD29HBzpf//q6vS+7e5iapjXEbnCzYIJpg1p9YDcSTNMEIBaL4dSpU6ue1usRWW20ZtPezmxZKfclr7U1ZS3BI4RgcHAQ2Wx23QrcerTGFKIoCvr6+qAoSksbnrcShdNfzB7QQpPzaDRaZDFXaQ/odhTMSs6jzM8jefEishMTxl4kzyOwZw/8gQCIriOXz0MGkKQU89euwSGKcO/aBZfbDcHlguB0QonHwQkCBK8XNJMBNA0H/t//q+v7rXQu7naBCeY62C3sWY+NRnNls1mrsOfMmTObUpxi2tvddttt67pnNCIlm81mcfXqVezZswe33377uu+/ninZeDyO/v5+HD58GF6vF4lEomgfKRKJIBwOw+v1soIhGxT2gBZazJXrAV2vwb+ZQtaMG76d1C8lBLnhYSRfeQX5iQnwgQC0fB5SMAgdgBqNgnIcxFAIbkmCJMvwAqAeD4jTiVQ0iuWlJeQ4DjlZhj8chluSIK+kYm/9jd+AFAjU9X3ZcfrZjtsnTDDXgFIKVVWh63pNvoVmH1Y5ZmZmMDY2hmPHjiEUCtWy3Kqo1N6uHhFm4ZfINI23+/7rIZiFaee77roLTqcTqqoWFWLkcjlEo1HcvHnTqvJrxF7ddqbUYs6cmVjY4G9e08L+xK3eVlLKeilZksshc+UKMr/8JZRcDiSfB29ug6gqqNMJLZuFIxAAFQQosRgoACEUgkAItFwO0DT43G6Edu/GzOwsXBwHommYm5wEEUWEjhxB1ueDM5eDy+Wq27W1m5IFtleFOhPMMhBCsLy8jLm5Odx22201/YOXS0OaHrOUUpw7d25THFdyuRx6e3ttTfkwqcceJiHESsHmcjmcPXvWdrquVsGklOLy5ctwOp1W2rlcutztdqOrqwtdXV1r7tVFIhGEQqFttT/TSEpnJiqKgng8bu1bm+0VzWIz9zDVxUVkV4SSqCoQCIB3OMBzHHRCoGcy4J1OUEEAz3GghEBOpeDw+cBJEuRYDKAUfCgEYeV96LoOPZuFq6MDTr8fXkmCMxJB97vehUQqZX12Cx/+7Pg/V/K+SmER5jansLAHMEq+a/1SlRb9xONxDAwMrKpAbSbmTeqOO+6oyDWnHoKpaRouXLiAjo6ODVOw5V5f7ZcwmUwik8ng8OHD1oggu+cs3atLJpOIRqOYmpqyplm0gpfoVkKSpDV7QLPZLFKplHVjb0RavFltJeZ5KKWQR0aQvXABytwcdE0DBAFCJAItlQJVVXCBAKDrEPx+EF2HHo8DDgcgihAlCSAESiwGweUC73JBTiRACYEQCICnFLzLBdHphJJIQJAkHH7nO+EOhxEMh63PrvnwZ045qtas306EKctyTaLcijDBXKG0sMds56gVU2QopRgdHcXS0tKaA5YbDaUUAwMDyOfzVdnb1RrhLS0tIZFI4OzZs7anrtd6ftN8YXJyEm63uyKxLIc5T9FMIZt2c9FoFKOjo0V2dLU6uewkzB5QwLjRtre3IxaLYXx8HOl0Gl6vtygtXqvYNS0lm88Dvb2I/fSnUGZmAJ4HAgEIug6iKNASCQBGmlXL5420bCAAEGIYEhACLR43xNXthshxILoOOZEAx/NwhEJQ0mkQRQFd+TtXIICOe+6Bu8T6jud5BAIBBAIBHDhwwCrUMs36VVW1XelsJ8LMZDLbqgcTYIK5ZmFPPUzTgV/tYV68eBHBYBBnzpyp6otqikW1N4pMJoNsNouuri7ccccdVR2n2giTEILr168jl8vB7/dXJZZA5YKp6zr6+/sBAGfPnrX6COtJqd2coiiIxWKWk4vT6YSiKNZNfzvt5zQC8zNe2gOayWQQi8UwMjJifY5qSS02OiWrLS0hf/Eisi+9BMpxUCQJ/MpepBaLARwH+P0QnE5DONNpEE2DEAyC6DqILIN3OqGbxT+UQo3HwfE8OL8fDkkCkWUoqRSIphniGosBsgzP4cNoO3lywzWWmvWb2RMz0tc0zRLQ0u0HOw8c1Y72amV2tGCuV9hTL8GMxWJYXFzEXXfdteGQ4/UwxaqalN/09DTGx8fhdruxf//+qm8U1VTJmlWwe/fuxZEjR3Dp0qWqzl3p+U1bQXNeaLOQJGlVAdGrr75qFRB5vV6rApcVEJWn9PPJcRx8Ph98Pp/VA2pGRmZqsdIe0EakZCml0G7cQP7iRajz89AzGegcByqKxlQQSqHH4xA8HsDphBqPG6/zesFLEnhdh5bNgqgqeK/XECVCQAGoqRQcfj8gisYeJgAhGISDUuiKAiLLILkcnIcOYd9b31rV+kuzJ4XTbqampopahex8D7ebaQGwgwVzI8eeekz3uH79OrLZLCKRSE1iaa6nkso04FfFRYARYb366qsVN1KXrqGSazI3N4fR0VEcO3YMwWDQKvipFrtVurOzsxgbG8Px48cRqHM5faW43W5IkoRjx44BMCL9aDRa12b/7YSdyI/juFWpRfPGbrcHtJ4pWSrLUPr7IV+4AD0aBYJBUEoh+P2gsRi4VAp01y4jrepygfI81HgcvNMJ3uOBmkiA6LohnC4XBJcLqiyDZDLgXC5QAOLKe5BjMQhuN3i3G8qKmTofDIIjBLzbjQMPPACxTg9ipdNuCluFcrmclTVba5g2izC3AXYde2rpOUwmk+jr68O+fftw6NAhXLt2rZYlW+upRGxMe7sDBw5Y08vrVeW6EebDgqIoOHPmjHXDqnUPdKPXm6lfRVEsW8FWojBSKiwgKrzRh0IhRCKRiuZVbqdqxGpSpYWRkd0e0HqkZEk0CvXiRajXrkFTFFBNAxcMGpWv2SxoMAiqacaepCiCmEU8kgRxJYJUYjHDZCAchp7JgCgKuJWxXI5AAJqqQkskwEkSKM/D4fWCFLxOLNjDdB85At++fTW9p/UobBWKRqM4efKkdZ3Hx8et62yKZ7V7mLqu4/Tp0+jq6sJ3v/tdjI2N4aGHHsLy8jJ6enrw1a9+ddMeLlvrjtJganHssYPZ4zc7O4sTJ07A5/NZo79qZSMDhHJrKLW3q1Uw7TxEZDIZXL16FZ2dnavSv7Ve7/UEszD1W+0ebbMpd6OPx+PWvEqe53dcAVE9Ir/1ekDNwixN0+Dz+Sp2dqKUgoyOQu3rg7bSGkYDAfBuN6iqQs9mjYpXv9+4zygKOLcbVJbBBwJGliWRAOdwgDidEP1+EE2DlkgY7z0UAlFVkFzO+BlVNYRT1w3hFARwXi8cfj90VYW8Ep0GDh6EcsstNV23Sindvzev8/j4OD760Y+CUopwOIz//u//xutf/3rb4vn5z38ed9xxB5LJJADgL/7iL/Cnf/qneOihh/CRj3wEX/rSl/AHf/AHDXtf67EjBLMejj0bIcsy+vr6LGs5M3Var71QO2JnWr253W6cO3du1Y2gHoK53uvNVKiZgq03awmm2SazWQYQdrAT0QiCsKqAqHAUVOm4ra3wUFApjSjGKdcD2tfXZ0X2kiQVjdgqd36iKCC9vdAvXQLJZqHl8+BdLlC3GzQeBwgB8fvBSxKorkPP5w0BdbtRuIlCMhnwfj8Ix4Ekk4AgAE6nkb7VdajJpNEqspLW5QgB5TjDwMDvNwwM4nGA4wzh9HrBcxz2ve1tiA4N1fW6rcVa+7+F1/nll1/GM888gxdffBHf+9738Nhjj8HlcuFb3/rWum5iU1NTeP755/GXf/mX+NznPgdKKf73f/8X//7v/w4AePjhh/HXf/3XTDAbxUYDnuvB4uIihoaGcOTIEWtwrEm9DMM38qQ1jdvXs7drVErWTMGqqtrQVGipYBJCMDw8jHQ6bbtNpvSG3IwJKNV+5kp7FUvHbRW2WmwXmmEoIEkSnE4nDh48CK/Xi3w+bxW2pFIpuN1u67p6FAX01Veh3bgBsrwMKoqgfj8EjgMFQGIxcA4HqM8HLpkE1TQQrxec0wnO7QaZnYWgKMDu3aAcB97hMIwGkknwHg84SYKaTAL5PKjTCcHnAwdAyWSMdO7KHFLR4QB4Hko8DtHlAufxQEkkQHUdB971LkgNeEBdi0rqIE6dOoU///M/B2BYcG70WX3kkUfw5JNPIpVKWa8p3B/t7u7G9PR0DauvjW0vmIXtGNV8Edf7AptzG9PpNE6fPl228bdeX/61xI5Sihs3biAajW5ob1dvazvgV9WoXV1d2LdvX0NvdoXils/ncfXqVbS1teHUqVO2zrvWz2yVSG2tVovh4WFkMhlcu3bNqsDdqgVEm2G+7nK5sHfvXuzduxeUUuRyOSSuXsXSt74FjI6CDwbh4ji4d+2CIIpALAYqiiAejyFohICsGKVz4bCxfynLoD4fKM9D8PsBTQPJZg0RBYw9TFE0WkUcDvB+P/RUyujb9HjASxIEnw9KNmvsa0oSQCkcXi/AcZBjMXA8j12nTyN49GhT97HtFh+WzsLcqPDxu9/9Ltrb29HT04MXXnih1mU2hG0vmED1BTzr9T6aQrF3795VcxsbQbk9TFM0IpGILeP2ekeYMzMzuHnzZtOqUc1/j6WlJQwODlbsVAQ074bcaAoLiLq7u/HKK6+gs7OzaFpIYaFLqxVArcVmThGhqgr09cF16RKkdBo0nwe59VbIhCC3uIjFxUWoiQSkUAhOjweuaBSiywXqcoH3+wFCrFYRLhIBZBlcLgeYUWIoBDWfB00mwa2M5HIEAqAAlGgU4DiI4TB0WQbJZqELAighcASDRvFPMglupWhI8vshut3o+D//p6nXDbBnvA4Y9QyVfD9/9rOf4dlnn8X3vvc95PN5JJNJ/Mmf/Ani8Tg0TYMoipiamrKKGDeDrfEt2iTM/cfCDwelFFNTU5icnGxq20Kp2FVjb1evPUxd13Ht2jXout70atRUKoWxsbE1I/r12KwB1M1K+5ZOCzELiG7evGmZnUcikZYuINoU8/VEAvTKFeDSJdBcDiQQAAQBnM8HEAIpn4fY3g6/JAGBAHKiiOzCAhY5DkomA7emweX1QgoEIAUCIJQa7jwr+5rgOHArQ+CpLENYGdVFMxkQSYLO878SzgKfWEqIsYdJKfRsFqLPByIIUJNJ8IKAg+99L/iVCvRa2sUqxW4/eD6fr6hK9vHHH8fjjz8OAHjhhRfwD//wD3jmmWfw7ne/G9/+9rfx0EMP4emnn8aDDz5Y9dprZUcIZrU3LFMwzbYIVVXR19cHh8PRdKEw9zDtzo5c6xj18oLt7u5Gd3d3055qFUVBf38/KKW2zeJL2SzB3AxKC4hUVUUsFsP8/DyGhoYgSZKVvm2lAqJm/ftQSsFPToK/cgX05k1QQgBKQSMRIJ0GFMUQTkqNNg9FAU0kQD0eOB0OuNrbEXI6oSUSkDkOWV1HYmLCiBp9PngCAbj9ftDxcYAQcO3txqSRlXuGnsmA93hAJQlIJqFrGgjPQ/T5AEGAYhb/+HxG5Ol0AjwPdcUntuNNb4KroF6imYJpNyVrGnXUymc/+1k89NBDeOyxx3DXXXfhQx/6UM3HrJYdIZjVUljhahbV3HLLLZbnZTPheR65XK5q43LzGLUI5szMDHK5HF73utfB7/dXfZxKMb0uDx48iPn5+apv7ttVMO1EZQ6Ho6iAKJ/PIxqNli0gqodXay009NyaBr6/H5Hvfx8OXQfleZBQCCAEkGUgmTSiulDISqmSlc86HwxCl2UgkQBxuw1DAa8XgihCSiYR3rcPxOtFdnERuWgUSwsLUHUdhOehLyzAZdrjARA8HlBRhFawh0nTaZCVqJOXJAguF+R0GlTTIHg8IIRA8vng7uxE5K67it5WsyNMO+cq3cOshPPnz+P8+fMAgMOHD+PChQtVHafeMMFcB7Nfa3h4GLFYDKdOnarazqzWVJM5zf6uu+6qumWjWsHUdd0aR+b1epsmlpRS3Lx5EwsLCzh16hR4nsfc3FzVx9tMwWw1oXa5XOjs7Czr1ZrP5y2v1kgk0tQCooalZFMpCJcuQbh8GZRSSHNz4A4fNvYfl5dBOA7U7wcHgOo6SCoF6DpoMAhoGjhZBpEko3I1FDJmUSaToG43iK5DCARAOQ40Hofb6YR7zx6E83nMjo9DIgRZWcayLANLS3A7HHC3tcFBKRyBAMDzxrBnjoMQiQD5PPRsFpogGIU+gQA0RYG+Mhuz621vW/X27O4r1gO7ESazxtuiVPsFpJSir68PHR0dtopq1sKMVKtJ4Zr2dplMBgcOHKipv7EawSz0ZO3q6sIvfvGLqs9fCaqqore3F2632zKsr9UEYrOiplZJd65FqVdr4RSLvr4+q4DIdMhq5FZEvQWTm56GcPkyuOlpcMvLAM+DBINGRSshoNEoqMcD6nIBKx6tutdr7V+SdBrQdeM1K3uKhBBgxZFHX9mLpG43CKWGeToALRo13o/fD28wiICqgrpcUFIpKIKARCIBOZGA4PXC4XDAF4nA6XZDWV4GAAjhMKiugwKgAPR8HqLXi64HHoBQ5qG9Wp/parAbYbJpJTuImZkZLC0t4fDhwzh48GBNx6o2sjMt9g4cOIBdu3ZBluWmrmNqagoTExN47WtfW7eo0s7UlUQigb6+vlXp70Zb6zEMSqdYmFZz8/PzuHz5slVAFA6HEQwG6xrZ1EUwdR3cyAjES5fAzc+Dut1Gn+NKIQ0fjRoi6HQaA5p5HlwsBjid0D0ecImEYZS+0u9IeR40lTLStisPrLwoggCgmQw4nw+E54FUCmTFJEVcmUxCr18HFUVwu3eDIwQOpxMOpxNOSiHs3g2F55FZWEB8fh6ZXA6Szwev3w9hcRGSKFqRq+jxIHzyJLwHDpR9y624h5nL5eDz+ZqwoubBBLMEM6KjlKKzs7MuT0iVuv1QSjExMYGZmRnLYm9ubq5mAwS7gllq2l7PiMJsTSn3haOUYnJyEtPT0zh58uSqdE49BK/c65mIro9pNed0OnH69GmrgMis1DadciKRSM0FRDUJZjYLoa8P/MAAoKrg0mnDREDTwKmqUWCTy4EGg9BiMQjxOHSHA9TjAbxeIy0bjRqWdH4/eLO1xOkE73YDTqdV/UoDASOF6naD8LzRKuJwGD2UqRRoPg+NEMDphNjWZgyDphRcMAhKCMSVPUwumYQ/GEQgEICeTkOWZWTzeaTzeagcBz4ahcvhQPjWW7HrnnvWfOutuIfJUrLbnHg8bhWXdHZ2YmxsrG62dnaPY9p2uVyuIou9ejgG8Txv2QOuRSqVQm9vL/bv39+QsVhriZ6maejv74cgCEXv285rqz23pmno7e1FKpWyil4ikUjdi162W2RbroCo0IHI4/EUjTCr5FpWI5jc4iL469chXLtmRI5uNzieB3W5wKkquGwWxO02UqqqCuJygZdlkEAAVNfBJRKgkgRaUJRDo1EjfRsKgcvngVwOOiHgRBGczwctmQQ0DVg5huj3Q+c46LEYKM+DDwQg5HKGPV4qBd7hgODzQU2lQFUVfCAAXVUhBgIgHAd1JYXramuDU1Xhz2RAnU7kkklokoTMHXfg4qVLRXNAC9uqmh1h2tnXZoK5RdnoC0gpxejoKBYXF3Hy5EkrqqxE6NbDrnG6WYl76623WvMUKz3GeqwnupRSTE9P1z0Fa2cNpkgXTlYpRz0F0zznwYMHcccdd1hVo4VFL1vdNadZlDrlZLPZVdey3E2+HLYFU9fB37wJob8f3NKSUXAjCMaIrGjU2H9cEWvq84HL542K15UbuCktXDYL6veDAOBSKUCSoHMc+JW9SJh7kZEIeFU1PGVzOUN8g0EQRQFWKmlJPm/sYXKcMeYLgO7xGPMvczloK3Z3grn3mcuB8jy0fN4o/hFFo/gHAB8KAZTC7fFg7wMPIHD77UV7ywMDA1BV1Rqv1YpFP4qibLvvzo4QzPXI5/Po7e1FMBjE2bNniz509TJO3+g4hfZ2a1Xi1kO81xJMMwXLcVzD+0tLRc8cbm1HpOslmKZD0YkTJ+DxeKCqKjweDzweD7q7u60bk+maQwhZNR6KUR6O4+D1euH1elcVEA0MDEDTNASDQUQikbIORBsKZj4PYXgY/M2b4BYWAMBIuyoKOE0zTAgEAfD7wcXj4HTd2MMUBJBgEDSXA5fJQJMkUI4z0q88DyQSgMcD6nCAX5mSQVZmTRKeNyJOAAiHjT1STQNVVdBcDvB6QQFAVQGHA3ouZ+w9iiIwMwPq9YILhcCv9HrqmgY9mwWcTsDhAJ/PgyoK1HQaotcL3ulEfiX1Gzx5EoHbbwewem+ZEGKN11pYWICu69A0reHuTpVEs61qkFEtO1ow5+fnMTIygttvv72sz6EgCFAUpebzrBfZmYIdCoVweJsc6wAAIABJREFU+vTpdedzNiLCtBvdmdgp2rHz+mrcguqRJh0ZGQGl1DpnuWtaeGM6dOjQqvFQoiha6du1pluUsp1SspWwVgFRqQORWUC01nXiYjHwQ0MQxsaMn9E0UL/fMDRfETPi9YITRaOCdaVwhwSD4FIpw3jA4wFEEXC7wS0sgE8kjIiTUvBuN4goGuYEkgTq8RiDn/N5EE0zqmYlCfqKEw9WHL5Mb1iSSgEOh5HWlWVQTYOWThuTSCIRaCvDnrEy7Flc2TPV4nFQnofo8UDkOBBFgawo4Hge7s5O7LnvvnWvrXntXC4XNE2D1+sturbmg14wGKzbg56dCHO7ft53hGCW3tBKBxyvlTZodIRpFk2sJdiF1FswTYu/qakpq7DIDusV7dhdQyaTwdDQUFMM201yuRyi0Si6urpw5MiRis5ZOh5KluWi6Rbmnp25/1lKq7eV2KFeN8DSWZWqqiIej1vfBUVR4HA4QCmF3+uFMDsLfmTEEL1kEtThAETRivD4XA7U5wN4/lfC6XQCPh+gquBXBI4Eg4YRQTYLsvJZJ+EwaCYDPpMBWTFR5/x+I6KMxUBW7PH4TAZUUaDn88YgZ6/XGM2laUbVrKpCWEnr6rGYNbKLNy6cMceS58EHg0ZaVlGM2Zj5PBwrqV+1IBUrEgKSz2PPW95iWd9tBCFk1XxK89ouLS3hxo0bEASh6EGv2uivkghzO3z2C9kRglmIGVF1d3dveLNu1CxLc8pJJpOxbW9Xzz1MOwU2Gx2jWsGUZRkDAwM4ceJEQ2ZmlsM0a/f7/ejs7Fxtul1hxOx0OtHR0YGOjo6iPbvh4WHk83kEAgFr/9Nh84ZXK1v1xuRwOLB7925rLN7Vq1chAYhfuIDk2Bh8qgrJ64Xb7Ya0Eg1yyaQxZsvhMESLEKNwx+s1Is4VA3TqcBhRKCFGepYQ6OGw4fajaUYkquugoZAxJSSfN35+ZdgzOM4Y6QUA4bC1h0mTSWMd4bCxn5nPgwaDILmcsYdJqSGcPA8iSRC8XlBZhpZOg5riSimgqqBOp5GKLdnDbL/vPjjXmRtZiimY611bWZYRj8cxMzODVCpV9XxVu3uY25EdI5iUUoyPj2N2dtZ2RFWvWZaFwpvJZNDb24uOjo6KppzUaw8zn8/jwoULViVwNceoJtowPXDz+TxOnjzZFLE0i7mi0ShOnz6NoaGhsmuvRWzK7dklk0nEYjFMTk5a81hjsRh27drVkBtNM9JfTTFFTyTQNj6ObkohulxAWxtkUUQ+GkV8bg4ypZB4Hh6/H26ehyOVMkRpJaIDpeATCVCXC1QUjehypc/STN/SeBwcpVBXPFspx4GoKjhTLAEjpSqKIPm8sYfJccb4Lo4DgkFjL1JRLAHk/X6jglZVAbcbeiplDIQWRfBTU0Y0GghAAEBFEbqigMgyIElGRa0ogmoa1HQagtMJ7y23IHzmTEWXzk7U53Q6sWfPHqugsHS+qsfj+dUcUI9n3bGGG51rOxb8ADtEMGVZxi9/+Ut4PJ6KIipRFOvaVmIWmxw7dqxiwahVvCmlWFhYQCwWw7lz56puKK5mpmYul8PVq1fR3t6OSCTSlEIAVVVx9epV+Hw+9PT0gOf5skVD9RYBnucRCoUQCoWs/c9f/vKXlm+rKIpWSrKVTM83DULALy2Bn5oCt7wM7+IiyJ49RgTncMDJ83B5PKBtbaD5PNRUCmlFQWp+HpogwM3z8BECp9cLzuUCPB5gZV+TShKI0wkhmQRUFRrPg/N6QZ1OiDMz4JJJo22EUlCn09hjzGSMlC7Pg6cUVNehZzIQfD5QhwNkpZ+S+P3gJAmcwwFdUYz5l06nEeGKIigALRYDJAlcJAJ9ZdgzFwgAmgbR54NGCLREwnAd8nohrnxG29/85iouY+VtJaXzVbPZLGKxGEZHR5HNZuHz+Yr8hU3sRJjZbLZqG9FWZkcIJs/z2L9/v5WaqOR19RBMjuMwNTVlCXY11Wu1CKamaejr6wMA60ZdLZWuY3FxEUNDQ3jNa16DcDiMvr6+hkdEplNQaXvOZvRDiqIISZJw+PBhOJ1OyLK8yvS8sGexVal7hKmq4OfnIYyPG9EdzwMcB1WSwKuqsUcpSYafqyAYP68ocIRCiKiqIVSSBHl5GRlKsby4CDGXg8Png8vthnulGEtY6afUgkFjL1KWQVZ8YUkkYlTH6rphwK7r4Lxe43OSTIKIIiCKECTJsKeLx41Bzl6vkZZd6cPkOA6c0wldVQ1BlSSA541U7PIytFjMWEskApLLWSPEyEo7CeE4Y5A0x6Hzfe8z2lAqpNY+zMJMSXd3NyilSKfTiMViGBoagizLVnuQqqobCma9JpW0GjtCMCVJqlgsgfrsYSaTSYyOjiIQCODEiRNV33Rqtdc7ePAgQqEQBgcHqzp/4TrsiA6lFMPDw0gmk0X7tPVKc6+FOau0UU5BteJ0Oot6Fk3Tc/OmZPbVNXP/s5lwmQz4mRnwi4vGHiIhhpNOLme0Zaiq0QLichntHYQYPq+6Dup0gpNlcKb7DqXweDxwO53gBAGa241cIgE5GkVscRGcrsMdDBoCGo0akWFbGyDLEAgBUikjYxIOg8tkjJFewSCoLBtVsLoOGo8b+6UuF3ivF0TXDdcewNjDzOeN1pJAoKjHkiQSxvvgeTj8fiPluhJl8ittKPzKrEs1mYTo9SLY0wNPlTac9TYu4DgOfr8ffr8f+/fvL2oPymazuHTpUlF7UOlntZZJJa3MjhDMaqlFMAvt7Q4dOgRZlmt6Qq9077DQZu7OO++E1+tFPp+vWazspGRlWcbVq1cRDofR09NT9L4bJVpmmwohpGFOQdWy1nnLmZ6bLRfm/qdZ1Vhvz9ZKqSnCpBRcPA5+YQHCwoIhXKIIzuEwBCSdBgAQlwuAISR8NmsIlST9SjglCRBFw4ggmwWnKCBOJzhKAUmCwHHwcxzovn0IEwKSSCCr60hNT2OR5yFIEnw3b8LpckFxuwG32xDHdNpoUwkGQTXNiHidTtB8HlwgYPzbrfR3UpfL2J/UNCPNSojVYsLrurEnupLC1QUB3OQk9FQK1O22IkdNlkEyGXBOJ6ggwOF2wxEOI3z33VX/+zS6EKewPWhxcRGnTp2y9uonJiZAKbVaWBwOR8URZj6fxxvf+EbIsgxN0/Abv/Eb+Ju/+RuMjY3hoYcewvLyMnp6evDVr351U/dGmWCuQ7WCaQ47djqdOHv2LOLxOLLZbANWWB5VVdHf328Nuq63vd56xzDdio4ePWq1YRTSCNHKZrO4cuWKrTaVzY4w16Owrw5Y3XJhDn2ORCLwrqQOWxpdB7+4aIikWVizYhjAZzIAjEkc1O02CnZSKaMS1eUCr+uWHyzlOKP5P5MxUrWiaPQ8ulxGu8nKJBArGgXAp9PgvF74BAH+FaGTk0lknU7MyzLo8jIW83k42tvh8XggOByg2axRuer1GgOmAePcySR4n884byIBynHQJQn8ytaGls0aQrsiEILT+f/Ze/cYu87rvPv3vvt27mcuvFMkJduyratlUXRj103i2q6TxrXjppANFLWTFjDq9I8glyICWqBFi6YOihb+8LX/NMgXKQGCwEgQBAiaIEFcI3AbS46jkNSFEimRFq/D4ZyZcz/79r7fH+vde4bD4XBupGhRCzBs7+G+77OfvdZ61vOA55EvLaF9Hz09Td7vY0YjVLMphtDtNnmaki8t4VUq7Pnc51Db+CC6k9J4QDmiUjyrWZbR7Xa5cuVKafDcaDT49re/zY/8yI9QcfflZhFFEd/61rdoNBqkacrHP/5xfvInf5L/9t/+G7/4i7/Il770Jf7lv/yX/OZv/iZf+9rXbvv53SzuCcC8k4bDhaLJyv7Z7S5Droxut8vLL7/MAw88wP79+6/7204B5s0EzN98883yS/BmP5CdvhYFmDz66KO3JFK9nQCzFaBePRZQyPf94Ac/YDAYlKSMO8U43uj1U3GMXlhAdbvL2aPngSvb6eFQRj5A5iiVEqCq1UjDEG8wkEqGK7WSpuh+XzLTeh01HosQgecJS7bVEkZsoeqT5zKbaS3alVRNFBHWagRBQBWYa7VoHDzIZG6Oa5cvM4kiKtUq9VqNYDKRbLFWE7PnSgXjALCYw9SDAbbfF4GDQid2NBL3kkoFk+cCqL2ekH+sRU1NYbMMmyTYSoV8PMZvNpn91KcIpqa2dX/uNGCujpUzoN/97nf5wz/8Q/7gD/6A3//93+eXf/mXmZ6e5rd/+7dvyswvqi0gH4ppmqKU4lvf+ha/+7u/C8BXvvIV/v2///fvAuadiK2A32ZFo998802uXbt2g7zdTs1z3mr/RQm4KMGujp0Aq7VKskmScPLkSRqNxrpqRcX6O5HlWWs5c+YM3W53w7Osb2dJdiditenzSlJGv9/ntddeKwlEt1PecM2wFjUc4i0soHs9AUEHDOR5CYxWTkTAbDgsQU9lGTbPRbB8zx6M55USddbzBLzyXJZZK6o9cSyjHK4UatttVLeLyjJMrSb90KkpAZPFRYzvY4IAVa2i+n0qkwmVmRlaR45g+n3iwYD+ZMK418OEIZXhkKrWRI4Q5Lmxk7wYMZmehjjGjsfkvi/H12qRZxlmMBD3k8LqyxgSV1rWjYYAcRBQe897aDz00LYv/9sNmKvD8zwef/xx/uN//I8AXL58ec2K08rI85yjR49y5swZ/tW/+le8973vvU7i77777uPixYu3/djXi3sGMG9nrJS3K8yOV8btzjDTNOWll14qS8A362VsdYZy9TZWnsvS0hIvv/wyDz74YOlesZn1txJJknD8+HGmpqZu6JGuF3cD6WenYiUp4+DBg7z44ovs2bOnzEALybmZmRlardaOvEzXvM7GoHs9vKWlsuxqfB+V53K9jRFQqVQkU4xjYcTmeVlGVaORzEpqXRo76+FQ5ilBQNIdvy3EC5zZs2k0REc2TcGVbE2rJVmoOxYmE1HkMQa9tERmLUZrVLOJzXNYWkIB4b59zGYZhCFZvc5oYYGhUsxfuoSfpkTNpogoOI/KInPUBSi7DwIzGqGqVZmxvHoV0++ThyFetYoOApLhEJumhLOzzK4jfbeZuFOAudHfz2qnktXVrrXC8zz+9m//lqWlJb7whS9w6tSpLR/n7Yp3AXObUYxNrCdvdzszzJuZLd+uKEC3yGgvX77Mhz/84Q0z4rYLWlmW8b3vfY/3v//9m2Y+v5MAc3Ws1GQFSs/Kubk5Xn/9daIoKrPPrfQ/b7huaYo3GKC7XekhFuAYhgKWaSrZozEozxO1nYKk4zLDQqnHVqsCpsMhphgjca4mutcTAo7WUgbNMinfNpuybGEBAFOroYyR/uhoBJPJsk5slmGsxQ4G0GqRJwnh/DwMh+RhiGq1UHkOBbnICaU3Gg1qtRomisjDkGGa0p+f59qVK6ggoDY1Ra3VEkasteAyUL9eF4GChQUZOZmaQo/HmOGQvNEAYwimp9n9+c+jd4jAcqcA8054YU5NTfGJT3yCv/qrv2JpaYksy/B9nwsXLmxI7/p2xruAucXYjLzdTmaYRS+pUC66cuXKpgBru6GUIk1Tjh8/ThiGNzi8bGT9rYBWwfqN45iPfexjW/oxvp2Aebv3uxoAV3tWFqou586dYzgc0mg0SgLRrSy3rtvHZILf74vDhjGSKQYBTCYy6K+UlEyDQDLOLBNN1jwvS6+qKNU6h5HC6cPW61jPwxsOhWDjyD6AKPh4noyWOKUdHcdSqg0C0ZEtBAgcm7YcQanVMEqhfF/+u9/HVCqSiXa7kCTkvo9yps7GASdOHk870fZ6klDbuxdaLdJul1G/z3y/TxLHRO024WRC1fcJWi3yOEY3m6g0JVuhE2uNQQPto0eJdvAD924EzNUWhevF/Pw8QRAwNTXFeDzmz//8z/nVX/1VPvGJT/D7v//7fOlLX+K5557j85///HYOf9txzwDmVl+WRc9u5UMyGo04ceIEe/fu3ZC83U6KuBtjMMZw8uRJqtXqpgFru5GmKadPn+b973//hsosq2MrHw8rtW8bjcYtGXc3ix/2HubNYiPntFrVZTAY0Ol0NmS5hTF44zF7rSVcWBCvSUBZKyo5zpTcBIGUQl2mh1KYMJRleS4gaMwymMYxpjB5tlbAJE2FsDOZCKvW9wWUm00pqXa7st2CI+DKrDYIsNWqAOcKSy/bbovEXWEiDVCpCPlmcRHl++StlpSARyPJgH0f6nXywUCAvNEgTxLpYXoe2eIiPtA6fJhWkpAPh8RaM1hYYD5JyPp9KsbgVavkkwn+nj3g+yTdLhhD9X3vo/WRj+zcA+DiTpDaNjq+stkM8/Lly3zlK1+RGVZjePrpp/nsZz/Lww8/zJe+9CX+7b/9t3z4wx8uGbhvV9wzgLnVKMCuAKXLly9z9uzZTcnb7VSGqbWm0+nw+uuv37ES7Mq4cOECc3NzHD58eEtgCZsHreFwyIkTJzh06BD33Xcfzz///Du2rHqnYmX/88iRI6XlVqfT4dy5c+V4y+z0NG3fJxiPyZNEmKNaS9lzMhHWapE9KiUmzcZID9Nll4AM8AdByZgts8dqVfqPSSLAmufCinXlW1urSRbqSr6Mx6WYegGchRUXaSrl2cLSazRCjcfkzaZknlNTMlfZ7YobSZahnTMJnY70HmdmZL9xLPOZWSZzmHkuGbXWZIXXpeeRuXKwmpoispbQlZLTbpdJltED4m6X82fOENbrVCoVmgcOsOuzn317bvwOxEYzzM0KFzz++OO8+OKLNyx/z3vewwsvvLCpY7yd8S5g3iIKwFRKcerUKbIs27S83U6Qbay1TCYTTp8+fUdLsCBfla+88grWWo4cObItBZrNfDxcuXKFN998k0cffZRW4T+4jSzxnVyS3U6sttzKRiOSbpf02jWu9Hr4vo8XBCIQUJgnO71UPR4DSMbp+1jPk2XWSsaZZcs9TecwogcDATFH8rHVqmShWUbmefI3l1mqyUSy0DyXLDXP0f1+OTaiCoF138c6tR29uAjGkE9Nlc4kuSMfmWYTMxwSJAmkqYx/tFoy9rLaJNr3scbIqIgr9WoHpnmWoatVqNVIl5aECexUfoJ2G08pzNwcKgyZfd/7GHW7DBcW6O/Zw/xrr5X95u3YbL0dcbsyzB+WuGcAc6vlCs/z6Pf7nD59msOHD3Pw4ME7Ps+XJEmpwfr444/fUbAcDAacPHmSQ4cOcfDgQS5cuLCtbHkjSkFFf3g0GnHs2LHrAPqHETDveoEBEHKMK4mGaUqtWpXy5MwMaRwz7HQYpSln33qLRhhKiVcpVKUiQ/6TiWzGGGzhHDIcLgOnm7VUw6Fkqb4vWWAhROCyUG8yEc9KB5I2igQsh0PpTYL4Ta5l6VWUgZtN6ZcWll5FL7LoYbrSq6lWhYHrFLBUowGVCsZlqrRach6NhjiWLC2RK4Wu16VcnCTS7yyYskmCHY2w9TrpZIJuNmWfi4tUgL3/8B8y9YlPlH6qhc1WpVIpGc3ruYTcDbFRa7/RaPSuNN69FtZaxuMxr732Gk888cS2RMu3GiuFEObm5nZkmxsdQi/KzyszPK01WVFq20LcCrQmkwknTpxg165da/aHt5Otr7XvLMu4evUq7XZ7y73RH/bQeY6fZXJt3NiHtVbUdgBfa+pTU4yShIPT00zimMFoRG84JM9z6lpTqdeJqlXZjjGl16O1VliriHiBiiLJ+gpBg2q1ZM0WWadpNESowAEmxkgPM45F+cdloVSr4iqyuFiSfXSvh0pTKbVWq5gwhF4PnefkTubOVqsQx7C4KOfaaKDGY9GSjWMBZJeJkiSiE+usvlCKvMhEHZuW8VhE3cdjsexywG8nE8xwiN67l8qBA7R/7MeAG/1UC0LW2bNnryNkTU9P33XP5Mr21HrxboZ5j0Ux25jnOQ8//PAdB0trLefOnePq1aulEML8/PyOSdut95VojOHUqVPEcXxD+Xkr9l5r7X+tKGT11hvR2ckMczgccvz4cdrtNpcvXyZN0/XJL++gUICnlGRvjqlqXRkSa0tPSJtlaCjHM2wQEHoeu3wfnA/kZDRiNBzSnZvDKEUURTSDgLBSQSeJ9BmdPizcKIeHtQKcTt1Fj0ayrFaTvmiSCHDmObbVgvFYMk73DNsiE3TlWdNsguthGsfONa0WdjAQMPU82deuXQKYDgDt9LT0Y0cj8gIsnVA6aSrzmcMhvrP6ypzVV5GJ+i4TzZaWRFO2UsFz12/6M59ZU/pOKUWtVqNWq3Hw4MHrBClOnTpFkiS3FOS/k1WTdwHz3bghiqzuve99L0tLS3e8jFco59Tr9euEEHbKRHo9wCwYwPv27eOhhx5aM8Pbbkl29fVc+XGwnqxesf5W979y3ysl9SqVCkqpNckvRW+v6eyitrvftzuUEp9HT8l1t3kubFL3YrfGSIYYBMJAzTIZ58gyPK2lFOr6kaQpXp5TiyJqUQQzM2RxTLK4SLffZzw/T8XziKpVGtaKFyUIIColTNViWbcLQOZGR1BK+pppugymroepkkT8KF35tmDd2nZbgNmRcbKZGTnWNBXCT5piWy2M06y1xpAPBniuh2kLMYR2W0ZkHCvdujEX6/v4znIsG41Qvo9qNMhHo9LhJB+P8QvT6YsXUVnG9NNP47v52FvfnxtdQlYL8hci51NTU3iet/PWa+vERkuy4/H4XcD8YY6NPFBrydv1+/0dEx3YyINdgPVayjm3Wzy9AJFHHnmEqZtoW26XwLQaPLIs4+TJk1QqlTVVkm61/mbDGMPp06dLSb0gCEiSBLiR/JIkCZ1OhwsXLtDv90vvypmZmbuuVLZeWAtae3JtrcFDhCdw2YI1RsDIPZsayr9b35cSap6TI4CqnUhBKT5Q+FdqjW8t/q5d1JzqT5LnDEcjrg2HJJ0OdWOIGg0qjQYBYNNUGKhOGSecTCQzDALRbfX9khBU9DUpMuPxWDLVglULsm67jfX9Ejjzgs1ujIikOwA0vo+nNTbPMf2+9GNrNemNumzWZpmQgowRr0vPwzYaItYex+JEkmWoZhNjLSrPMXlONhxCFBE9/DC1Rx7Z8r1bLcifZRlLS0t0Oh3efPNNPM+j3W6X42a3m0C0UdJPUVp+p8U9A5i3isKSqt1uX/fi3qkZyltldtZazp49W1rnrGUmXMxh7sRxrIwCRAaDwS1FGHayJNvv9zl58uSaQvHr7X+rgGmM4cKFC+zZs6eU1FtvW2EYXtdrGg6HdDqdslQ2NTV1V5dvrVVY6+F5Cq0V1hq0NcJOzTIUjt2aZSgHHFgrxJhiNtLaZeKOMegVM5hFFqpcqZYkkW0WAFytEiQJ04BtNDDGkMQxw8GAwblz5EBYrdLwfSLPw5tMyHwfW6tJxlmwZcNQHEyc2XMBkoUzier3ZQ4zDNFJIhq2gwG2VhOQdeSfrNWS9Wo1bJKgCq/LIBBxAmNKr0umpuR8RiNotzGjEbrdllKr+ze2Xke7nmyWppjJBBUEYjpdqaC0pvLRj+7oPfV9n127dpW6rEmScPXqVdI05a//+q9LAtFWFZ1uFRsF5TiOf6g+Kjcad9+v/G2IQt5uLUuqnSiDwjLwrgWYK8XL18uybkeGWZBsZmdnefLJJ2/5A9upkuylS5c4d+4cjz/++Ka+RLcKmL1ej3PnzrFr1y7e//73b3r9ld6Vhw8fvunsYqHduvo63qmSrLWQZdo9QxqtLUqBMRZfmeuA0Solc5Ag2ZG1KABH6jKeJ4ScYlkhRODmLW2h7+ok7lSWLevIwnIWGkWQJHhZRiUMqTQaMD1NniSk164xGgy4urhIYC1ZnpNcvUpYZHtOHxbHrLWNRjk2YisVkdZzQKgdkJl2W65/loncnVKYqSnJVONYdGTTFLVnT6kli9aYel2k6tKU3MnwGfdsKq3BWvJut8xEba8nUn2tlphSu0w0X1pCeR6Vf/AP8G4zaIRhyOzsLIuLizz66KNrKjoVz+VOAFie5xsaK7PW/lCNy2w07mnALDKrfr/PU089taZEmO/7OyY6sNZ2CqLLRrRRd7KHCXDt2jVee+21dUk2a62/3Zf/tWvXmEwmm55nha0BZgHOhw8f3rEf8Vrl22JU4NSpU9RqtfLvd6K/pLVHknhkmSYIJLtUyrjrpfCUPDfGWrS1AiJJgtJawDJNl7NDpVCeh3KlalNUWxzAopQIEbgZzELVp8zw8vw6OTxWAKeN49Jo2YtjvD17iNKU2eGQLM9569IlFtOUuNejEsdUazWi2VlCV3ZlPJb9t1oCpnEsGedoJOIE1uJ1OhilyNvtUkbPDgYC6M0mpt/Hc71a2++jGg1MEGALwK3VxNFEKfLJRNZ3Pp5eo4G1VoTXAd1uC7EoSSCKpCfaaND82MfozM7eUbm69QhEr732GnEc35JAtNF9rRd3S7/+dsQ9A5irX1or5e3Wc7zQWpM66a/txOrS7sp+6a2ILiuPZacyzDNnzrC4uHjTD4WbxXZKsuPxmFOnTuH7Ph/60Ie2BCSbAUxjTPmi+MhHPsLVq1eJ43jT+9xIhGHI3r172bt3L9ZaRqNRqcrU7XbJ85y9e/fuuPVWlikGA596/QBp6uF5BlDkuSWKFCClWDwFSGZlcb1IlzWRppLBOSYsgClUd7RGxzHKWlL3/CprpWfoHEZK9qtSQhDyPJmxNEZKqkVpNU2FNRsEZQZi8xw9GkkZNs+pGMPe6Wlsq0WK9MLGZ8+SuV5iI4qoaY2eTCRbrNUko3XSeqrbFUas5+EtLmIQRxOiSPqScVxqyVql0FGE0RqzuAi+D62WjK44YhHWop3Zs+12wVmE+a6/mQ4GkOdQq2G1xgtDor17qR89yrUf/OBt1Xddi0DU6/XKvrwx5gYC0a1ioz3MYv/vtLhnAHNlXL58mTfffHNdcksRO93DBKnvnzx5klartSGiy8pj2S5gWmt55ZVXmJ2d5ejRo5v+QW8lsQokAAAgAElEQVQVtIts9vDhw3S73S3/mDaa4Ral5t27d/PBD35QsqabgO1O/7CVUtTrder1OocOHeKVV16h3W7T6/VK662V7NvN3gMZl9TEsUeWKXw/Q07LABpjwPctxoBShiDQKAU2S1FaQFQXoyRG3ESwVjIplxFqd52sY8kapQhcb9J43rLqz2Qi5cyifGsM7gAwWpfiBdbzJAtdafPlGJ64nrkeDsmLXuRwSKg1oe/DAw9gPI/0yhUm3S4X8xzynJrvU8syqk4swVpbjsWwtISNIvHF7PdRWSYyeZ4nM51JAt0uNgwFcNyMZu4su2y7jSpmUa3Fjkboel3AvteTGctqFR1F6CAgm0wwS0t4jQbtz362/LC8E6Cx0b6i1pqpqanynbcWgago397sudwoS/adGvcUYOZ5zquvvlrK222kJLGTwul5nm+qBLs6tisasLi4yNWrV3nggQd4z3ves6VtbLYkW2TSnU6Hp556qixdbjU2kmEWTOPVpea3a7xDa136VoLM+HY6nVLppVqtlgC6FtmrCBkR9BiNNIILiiAwWKswRuH7ymVuFtAUvBzrsi/PZZS2AMY8F2C0VjJK94IsGK82y9DGyDVLU3KXXRWqPsZaYbI6g2hAepiun0mayn7CEDUcSt+xmJ2s1cThpJj3zHNR2dHOxsvzsEEgggZpijcaoVstwl27mFpcxGQZI6UYLC0xn6Z4SUITiFot/EoFXa9jHHAC5DMzqDiG8ZjcGLw0hV27BNQGAwgCUfFxAh1Zvy/A32jIZ4gTc89dv1NNT6MnE8xohGm1MGmK12rR/qmfwnPjFHeqj7dVduxaBKLFxUUuX77Ma6+9tqYl3EbmMLMse8eC6j0DmJPJhBdeeKGUeNvol99OAaZSivPnzzMejzdcgl0dW+1hrpxz3LdvX6nas5XYTEk2TVNOnDhBo9Eos9k0TbcNWjfb/0qPzpsxje+GCIJgzfLt6dOnmUwm14knBEFAHCsGA81k4mEtVCpSdlVKgFFeYhlu4qL8qPH9AjgtvhLBALKs/HCwRY/RAWPhQlJIz2kHnMWGFcgISBBISdeVt40x4Mygy/KsE1gnTaXvaMyyF2aey7E4xiqjUVmqVc7mq3QmsVZ8LR2Jp1hGu019NKLRbGKrVfJOh6Hn0en1yC9dwqtUCKemqDWbBE4mzxojIyeLi2iX8TIYCCmpVsPr97HO7FmFIVQqImCQplCtkjtQXGkerVotmSPVmtrDD1N54IHyPt8py62NigncKla2FWBtS7jRaHTLFtU7VbQA7iHAjKKIxx9/fNM3cicAM45j5ufnabfbPPXUU1t+uLdSDk3TtLQCO3bsGG+88cZtU+pZGb1erzS2XumLt90+7M0y3DzPefnll9Fac+zYsTW/cO8mAYEiVpdviz7TwkKHN9+cJ8/bhGGL6ekalUpEECjyXKOUReb7BRg9LwSKjFNw0PNcX1KZEhiVtSVYFTOYFHquaSqEHKHaCvvViZ7j1rGuKlNmhgWwFrJ6USQAUujIep6ImGstWWgBnEkiPc40LZ1JzGSCn2VFKn29MwlgHLCRZaIQlGWYeh2V5/hhSLNep5Xn2N27GVlLMjdHp9NhYi2VZlP+0+3i9XpCEDJGdGI9T3qYSmGmp+V4CrEC52qSWwvDISbLyAHPmURn/T42zwkPHKDhpO+KuJMelbcjo1ttCTccDnn55Zc5d+4cZ86codVqlQSilaNoo9Horv1Y3W7cM4Cptd7SV892AXNhYYFTp04xPT3Nnj17tvUD2mwPs9vtlqBVWIHdLsBaGRcuXOD8+fN86EMfuuGabxe01lp/NBpx/Phx7rvvPg4dOrSpde9EbGa/1mqybBatd7FrlybLcpQa0u/3uHYtplKJqFYj2u0KxkTI46TI8xTPM1groySSGFqEt+OAsSiJOuA0SqGMKV05VJ7L35Nk+ZizTPp8cYxf9DXzXAgyIJmhq9YopZatsMJQgLOw9NJ6WZS9kMNzwurWqefoOCYr1iu21etdL7COZK+2VpMMz/UnjZvNpFrFBgHVbpfKzAz1VgsGA+LBgH6/z1K/T+z7hIuL6MmEaHoakyQiTrBCJo+pKbAWLwgwSmH7fTnnZhM9HGKGQ2HnAsHsLO3PfU56wdfdyzujwHMngLkYqwrDkEcffRTP8+j1eiwuLnLx4kWMMbTbbc6cOcPBgwc39a49f/48X/7yl5mbm0MpxVe/+lV+4Rd+gU6nwxe/+EXOnTvH/fffzze/+c1SwOHtinsGMLcaWyXaWGt54403WFxc5OjRo1y+fPm2qvSs3vf58+e5ePEiTzzxxHUP707MUd5s/aJHbIzhIx/5yG3J8lavX8zQboTAdbN930lpsZvFeKxYWtL0elJ2DUOL51nCUAEtarUmYWhI43lsdoFhL+DqJKRer1Kp1FDKopR25yL9TU8btILcgDZuBjPLSpFzVYgXWCtkncJSy/2dQtDAGHSei/VWnktGKcOdAnZZJuQfEFKNNE7FlLmw/HL6sIWbifX9ZQB0gGkqFSHajEbSw9QioA4sm0RXKiVIWt8XclGjger1JDOsVkV5p9UShq8DwGD/fmZcuffqcIieTOjnOXNXrhBMJlRbLYIwJGo2pRTrRBJoNrFZhu+8MzO3PTUzI+cdx9Q/9jF8N160Mu5khnmnZh6Lfa0kED3wwANkWcbi4iJ//Md/zPPPP89gMOA//If/wKc+9akbHIdWh+/7/Nf/+l958skn6ff7HD16lE9/+tM8++yzfPKTn+SZZ57h61//Ol//+tf59V//9Ttynjc91rd173cwtsPK3GyGWagGTU1N8dRTT6GU2pHS7kaOJcsyXn75ZTzPWxO0diLDXGv9YkznwIEDHDp0aN0xnZ0QPlhNJtrIaMzdVpK1Fno9xdWrHnGs8DzpS4ahJc91Sd5RSsDTpAtE/iX8aoDNh+zeBZNsH6PRgDSNOX/+Iq1W5DKBAM/TGKtQxo2KWCtC6lpjXR/KFkP8CGO2ANOiFFsM+QOlF6YJw+VepAPWQkSgAE6jtfQ1HXCiNcb5SZLnUr71fbHvGgyk7Ov7Uqat1yFJSvIPiFIQxohoATIqUgizo5QAaKuFyTLJACsVTJZBuy09WSeTZ9pt1GRCbWqKqN3G9HpkrRZD36e3uEhy9SpetUo1CKju3i0s2dEIW62SOXECfJ/U9TCrjz1G9bHH1ry/72TAXB2+77N7927+x//4Hzz//PM899xzfPCDH+TZZ5/l53/+5/nmN795U8GQ/fv3l0pfzWaThx56iIsXL/JHf/RHfPvb3wbgK1/5Cj/+4z/+LmDe7bFZoCtKsKtVg3ZadGCtGAwGnDhxgiNHjpSMzM1uYyPHsBp0VgqZtwvdzpvETmSYWZbx4osvUq/XNzUac7f4YWYZXL2qWVoSoASo1QzLSV4BkvJvC36YVhdQukWW+0RhglJDojCjWp3BmJx9+2aJ4wlLSz2sjQnDkND3aDZqhEFwHdkGYwQkHaHHQDmDWVwj6/vlqEheqACtMIUuGbG48ZQkuX5spFAVqtclS+33ZbtRJEzTJBFXEWMw1Sp2OMTPczm2OJZSbJJIploYSxezkQ6wTKNRZsfG2tI301arIpk3HgsTtlIBpxOrBwPMnj2y7VYLX2uaS0s0Wy3M4cMkkwmjhQXmLl3CDIdEzSaR71NVCjsekyNm2cGePTQ+85mb3vc7WZK9k9KMtzqn4XDI7OwsTz/9NE8//TSwcTGDc+fO8eKLL/J3/s7fYW5urgTSffv27Zi94XbingLMrbwwN1MGPXPmDEtLS2tmPJ7nlSLfW431ysOFms1jjz1Gs9m86Ta2K8SwsiRbnHMhZL6eBu3K9bcDWkmScOHCBT7wgQ+UfdnNxNuVYQppQjE3p7l2zUNri/gmCzAmiSYIinKq/C3LVClEkGUQhR7GKjw/xlgPa3yiiiK3kOcJvh/g+wFTU3W0VsRxTJ6M6Xa7jHo9KpUK9VqNmhMdNw4EFQg7VSnpFbrn1DpJOuN56MEA31pZRylhtLrxEetYtaWqTxwv9yUdiUgVAuuwDJy+L9muUqVqTxqGy9sqyrrVqhyXI/qULidBgL52TSTrXAaq6nUhGi0uSu+x1ZJxkjgmHwwE/Gs1EV+YTLC+L+o8zSbG92FpidBaggMHhEAEjCYTRvPzdCcTsmaTWhRRVYr2pz4lUno3iXdihrmRWIslu5EPh8FgwM/8zM/wjW984wYmfzFH/XbHPQWYW4mN3KTJZMLJkyeZnp4uS7Cr43Y5jRR9wzzPNyQ1txMlURDgKsTq11NK2sn9X7lyhStXrnDkyJEtgeVax7hS0OB2/CCl7Bpx7VoN3/fIc43nWYLAkqaaatVircL3BRiTRFGpWDceYlBKC1hGFqt2ofIraGrYfEIQdMHUwU4ThgEgpVvpZUIt8qHSotFooKaniScTBt0ui6MR1lqaQUC1ViP0fRmzsM4Hs8g4lRKBAmfInPn+chYqF+96txLX4yyYtMqJEwClhq0ej6WHqRS611tWAYoijO/jz8+L44gDXGo1UEqYslr0XtVwWMrkWc8TEfTBoLT9spNJ2cNUrueYtdtyM6wVh5TRSBSAggDt+9g0FcPowjx6NBLD6laLyFpqR45gfJ/k2jXG4zHDD32I4xcvEl27dsOsYhF3cqzkbpp7HI1G1Gq1Ta2Tpik/8zM/wz/9p/+Uf/yP/zEAe/fu5fLly+zfv5/Lly/f4N70dsS7gLnN2Kge6+3oYRbs0IMHD67bN1y9je0Cd5ZlfO9739uS+MJWMkxjDK+//jqj0YjDhw9vSspvu/veamQZXLiguXZNc+7cDO22ZmpKuTEQySjDUJRg0hSCQMQHokjUegQkKfuX1mpSc4BKGIJdJFALaFXD2qtE6hyaA8C+smSulcFqB4JGhNLDMGTXrl2iaDMeM45juv0++WiEpzVBENCo1wl8H6+YsXTXTeEYsY2GgMp4vEwOwpVZR6Nlpm2eyzJjRLQAricEDQY39jCtXdaJ7fcl6w1DUSBqt6/rYdpGQ3qmo5EcS5Jg6nWMEhUjk+cwGIjwQBiiihKum6O0jQZUKuKBqTW22USHIXYyIRsMRHShIBwh2XY2GOBVKsw+8gjNn/5plFJrzioWIhT3aoa5WS9May3/4l/8Cx566CF+6Zd+qVz+uc99jueee45nnnmG5557js9//vO343A3FfcUYO7kC7PQY+12uxsinex0hnnlyhXeeOONDfUNd+o4CvZtHMf83b/7dzf9FQmbJ18VBKqZmRk+/OEPlya6W4k7AZiDAbz1lsfFix5haJ0aT4bWMJkoajXJHguFnjhW1GoGsd8SYLQWokj+bi34vvQ0g8CS291oQHsXUHYOTwNE1Cvn8f0PYIyMlHi+hzUiX1cKETiylHVzi40goOn72NlZksmEZDBgcWGBeDgkqlSoVqs0PA/teRi7LG+nxmMBn6KH6YydsVaYruOxLJMvAxkBKcBNKelt1mrl2AjWlj1Mba30TR2j1SaJmD0rhRoMRN9V69LrstCSte7e6l4P4yy7KI5raUlE5ptN2d54DLOzsr9V5tF5oyHgE4YYazG9npx3EOC769j49KfL53j1rOJgMKDT6fDKK6/Q7/c5c+YMs7Ozt9UC7k4B5kZ/O0UPc6Pxf/7P/+F3fud3eOyxx3jiiScA+LVf+zWeeeYZnn76aX7zN3+TI0eO8M1vfnNLx72TcU8B5k7FSkusm5VgV8dOZpivvvoq4/F4w/J+q7exFcBcyb4tHBFudywtLfHyyy9fl8luR/z9dgGmtXD1quLsWY/RSEAwCCSTFKlVyR6rVQFBKbtSAmeWycuuVrOARSlhyVqLWwfX29SAxdcT8myI79dAVTCmR+QvYfIc7XlIgmfR5GhPxkKss+fCMWWttbLMlWIjrQmnpqg3Gqg0JY5jRr0elyYTTJZRdSdqjJFMzBiRyCuA042tkCRCCApDAVM3SqLGYwG3NBXALcZS6nU5pm4XlabkjhBkKxXpgY7HQuLRWhxU0hQ1GmErFWwUydhInmOcxZZpNsVIemlJgLBehyAQMfXBQLwr3T6KbNwsLoqyjyvt2jSFdhs7HOK12xiQMROlaD79NPomdnQrxc6PHDnCCy+8wK5du8oMdKUF3FY0hG8Wd1smOx6PN/V++PjHP37T3+Vf/MVfbHg7dyLeBcwNRtHjKub+HnroodLaaSOxExlmHMcMh0P2799fCopvNrZyHMPhkBMnTnDo0CHuu+8+/u///b+b3u9m4/z581y4cIEPf/jD1/347ibATFM4d05z4YKm19PUapLdRZFkjJOJol43zpHKYIxYbdVqxgGiZJSeJ2o9SaJXzF7KsiwrsstlMpChjYdBe2NMrvD9lCybBRKUqmKMQpGj9LL4gC7OvRgFSdPljNMYWDVjGVYqVHxfzJ/HYzq9HoN+n/T8ebTnEfk+NTfIXsrhFQLrUSTAliQlu5UgEKJNAYBKyXpJgnXlzywM8VwP01Yq8rd6XY7f+VpSqUipNMsELI0hb7flfCYT8ijC9nqoZlP2vbQESpFXqyhXYrWdjjBoHQnJazaxeU7W7QrhyAmxKyMWYHm/j6pUqDz5JOF737upZ2R2drbMtpIkYWlpqdRqLcyeZ2ZmqNVqW+6h32290nel8e7x8DyPNE05e/bsut6Zt9rGdjLMAqijKOKBFXqVm43NAuaVK1d48803efTRR7elQbvRuJX4wXZAb6115+fnefXVVwmCgJmZGWZnZ2k2m+u+vAYDOH3a4+xZj1rNkiTKjYVI9liQlMPQEMeaNPVotwvVHUMSZ2DH1BuKPG+iPMq5yyCwZEmXKIyBOlo33HiJKlm02BpecJDcjPB0iqLFJI2oeRV3jgbfd2SmwiAaxAarGPUwRtikBXAas0zYyTJ0mgpBBlBRRKVaxUsSpmZnSbKMuNej2+kQDwYCro0GTWvxPG/ZH7NSEeJMmgo5xwmsg1MA0lrE3J2fpDeZgOfJqIjrYZpKRdis7bbI1DmZPBuGMmKSpkICSlPyWk1YuL6PUUpKsUGAaTZlf6MReasl2bEr7dLvYz2PPAhkmTFk47H0MF0m6tXr6FaL2t/7e1t67ooIw5A9e/aU5JXxeFw6hYzH47L/OT09van3y90ImHeiAvV2xD0FmNthQf7N3/wNu3fv3hQjdGVsNcNcPbrx13/915vexlaOYyXR5lZKHTsV4/GY48ePryt+sFNZ4krhgyeffBJrLYuLi1y4cIF+v0+9Xi8BtHh5XbqkePVVj8FgOXsEhTEWYzQycmjIMoVcYoXvWyqVjDiuEUWg1YBQv4rvGdJxhA6m8fQRshx8b4SZvEioL+ETkqX78Cr3Y+0+PM+Upd0g8DA8irZvoP2UnDqT1C+PJQxcJp7nMiO5hqqP0gPIYpSJMLoqYKrUmsBpnUxdHgTgeURJQtRo0Gi1pHw7HjPudpkbj0mAptbUooioXpeSrDN41mkqfU03FkLRwwRMtSrPpetVlmBpTFnW1b0ettEQXdqCxBNFEIbL7iejESaKpAzsZjYp/u0Kyy6lNXY4RFUqmGJmczLBNhpCcmq3yZwHpgpDGp///A3Sd7eKW70nqtUqBw8eLM2e+/1+2f/MsoypqalShH89oLrbSrLvZpj3cMzPz9Pv93nkkUfKIdqtxFYyzILwMj09vWWgXh0bAcw4jjl+/Di7du3iAx/4wB2ZfyoEHx5++OF19SJ3IsPMsoyTJ09SqVQ4evQomRMP37dvH/v27aMQmu50Opw48SpvvRWxuLiXNG2zd69Ga+lHJokmjqHVkuuptfhUArRaknkqZcmygGrVyGxl/BZBJcTYKoGforhKHO+hUonwzEmUmkMHu8hyCP1rKGvJ7B68UHwui7lMYysE0cNikGxSlF6gAGiLIs+NaL9qjS3mKj0PFU/wzBlsfhFtLKgKNnsfyoi1VpmFGlPKz9ksw3OkoUJgHWf8DBBWKkRRxFSeY0Yj4uGQbpKQdDqE1hJWqzS0xncZYeHFqUYjGRNxOrE6jjGeJ2bPQSCqQM4dxTV05Tp3OmK11Wigh0PUZCJel07tx+a5iBP4PrnnoYqKgbPsyqIIA/huZtMUzNvpaTlnB9Z2NEJXq1Q//Wm8TbRfitjMc6qUotVq0Wq1uP/++8nznKWlJRYXFzl79uy6/c87NVbybob5LmDeNIwxnD59msFgwOzsLI2bNPo3GpsFzMI3c7Vi0HbjVuLpxX5vNSazU3OLhfXY/Pz8hkrd2wXMNE353ve+x5EjRzhw4MBN/53WDS5danPq1PuIopwsi1Gqxw9+kGCMz65dFRqNGvW6z2jk4XmWWk16jZ4Ho5GAl5RRDZ5nSRNFJRjg6QZJqgmqHsb4hOEEUKSppl4JsRg8nWFtiMl8onqOyAtYd/8EOKUnKixaCQNWSV/OGjGItsuejFKeXQIuo+wUKI3NF9HmNMZ7oiTpGBD1HEfM0WlK7nnLGWueC/HGZXKFF6a1Fl2rUalUqI1GUK+TKMWo36czGDBZWKBuLWGjQbVeJyzIQs5iK/N9/KWl5T4nQKslYyPFGIrrMZLneJ2OiBa0WiLEjis9D4dybLUaqt+HwUAyUd+HWg27sFD2MPM0xWu3sUDW7cr2XXbk12r473kPlUcf3dLztp3wPO+G/ufi4uJ1HqoFgO6UvdetYjOkn+2+L+/WuKcAc6Mv+PF4zIkTJ9i9ezdPPvkkr7zyyrYJOxt90VtrOXv2LPPz81v2zVwvbpZhrvTMvNV+C9DdLmBmWcZLL71EFEUbtj3brIH1ylhcXGRpaYljx46tO4qTpvC//lfAwoJiakrEAxqNKr5fo9WCWi2h251w7VqHK1dyGg2fqakqo1GDZlOR5yI0IKMk2vlSKjzfor0ZknRIJbIocmHA6jrGaCphTG4CjLVEkYeyfbS/nyyXcrh8SxikRVgYRBvyHKyZEKjTkPdQWPAfAmoyOwnCoAUUBnKw2mJtjM4jIBOyi1IuCxU5PAvSxwwC7GiEb5ZBmGKecjwWIFNKWLOuP2qDAOt5hP0+YaUi4yBZRpwkjHo9Oj/4AZm1BI0GjTCkAuheT0CvXpdjcGIIypVKSVNR+/E8Yf42GkLs6XZFXq9el+eyXpee6eKibG9mRnqdjvGr4liAs1KRMu9gQO77qCBA12pkw6GMnExNUVtH+u5WsZOVmZVeldbasv/5xhtvMBwOee2118r+50YUt7YSG80wh8Ph21KSPX/+PD/6oz/K97//fWZmZlhcXOTJJ5/kD//wD/na175Gr9fD8zz+zb/5N3zxi1/c0j7uKcDcSBS6qCtLgzuhA7uRH0+SJJw8eZJGo8GxY8duCiDbAau1AHNliXK9/a7exna+agvd2/vvv/+mmd5asZUMs+hXzs/PMzU1dcu51e98x2c0klLrYKBRCgecOBAMqdcD9u1rkiSg9ZhuNyFNL9Lrge832b07wvcrVCqWwUCTJArZ7f0E3hnyfEKaBVQbR4AYpRJyDmPMHNXoEtaA0Q/g+Q8ti68bud4Fi1brYm4zp10/D7kPqoLnKzCnyfL3gxazZ889v8aGeEqhrIHEAkOMngVjpVdYaMsGgcxTIqo+yhhR3/E8UQNy1/U642ilrhNYV3JxxMZrOETlOZUwpFKvw8wMJklIFhYY9XpcG49FmQdoXrtG5PvSW3TgixUrLxuGwsLt96Wk61J668ZAdJLITGeSoNpt6b86tR/j7ruNInQYYhyD1k5NyXrDIbkbQdGNBtWf/mnUFkUyCoOA2xFKqXK067777uOFF17gwIEDdDqd0mpramqK6enpW/Y/NxObyTDfDsA8dOgQX/va13jmmWf4n//zf/LMM8/w1a9+lVqtxm//9m/z4IMPcunSJY4ePcpnPvOZW7obrRXvAqaLguQyHA5v0EXdiRnKW0Uxc/jggw+uKwFVgNVWfwSrAbPf73Py5EkeeOCBDfdotzPaASKDdfz4cR577LFNM283u++VHwOPP/44r7766rr//pVXNGfPKpcoKapVcQ8ZDjWVimSN1aoty671usXzqvh+lSBokyQWpQb0ej2GwwXq9QBjLPW6R5pWgYAwfAgdGMJAkSZX8LhAVDEoMnSwi9g+CKpCtRphrfRBQXqYYilZSOfJXKanJ+DlWD2N74HBoNIFPJ1grRMPKBSAbB2jPgj5K2idY9UeSO9DWSM9TKT4S5rKtfY8VJJI/zLPl9mjKwQFCvarLYATBHCVknXHY5mVdALwyhhsnuONx1RmZoiUYrbbZTAc0u316IzHxFlG9coV6mFI1G7jpynWlV5Lx5KpKXFSiWNMkojaT7UqgBrHsFJ4vVqVHmaWYbTGjMfodhurNabwwHSAqqtVomPHCDbxIbc6VpbCb3copWi327Tb7dJqq9vtlgxc3/ev639u9WN7oxnmZucwdzJ+8Rd/kaNHj/KNb3yD73znO/z3//7fryMsHjhwgD179pQfz5uNdwGT5RLsnj171iS53E7AtNby1ltvcfny5RtmDteKQoB9JwCzEGx//PHHN9Vz2A7j9/Tp06Rpykc/+tEtlY42k2EW86NFv3JSeDbeZJtzc4rvfMfHWpiaskwm0occjzWViiEIFOOxgGiWicNImgrxp9kUEKvVIM9bBEGLAwcMcZxy7do8nc6QhYU+09MBUdSk0aiQ5ykBbxGEFdI0IPTOo9Q8gXcVHTxAnh9yZtCS58nlkv8tcnnSL1VEpCZDEwNVVJ6iCMiRUQ7t+wKybi7SMovWH8Uog81yCByYFtZcSqHceIhKEpQxZO43URKC0rTUkdVZJkxc51ZioWS/2iAoxdR1HAt4+76UekX7T0ZFPA/baBDFMbtaLYxSpP0+A2Dp0iV0HBM0m9SAyuws2vdFeB1kDtNaVK0mFmFLS6KH22gIcE4m5G4elXodu7QkmrhFidY5mRQemP4DDxD9yI9s+tlcGcaYt00s3FHDX1YAACAASURBVPf96/qfcRyXDPDBYEC1Wi3Lt5sBto32SrfzftpuBEHAf/kv/4Wf+Imf4M/+7M9uYPe/8MILJEnCezc5T1vEPQWYaz3Ac3NznDlzZl125u0CzKKHF4YhH/nIRzbcw8vzfMtjHkWG9sorr5AkyYYE29c6hs2Wm1aKtdfr9S3/oDYKmMXc6krpwPXWHY/hf/9vjygScYBeT5UZpdbgeQKW9fryvKXcAkujYYhjOZ9KRcyffd8ymWg8L6TRkGyx2awzGMSMx0OGw2v4Xsqe6QG5bRL6V/D9IcZU0V4VZS6BquN5UxgjTiaAjI2ElIIHokGgGKf7mPEm2LyHyscY/34wERpx3CiB05gS4Gxu0Y7YUwCZtSLADs4f07mJ6GJ20zFpC9BTLntF6+sF1sNQjKMHAwHHYj6zXhfNWTdiYtMU3Meaf+kSaZaJIlCWEVUqQgwC8jBkHMdMrl2jc+4cXppSbTSIZmeJBgN0ngv5ZzIRlR6twWWO+Yr7b5TCG40w09Mo1yu1kwn5cCjM35kZav/oH20b7O5khnmriKLoOgb4aDSi0+lw5swZJpMJrVarBND13it32kZsq/Enf/In7N+/n5deeolPf/rT5fLLly/zz/7ZP+O5557b8r25+8/+NoUxhtdee43xeHxLa6qdBMyi/1iUQjfbw9uuYtB4PGY0GnHw4EEeeuihLb0YNlsW7Xa7vPTSS2W5udPp3DY92II0tbCwcMN9vdm61sK3vuUzP69ptSxpSilE0O8r2u1CwUccRoyRDDTPi1ESD6Us9boly4S5GseaMBRw6/U8rJUZymazwvR0BWN2oYhR5irx5Ao6mmdkagRhho/GmpwgmGCtRinJVvJclfq0ShUzoAqtIbezpKaJ1iO0V8HmFTBOCD3LluXwioN284jWzV4qZ82l01TAVKll8QJrsUrJiIbLOK8zjs5zkbvDWXYJopdgaarVZcNp5cyeC53YQg0oSTCNBrnvL2enrj9qGw20tTRGIxrT00zX6+TDIeNul+6lS6TDIardpmIMdWvx5KKjajXySkXUfoyRPud4TF6vo9rtshRr220pOWtN9VOfuqn03WbibhNEL0IpRb1ep16vc+jQIYwx5fznhQsXyv7nzMwM7Xb7ug/bPM9vyWJ/uw3a//Zv/5Y///M/57vf/S4f//jH+dKXvsT+/fvp9Xr81E/9FP/pP/0nfmQb1YN7EjBHoxEnT55k7969G5KY8zyP2H11byeKF/bFixc5f/78pkuhsD3ALGYdoyji/vvv39I2NnsMFy9e5K233uKJJ54oiQDbOYf1AHMl63YtY+mbrfv88x5vvqlpNASYRiPleoVC/JlMBCQbDVtacw0GGs+DRsMUym/Esaj1iMGGZKppqtA6Q2ufPFdi0+XsvJQKseYoM43TaDMhNzFpvp/RYkoUzmPGuwgqQ1qtqgNGAUlh4RbdRrOsM6trKFVzZs+5lFXzXIQIlBLgLMgoK1xFdJaV2WMp1F6UZwv9VjeXqUBIPOOxAKdSkp1Wq5JdFjJ5SskyY5aBM4rElcSVafV4LGxaZxtmx2O8wQA7O4utVqVUm+cCnMOhOJbkObrTEQH6vXupW4uNYyZZxqTTYT5JiIdDap5HNcsIJxM5zmazLCVjDGZpCV2rybylA9Tw2DH8971vS8/l6rjbBNFvFlrrG/qfS0tLXLt2jTfeeAPf90v3lc2Mr7wd5WhrLV/72tf4xje+weHDh/nX//pf8yu/8iv81m/9Fl/4whf48pe/zD/5J/9kW/u4pwBTKVWWYB955JENN33XM27eTGitOXnyJEopjh07tqXyxlaOZaWqzVNPPcX3v//9Te93ZWykJGuM4dSpUyRJcsO57rS8HSxbnR0+fJiDBw9ueN2zZ+HVVwsg0wyHMD0t/cEiU1TK0m5bJ0ogwuiVigDieCyelsZAEEgmOh4XnpbS1/R9TZZ5NJs32nkFYUCmHiGzD9KonCS0Kc36BKMfYRTvI477nD9/Dd/3aLebVKs1ajUPUE5bVmGMxpgUrRClHDcvaYxZFiLIMmG6usxQ40qurhdp83zZODrPpaSa5yVw5kBRny4A1Pj+dQpBpdnzCvIPxshMpOct+18WTiK1mmSizlDaFHZf1or+YJ5fr/aTptKfrFZlxrLTEUPoVotQKaJDh2hacRiZxDG9LGM8GOAZQzgaUfM8AidW4Dm3FOv0Y72DB4n+/t/f0jO5VtypHuZOA7Pv++zatauc/Y7jmE6nw/nz51lYWKDb7ZIkCdPT01SdkMTq43m7ere/8Ru/weHDh8sy7M///M/zW7/1W/zn//yf+cu//EsWFhZ49tlnAXj22WdLZ5TNxD0FmKPRiMuXL2/a5WMnxkoGgwH9fp89e/Zw//33b2ssZDPHkqYpJ06coNForJl1bSVuVZKdTCYcP36cvXv3rln2vR16sKv7lRtZd2kJ/uRPPIZDw/S0XFNJZuR4p6cteS79yNFIssdKxTKZ4DwtFWEoknVxrGg2rcv+DHmuyDJNvS6g6Xk51gpBqFaTTBEEpMX7MiRXT2DMhDDQKFWjFRk8r8guU8bjEZ3OHEtLUKlUaDQitK5irSEMvBIYSw3YAjjdUD+FHZcxorVqDNrzyr5lCZwrGbGupO05NaSV/pcqSaQX6Uq8ttCJHY2krOtmKFUBxFov+19mWemhaRsNrLV4Fy5g0hQ7MyNAW4BzMeupddnvpBAtaLchy/BWCK/rZpNoZobd3S5EEWmtxqDbpZtljK9ehX6frtZEu3cTNBroPKf62c9uWvpuvbhTPczbnclGUcT+/fvZv38/p06dYmpqijRNef3114njmHa7zfT0dNn/3ApD9p//83/OH//xH7Nnzx5eeuklQARUvvjFL3Lu3Dnuv/9+vvnNb66rAAbw1a9+la9+9avl//c8j7/5m78B4N/9u3+3yTNfO+6+IvttjFqtxhNPPLFpwsx2e5iXL1/mxIkTtFot9u7du60vsM2UM3u9Hi+88AL33XcfH/jAB3bsh7XeMXQ6Hb7//e/z4IMP3vTDYKdKskXmfO7cuVuKEaxed+FKn//3185z+sVzpP05Bn0BwoL92mpZ+n3l5vmldyhgKr1JOS2L5wlYVqsGSdikVKqUWHNlmZhFS3JmiSKR1CtIQ1LilX5pmvlE1RpKVQHjrpMiCIRs0Wy2OHz4Pg4cOEC9XiFJUq5cucq1a3PEccJwOBIijssiKcZCCoUeYwT0PA9ljBhLW9FpLYCx6GEapcq+JpMJVmsZ7k8SlCvhgjOOduQfrF02Xg4Cka1zWSKOvKMmkxIsRc4ByXgXFzFRRNZoCKAOh8sWYO02uN6mimOMtdBsivvIcIgaDmWcRCm0A221tCQgPj2NrxTtIGDvvn0cmpmBep2s2WTh3DkuvfIKV+6/n44VycSdirtN33Wn9tVoNDh06BAf+tCHeOqpp9i7d285U/25z32OX/3VX0VrvakW1s/+7M/yp3/6p9ct+/rXv84nP/lJTp8+zSc/+Um+/vWv7/TpbCnuqQxzq7FVwCzKknEcc+zYMV599dUd8cTcCNhcuHCB8+fPX9c73KlYqyRrreUHP/gBc3Nzt1QK2ik92PX6levFZDjh//t/ztHptPADj4tnB8xO4D0P72I00oQh5fiI1pJxtttSdhVrLsVwqMoSaxCIDZe8xwsyDuWyajXH2gBjwJiizylCBEVZVWvJZPNczkNKxCJOALIdWce6/TQQnoohyxLm5+cZ9rp04hitFM1qlVq1imfFTNM4Ek8psO6AkzQtgZOC/erIP7iMUvm+yO0lCURROZupcmHgqiwT6bk4FsD1PAHZomddOIy43qWtVpe1aJUq2bO228Xv9aDVKkdCVJ5L73EwkD4k4C0tAZBVqyK8Xq9jJxP00hImDMnzHNVqCSnJlVxtrYZBZiy15zEFsHcv+qGHmHz843Q6nes8KzfiWrNevFMBc+W+tNZMTU2Vra1nn32W3/u93+O73/0uH/3oR9mzZw+f+tSn+PKXv7zubPmP/uiPcu7cueuW/dEf/RHf/va3AfjKV77Cj//4j/Prv/7rO35Om417CjC3+vBvBTBHoxEnTpxg3759ZVlyJzwxb9XDvJU9VhHbUQtaXZItzKV939+UUtBWQmtd6sGu16+82XFba/mr70x4/c02zamIWj0nCELG3S79/h6iSIg9YvwMcSyjJHkumaTvS+IjoyQCZCJeIIAnPU8RNygUekYjH6UEBI0peDWFz6XFmOI+yLICOGUGU/qmWlu3jpBQ87zYvsZaHw/Lbieblg2HjMdjLl26BMZQr1apeB5Vx3BcmXGqAjgL9qsjB9kwFDutgvxjDPi+9CInEyHOOC1YCtH2JFlW5dFaeo6TiWzL96VXaa1ks1lW2nPpwUCAs5C7q9fl3+a5EIWslX4niGiBUmTttgCqs+wijjFOKk/1essi8c7NxEwmUv4NApEJbDbFtuwnf5JapVJ62yZJUjJG+/0+tVqtJL2s1bO7WeyU1vKt4k4C5q2EC2ZmZvixH/sxjh8/zu/+7u/y1ltv8Rd/8RckriS/mZibmyuFVPbt28fc3NyWj3sn454CzK3GZgGzkNdbTSzaifGU9XqYBUivZ49VbGO74gdFhliQbQpz6Y3EdjLMjerB3my/nU7I8e9X8fUcvob+oEIUjDE5jDrzjLXHpNlit3MlCUMZFclz0ZU1RrLHggzUbIorCQhTtRBcTxLtSEAKpXKiSJMk8nfxVBbSUJ4vg6QQhxzjlWKZcj6aTtXHs+U6QVDcB0MQhXK/05QgigjCkHa9jjWGYb8v7iuLi3hZRr1aFYcR35d1skyyxILEA9fPUwKeI/eUJCHlDKCNWbbsqlbBGCmnFsIElYqUXN0yU62WpKEycyzKqZ2OEH4qFQHVMET1essiCXGMnZqS9ZaWRCi+1ZJRFTf3abtdlNaYqSnx4hwORT4vjqFex/i+ZMqDAeEXviCiBSsiDMM1ZxZX9uyKmcX1SHvvxAxzI0o/o9Go/LA4fPgwP/dzP7ft/Sql3jYi0eq45wBzKy/rjQLdSoeTtWY7dyLDvNk2CuLLRti/OyWvt1GyzerYqh7s2bNnuXr1akmD32yMx/D887OMu2P617pcObdEs2lpzDbJcp/oahdjoFLpEIVHCCoBjYZ1wgXGEX9kvMSYZXECyR4NaYoTElgGzjTVZUbpeQZJ5jRRZN21ELPnLFsWIpBtyzoCknL+cruWwbSQzfO02HmZNEUX13bFPGWjWqVRqWCzjCzPGQ6H9BYWyNIUrTW1apV6rYbnRkdKndiirzkeSw9TDlhGQ4oZzmpVdGIL4Izj/5+9N4uV7Lzue3/fnmrvGs/Q88Am2RQnTWSL7Mi2LMOOLUFUTMkGruEk9yJGECMBgiBAngQYCJAHI0AeAwdIHoLAL7GQxM6VY8SD4gm5sSxKpNRkd4tqdrfZ83TOqVPjrtrD992H9X27zunxTN0i1VyA0FR1Ve1d1VX132ut/yDdoJOTgDBzLXCqNJVjuPGsc/vp9yUxxDJnlfWrdZpNikKAOM8lkaReFzDv9/HKUozXp1M86xK0zj/WGLw4FkC149zg85/Hf8B04m6aRWc5d+HCBZRSVfd5e+TWBy3UeSdqI69pp7Iw9+7dy7Vr19i/fz/Xrl2770j3UdZjB5hbqY1IOSaTCW+//TaLi4scO3bsrldEO9Vhrj2X2wOmN2I3txPAfe3aNYqi2PAxt3P8tfvKT3/605w6dWrDj52MJnz/z05x68oK3zv7DBevaBJ9nQPP7GXYLyizlGlq2HvYp5YklFqRTyeM+wMO75mzO00Bp1pN7PFEpymUlSgSIEtTuZ8YojsWrWfjvYSD4/uKohANpsR5KeIYjBGNpUhOlH0e+bcVDwBVSVRcZ6qUHdUqKLTBlCIVwZoTKEHZmd8r4ClF6Pt06nWwO72832cyHnPtyhUoCuJGg3oYUnezZ60xcYwejQjs3rLyiS0K6eLKEh1F60e9NrLLKCXjVW1N1H1fQHI0khFuYL1uWy3KLCPo9VCtliSWuCBrI8br+D5lq4Uaj2W8aoyMhlstGYFOp3IcrcUmz7JmVVmK9d1kgmq30UFA+BM/sZmPLEC133RszbWRW/1+f9349sdxJLsR5u9oNNoRH9nXX3+d3/7t3+ZrX/sav/3bv81XvvKVbT/nTtRHgLmBepCUwxkCPChDcqd2mG4nsNZubjMB09s5jzzPuXr1KnEc88orr2zZKWijHebt+sosyzb8WK013/r9N1m92ePs1b2cfLNLv3uTXQcOEzVr7NrtUZYhNy7cJC86kHl0WgWD3OB5mtFIur4kET/ZWg0mE2Xt86S7bDZFSuKYs5OJ6DIBa06gyPOAer2sQND3ZcQbhs7BZ6bL9H2RqTiTA9FbanxfYYyqutCylOxNYcSayn3HWI0lWgzObyfxaOQxyoJpXKsRJQmdTgdTFIzGY8a9HremU0KlaNVqxEkiTjxRhK7VZgbrnifmCA4sbZQYxjiXeAFLpQQAJxMZrzpLPdc5TiaV6YGp19Fzc3jLyzOpSpbJKNYY/OVlAIr5+VlWJwhA+76QhSaTyj9WlaUQiuzuVStF+rnP7QiY3R65tXZ8OxwOqdVqNBoN5ubmtmxl+aD6oDkKbSWp5O/+3b/LX/zFX7C0tMShQ4f4V//qX/G1r32NX/mVX+E//sf/yJEjR/gv/+W/PKQz3lw9doC5lXHgvb5cxhjOnTtHt9vdUPjxTu4wXbrJs88+y+7duzf9HFsBTGfn5yKytkMa2si/wdLSEj/84Q837Ad7e01GU1audRmVu/nrbxmKMsCUAYNby8zvUozSebLJhIWDC1COibyQbjfEwzC3q0EUCSgNh7OkEjcanU7FkN0YIQNFkaEsFXEs3WOWKex0kSiSMOgsc4YGDky9CmzltTkjAuk4jbmbq4+AaRAYS74ShwXf2tFVwKm1+MQCpiiq8GVnTuAE5sbzKm2m8X2aSUKrVmMRKIdDRpMJN2/dohyPCcOQIMuIGw3JjnQ+sc5MPY6l40xT6WqNgWZTwNASfnQcS+fo5CijUdV1miDAL4rKyMC48Ogskz3lcIhpNoUIZPedZacj+8l2W9hUbhQ7NyeArTXa9zH9PiiF/6UvwRZIKA+q28e3V65ckdF3v1+Nb11iSLvd3jGQ+6AB5ng83nSH+Tu/8zt3vf1P//RPd+KUdrQeO8DcqXLdXbvd3rCsYSc6TKUU3W6XW7dubSjdZKfOY22yyerq6raA/0HHd/vKpaWlOy5EHGDm05xpmhE3agRhUD3u1qUlsklOc65BvZ0wmkT82RtzTLMRuxZzrqcec/vmuHl5wu79Q9pzHqZZJ/QUk6GhNQd7Dh2gMAn1wFhZiPw5GinabQE8x24tCkW7PTMiEOs6VYFpUSiU8q2UxJGGFMKLMHa/KcDm9pozDSY2fNqZrjuN58wiz1cCjIWVX3hBIF2m2zFaO7N1aSVaDNhhjcG650kH6AwDypKgXqcTx8zVaqyurpIBk6Kge/UqXpaRxDG1dpukKGY+sc4mryiqWC9HCDK+j+f0kVEke9ZWSzrFXg+V55Q22FnBDHw9DxMEkk1pU0ZQirLVEgejyURAcTBANRroWq2yu9OtFnoyQXU6+M8/T/n003hnzmz5s7vRMsbQbDYrn+g8z+l2u1y/fp0zZ84QW2auY99+0OUrG63RaESr1fpRn8ZDq48AcwvV7XY5ffr0pru77XrSFkXBhQsXyPOcz372szuWiXm/cib1k8mkSjbp9/vkeb6lY8PG/WBfeeWVO34MPM9j5coq3zzxl5SlppZEHH/tZZJWwv/7b/+Qd994jzAKOfixfXzu//oc1/Jj5OOL+EWflZUOUZIwN1+j7CQ8c+wAV6+tsndPk3Z7jpWVCUoNuX6ry+LiiPG4gVIJrRaVxnI6nfnKuk7RyUucBtP3RZcJUK8bJhMHlHJbHM/YtkK0dAHRMnYV4qbIRozx7MjWmTVofF+eR1HKXhORinhOY+l8YrWuvGPXGazbjs0AynWl9vOgo0iIOc7Vx0Z2lb5PoyxpdDrouTl0WTIeDhneukU3TVG1Go16nUYU4WOJQr6PCUM5hs2tRClJI0lTGc8qJcHQjQZ5UZAMh/L5sGNg026LZtNqOUsLsEwmIltJU0pn+C7OEWi3y2w05DXmOWp+nuBnfobCalEfdt2+wwzDkD179rBnzx6MMaRpuqXEkNvrgwaYaZpuOFf3w1gfAeYmyhjD+++/z82bNzl27NimdFmwvZGsy3ZcXFzcNjNuo4A5nU45ceIEu3btWmdSv5V4r40cfyN+sNPxlLPfvsAnj32CKA4Z91O+84ffxw993n3jLPue3EOZl1z/m5v81m++R3TgFY4eO8rFd2+gpyNuXhty/l2f+V2KsydTPv7qC9RqIZMJHDxYw/fnmEw0RZGyvDwmCG4wHMbUag0gIQiky3RSEs9TlhEr+0tx8xEg9X0ZzTqLPM8TEHSGBvW6dK72XUFrqi5U1oByDN+341OjKoA1RmQlIBIQLABSFLMLkrKsUkW8spTOzrFZtZYYL2NkF+l+4PNc5BphKEBjQdifTinrdXQY4qUpHtCKY1oHD2KAfHWVyXDIjdVVyiwjaTZJ4phGmorMwxmv212nI/wYzxMtTVEQ9Puik2y1hHk7mYhnbL+PabXEMMGNYtttyHNotwXcbah00WrJhYPdlTIYQBgSfvWrYsCQZT9yMo5Sinq9Tr1e59ChQ2it6ff7lWcrsOHx7aOUr2zkfVsrK/lxrMcOMLf6ZTHG8L3vfY8kSTYkzr9bbXUke/36dc6fP88nPvEJjDHVl2qrtZF4Lrcjfe655yoj5s08/kHHvx1w77avvFulgwlaa6JYrsLr7YSlKyt0b6wSN2qM+mN0oTl1OuDi0OfI+AKdhTpHPvk0l06cotZqsntfiPEU00GMpzWeB+12SZrKRcjcnAIaLCzUmU4XKYoc3x+yvHwTrUviuEG9nrBnT63qJCWVRAhCee5ZRqu4AEWRJs9Dq7OU+/n+7H4zo3bpKEXaonExXmJOIMApJCBF5PIxLTPVtzFeChsA7YDTSUVscolnZOdpnLYR6QZBEkbwPOkKrTbTSUx0GFadI0oJoE6n0jkqRS2KCPftoz2dwnTKKM9Jl5ZYLks836dTFCRJgt9qyfi20RDTArtb1LUaZZLgw0x7aTWgRJG8jl5PRrGdDmQZfppShqGMYm3yiOeivNptcf/pdPA/9zk8S8b7IJqi3+6Ys5nx7XaycTdTG3094/F40wlMH6Z67ABzK9Xr9RiPxzz11FObyq68vTbbYTpd52g04tVXXyUMQwaDwUPTcgIVIF+9evWeXfR2d7G3+8Hea1+5tspSc/qvfsh7b57nysnrHHniFnue2E06nBDXazQ7Da7/zUkUiuVVnzM3XmDf0YC53W1WbuV0dq0S1kLiVoQfRjQaHchWScclxleEoRB3ksQwGjkdpYxHwzBgMlmg0RDwm05TJpMBZ892CUPF4mJCHDeo1cLK0KBWE8MDmYIG+L6xDj1qjWuP3M+5+gTBzP1HcjBdEpaAqfvB8n2JFCu1ITAGrRRFlokMxMVx2ffWGINyHWUVHG1jmozBOGmHUrNMS/mHEUAtCrHUM0bIQ25E6piyUSTyEuf2Y4G4XqvRtKHRRb/PeDLh+mQCN2+S+D61uTnqRYHXblc7TG88FjlIFMlINk0FUH0fbQxeqyU7TGveruO48o81SkG3K+fd6cieNs/xjh7F//Sn132+P0gd2d1q7fgWqNi3586dI01TWq1WBaAfNL3nVkg/H6b6CDDvUw48rly5QqvVuqPT2mxtBmjcOHRxcZGXX3553Th0JwDzbiPVsiw5ffo0AK+++uo9vyA7NZJ1+8ooiu66r1xb7333HD984xy7Ds6z55ldnPzfP+TZz+S0d7f4W68d481vvs3crg6r3SnnVl7AhE3m9zRQQLNZMBjk9FKNb0YszO8iyzIyHYMf0+noygrPSUkaDUOaKusrO4vzmk596vUG9XqTvXsNZZnT708Zj5dYWipIkhpzc3XStFFJTTyvJAw9C6CO6OPAcL2rzzqNpbfe1UdrN9b1MBg8Ix1gaQyB58mFiN0tVz6xFjQrRx5jqvGsVqpKK6n2i5a4U5F/8lz8WbWmZg0RcEkj1nAAmEV22UBpbzSSf7gwJOh0aNfr0n0mCakxjEYjBr0e5eoqzaIgbrXI6nVqzrQgjmUk224LM9lZ4q31j51O8Xo9tO9Teh6q1ZJzGI/loqHTEVbsmnpU+sidBObbx7drA58nkwmdTocgCOh0Og8NPDcKzFuRlXyY6rEDzI1+WZw/qu/7HD9+nBMnTmxbErLRDnNlZYUf/OAHd9V17kQ2591Ad6O2erAzI9npdMp3vvOdDVvqXT5zjbk9bfzAZ25/m7kn53n2laMcOLqXM2+e52/eucBTnz7CyUvPcihSDG7dJJ34+CPIxxkm6fPqzzzJW/+fYfnWlFZL8eyxQyzsCej1DL5fkiTCSg0CkZKEobFWdQ4spQu1hjbUalCWEbt3BwRBkywDzxszGk3odlcIQ584bhEEBRBVYFkUQgwC7C5y5i0r5B9RSAhwYi30nOOQgClolO9XCSDaGOnCQMaqa0Khq44ThJnqOk6bMOK6UFOWMmZ1j5M5MEprgjyXRBDfF8AtCulOnQ5zPK6MBtR4LCNXrcVwwFi/WmuVV09T6kmCaTYpjSGdTOj1+0xv3kQHAdNdu2gEAaGVynjdLnge5dwcXpqixmOKdlsAtdkUBm2/LxcFzaZ0y3Nz+K+/fof13YfdUOD2wOcf/vCHRFFU2XHWarWq+6zX6zv2Wj/qMKUeO8DcSLm4miNHjlTkk4fh0nN7bSTxYyeyOW8/D7c/3Gio9nY7TJdLeuzYsQ1b3CXNmNVbfWrJzFUojEP+/Ot/hZBghFPACgAAIABJREFU4E//ZIS/V9FeSJiMdwE+5eQWfrvOx178GJ4XcvC5OZ5/7jDDkUezJakkkk8pshFnRCDm6XJbvS6vNQwFLCcTVekyZVTqXHs0vl/H9xvU6wtkWcl0OmI0Sun3J+R5SqPRpNGI8TyfohBzAjHUmXnL3m6RZ4z86IkdnjVFsExZbTWFylnWYceBxlSsWKexNFkmxnpOYmJB0pF/jKXtajueXWvGXkQRgTNeh5nbT5aJVnKNK4/19RP2qwuFHg5n98lzAbo8JxiNaPk+zU6HJWMIkwR6Pbo3b5J5HlEQ0Gi3SdZqL1stYdfGsYyYV1dldzs/L3vcPMf/9Kfx7nIh9uPo8bqwsFB9jxz79vz584zH43Xs2806cq2tjVppfrTDfMzK6Q0/+clPrtMT7QRg3u85iqLgnXfeoVar3ZdUtJN+tBvdH+7UOTiW8a1btzh8+PCm/GA/8bnn+d//7a+5dXmZ3o0Bz37uYxRZQTbJGPdTzp7Jubj8JOGox9GPJ7z0+acovAn9/i4OHtxNu63IMtlBDkc+tZrsFEcj+X0fjyWVBMSIII5NlY1ZlsJ2bbeNZa9qylKCnxsNceYBGamWpQCwUgrf95mfb6OUIghKGo2Yfj9lOFxFKY96PaTTaRIE8RqLPAHQteYErgt1Wk/fM2gDlBrP3lrY/EuDZFq697vq7opiln9pO0fHlHWesy6yC/s4XatV2kxljHR01hbO+cQ6lqszR1dZJrdpidQyxlSSEB3H1b4TrfFGI+l27T+EN50S1WrUm03Mvn3oNCVbXmbU7dIdj1FhSDw3R9zrUfM8TBxjrMYSABvlpY4cQf3kT97zM/ioOswfRSebJAkHDx7k4MGD68a3V65cQWtdsW83O74t3d77AfURYD4m5WKxiqKo9IZr62F2mM5B58knn3wgqWinADPPc77//e+TJMkD94e311ZGsmv3lU8//fSmI386u9v83P/903Rv9IhP+PzUV47zw++c49q5G3RXCs7cPEa9McX3cuYPH6aX3iJJ2nzsY3P4vqLXk+4RpGP0fRgMZkYEjqE6mUh0lzMdEMs6AcaikE6yXpf7x7EwXeXvjeXcSFIJiGxEbisBH99P2L8/xvPmKYqSPE9ZXR2S59dpNGLiuEGnkwCh7VxnDZvnWYs8D1AWcLSYBWitCT1P4NSZrkPl6lPlX9ruziuKGZha/aLrHI20udKd5rl0hUEgAOB8XUcj6ViDQMg/DpTLUgwKsky6VkF+AU6QfafWs3ivRkMA1Rqi50lCYveslCX+eEzSbFJrtWA8Ro9G9LWmv7JCqhRBo0FTa+IsE1MD30ctLuL94i/e153rw7bDvF/dD8huH98WRUG3271jfDs/P0+j0bjv+/LRSFbqsQPMu30onP7v4MGD99zfPawO814d7b1qu+NQEJeiS5cu8dxzz21JZLxZ0L49Auz69etbAv16K6HeSrhwU3aZTzx/kN7ymLO3niPLShQKHc5x/co5jr7wFNCynq/ixlMUHmkaYH+vaTaF2FOWHu12iSSHUBkRuDgvpQQEtYZOZ2Y64CQlLi9Ta1nTiRZTrPJA2R80TRhqtHZ6S584btJqNfD9XeR5znQ64MaNPlprOp06zWaTOA5RyqMobNC0rzDaQFnMzAmwW01jZK9pyTkGZtZ31vXHASDOnQfEIMCO65Rlvzo2rV2wEhSF5GEa6xOrdQWWjinrmLnedCoRYJ4n5B878kUp8XodjYRNawHXtFrg+wQ3buCXpXSxk0nlH+tZ/1i9sEDbGDqNBmUUMb11i/F0ypXxGFZXaQLBz/4s7ft0OD9uI9nNpA4FQcDu3bsrsxU3vn3//fcrhx63/7x9fLvR1/OoZC4/qnrsAPP2unHjBmfPnn2g/m+nyTZaa959912yLLtrR/uw6vr161y+fJm9e/du2ZFjM36u2/WDvV815xuY/T/J+FZAvWWoNQJWVwYcOPAUxrTodGSEWhQy4sxzaDQyskx0k47g02pphkPJv4xjAbswNPY2aDSwe0XDeCxyj1ZLpB2eNwPYdltXNndlOXP1EbWGqkg8UVRijLBm3Zo6jkPq9QVAxreTSUqv16PbzYiiiHq9RrtdR6kQj3LGbrVSEW19U2Fmd4fnyZgVxHTdjWKNEY2l85y1f+JIPJ4nEo8149w8igg9b9aJgjBijZHxrGPhOqasMZUnrE4SGcXa/aKTnpgggDCUMa41btdWOqJsp6xGI+lE4xjV7aK0FrefNKW2Zw+R59HudjFxzODZZ7nRanHmu9+9p3bxw0762cnjrB3fGmOq8e3Jkycpy3Ld+PZRxoh9kOuxBUxn+ZamKcePH3/gVdFOkG3cF3UymXDixAn27t3LCy+88Mi+wE7T+cwzz5Bazd1WaiMd5tp95b38YLdb77yj8RZfZNfu9+j2SkbLGUefPcji/nl8v2Qy8SlL2L1bmKfSKYakKezaZchz6R5HIxl3OgcfrUVKEoaiy5xOXUyXRHhFkSSVOJ9XYdPK/TxPQFLkJOLqo7UijguUcr6wfrULNWZmkTeL+fKI4ybtdgOlIMum5PmEpaUueZbSataJ45gkDOVHrCwFAO376jmNq7WewzFljaSVUJbugOIpa4zsMH1fdpiTiTBsnYGBkdQPvyxF5qGUGBjY0a7xbN7laDTrYNNUGKtQjVyNCFHldq0rSYpOEmHpBoGcp91zmjAUlmtRSEyX1pSNRpXJaSYT8ZINQ9SBA8z98i8zby88nXbRWc+54Of8EVnjfRANEu5XSina7Tbtdpsnn3ySoihYXV1laWmJs2fPorWm0Wjcd3y7E9/pD3o9loCZpilvv/02e/bsWWf5dr/aiZEsyC7vzTff5MUXX6xy9R52ZVnGiRMnmJ+f5+WXX2ZpaYmR08ltoR4EmGVZcvLkScIwvKcf7Ha79Zs3S/78zwuCOKJ1eJ5ol+KJwwt4tQ7jMdTrEtKcJNDtKnxfRrBxXNLpaHo933aXbt9kGI18fF+IPkUhXJSZ3Z0hy6gCoH1fLPCyTEB3bWh0lsl/e548NgxLiiKgLJXVZjr5iHSmztUHZq4+QTAD0ySp0WjEokdUBdMsY9jr0bchy5FSM7B0wKnFR9blU6KUSEUmE+kcBYml0ytL6RwtoKowxPi+SEysvZ5x7jxuzIplyjqwdvtOe+GpPE9um0yEKZskqMFA7lurCYPWSkA8a2tXWnat6XRk12qBtmw2wUlcAPp9tPWkxQK8+uIXxaDB1t2s55aXl7l586acu9YsLi7SarUeCrA9SoOEh3GcIAjYtWtXpT0/d+4cWZbdMb6dn5+/gyy41ffzj/7oj/jn//yfU5Yl/+gf/SO+9rWvbft17HQ9doCZpilvvfXWpgHL9/1tGY4bYzh//jzT6ZTPf/7zG2akbrd6vR4nT55cZxS/XcC63x719n3l3Wq7HWaWKf7bfytYWpoyGl1j1949xHELrQO0NiwsQJqKOcBgINKNZlNGrFp7jMdC/BFypiSHiCzEVOYFIiuR+6wPiJ5pJ6dT0VMGAeS501h69nHGhkGDfM1KwlD2qL5v8H25XxCYanwrH4mZRR5QBVBrbYhCg1IBiecJOUYp8smEca/HOM+5+P77JHFMvV6nIZoXXI6KsuNbpTU6CNZZ53kW1IDZyNXtHK2BQFCW8oZOp0Li0XrGlI0i2XcmibBUR6MZoSiOxT5vNBKwXCs9KQq5r+eJIfutW7OOud+X4zg5idaUnQ5mNEJ1OtLVWqBVX/oS6j6mImut55IkIc9z4jjm8uXLDAYDGo0GCwsLLC4u7tj38lGNZB/ViNnzPHbt2sXu3bvXjW9Pnz5NURT85V/+JUePHt3yay7Lkn/6T/8p3/zmNzl06BCvvvoqr7/+Oi+++OIOv5Lt1WMHmEmSbGgEe3v5vs/E/phstvI855133qHRaFCv1x8ZWF6+fJlLly7dEQO2E9Z2d3v8Rv1gt3v8//N/mig1ZDS6Rb1+GN+PSRLPXtUrul0fz4P5eUOWSZc5GHiE4SxCKwxFSuIcfAYD2Sc64FQKxuNZQHQcyz5UdJvG/uYLSE4mao2rjzyf60LFoEDj+wKMxsyCNeR3Tig7Dkfk70U+Iv6yznRdzrvUGs+yWE1ZEnoeSavFeDxm//79TCYThqurdCcTFNAKQ+pJQmB1k8Z1hWW5nilrTGWNp91oFKp9YuHs85B8zYrYE4Z4g4F0reJAv54VC9Wu0ljHB5WmMnJVCppNyDLUYIA3naLt58a4z6sFS91qCThoCcam35eO8vnnUS+/vOHPjphQBOuCn0ejUWUWkuc5c3NzLCwsMDc3t+W93aMCMth6R7eZWnsBcPv4tixLrly5wv/8n/+TCxcu8IUvfIEvfOEL/MIv/AKf+tSnNnR+b7zxBs888wxPP/00AL/6q7/KN77xjY8A80ddSqktsbi2OpLt9/ucPHmSo0ePsnfvXpYt42+7db8vpNaa06dPU5Ylx48fv+NLvxMd5trH329febfaTof5rW9lXLjgUasts2/fERqNgCBQdLvYwGaPVkuAzElJZOxprN4y5MABjVJBBXjSUeYo5eznsGHP0p/luaq8Yd3eMcucycHstulUkSTWWMASiorCszrNGZiWpbJjWXDRXkoJmIahG89CFHmWXCrnoY1C6bK6YFFa3H7IMvki+z61Wo3EThKK8ZjxZMJSr4cej6nVatRqNRq1Gp71iVV2aqIlqVo6R+cpawk/JorkYiTLwJoFYLtU1jBlKUuBf2uNZ8JQ0k2s96up1cT2zlrY3Q6oud15KmvIXgYBqtWShJXpFC/L0GGI9jxotUT68gu/sKnPz+2sUqUUzWaTZrPJE088UYWzO/F/GIYVeehB0ou19SgB81HU/eQrvu/z1a9+lZ/6qZ/ixo0b/Kf/9J/45je/yb/5N/+Gf/JP/gk//dM//cDnv3LlCocPH67+/6FDh/j2t7+9Y+e/U/VYAuZWaiuA6Tq8T3/605W/ovux2864xgHW3a5+HaFo3759PPHEE3d9vTvRYbp60L7yXo/fCmCeP5/zO78jAuxnn33CMlYV3a6i0RDz8n5fJoOjkaLVErAcDBQLC4Y8h3o9pyig3wdnalSva7JMVQHRngdRJEYEk4mi2RRzAs8THadz9VFKQpxdaHStJrcVhXShWisLhoay9G23KRITWde5LlTeD/f30mUatDaIz6x9Ty1YGkt6cSNVjER0sZYpW5b4tRrtMKRVq8H8PGmek/Z63FxdJStL2r5Prd0mDgIhCpWlyFHCUIg9buQaBHjWnUdH0brb8bzKc1Y5EwSQf4SyxO/1ZtKTtS5A/b7Y3TUawsjNMrl/mop5uu/LY9NUdpiOcGQMXr8voP33/z5sMkrqQbtF3/dZXFysLCknk8k66YVzzllYWLjvhfePE1jCxuQr4/GYRqPBwYMH+bVf+zV+7dd+7dGc3COsxw4wt1qbkZU4EwStNa+++uo6yYgDq4cBmMvLy7z77rsP3M/uBOkGNrav3Knj37qV8h/+w/ssLLQJgohuV34rPc8jSUo8L6TXE5CUCCx53HSq6HRkrJqmCmN8jFF0OhL8LHpMVZF9skwCm11AdBjqyojAmRMIIcdjOl1rTmAqsHRj37J0o1YfpTJAURSScyld5HpvWbcbdoQgkL2mc+cJLXBWBuueJ52aUjj9jDMQUMYxcm0XqhSJMdTn5zFzc5R5zmQ8pr+6Snc0wg9DanFMs1YjdOCJTSOxDFvKEm84FED1fSH/GDOTk7jILqflxI5WlVqnvTQ2x9KUpZiqYyUqzgvW92dEoLk5Oa4Rs3jV78tr/KmfgjUdyUZrs51fHMccOHCAAwcOYIypcisvX74MbDy38sNeG5GVbMe04ODBg+tiCy9fvnzPTNwfZT2WgLmVDmejspIHmZi7TnU7usvbwXttsPW9PGjX1k4AZlEUfO9739uw/+za2uz7v7zc5d/+24v4/gHm55ssL6e025o8D1hd1bTbItMQEPQZj0U2omzW5GQineDCgmE8NnieJk0ln3J+XpPngjcOGOW5ldVZKsuIFSasMTL6lb2jMGKNETAFid4qS6/aewqWFfi+t8buzpJ4Iqxu05F/hGAkwCnALOYHENlmxuVfKusNq7RGA9qFPRsjwOTyL+1ntgqZFjNcAqDRaNCIY8zu3WSTCdOVFZa7XSZlST1JaNZqxEpJYomTqjiN5Wgk0hNrd+fYuGo8rjSW3mhUgbiychKTZUIssrpMkySyV+33CdJU/iGGQ+kyAdXrCeGnXpfX2G6j5ucx97C+e1BtR+6hlFrnnHN7bmWSJFX3+eNWG7nIT9N0y4D56quv8t577/E3f/M3HDx4kK9//ev85//8n7f0XA+zHkvA3EptZCR769Ytzpw5c18Q2SlrO3cuay3nNhpsvZ1zcOC8HbbvZqz1Ll++zO/+7hKed4TFxRBrYlOB0sKCYjhU5Lmh2RQ5R6cjjFhjoNUyVjsJw6GyTj8CgI4Ra4y2HaWAQprKe9jpCGCtBdNmc+bq43kuALqkLEVvmSQKl24ioR6KKPLsFbrsIuW2GXBKMpZXpZlIF7QmrcQvMXgYbTWWSkkaCQjCTqcE1nzAuLGnMeIpqxQlMgh2mZZKawG1LJMRrlLEZUlt1y5aSsFoxCRNGQyHLA2H+LUauihojseoZlOOkyQy3hyPpbtc22Vqvd60wOk+nTuQ5wnQpilqOpURbVFQOHu7LBPQtEQj3elgbOdqkgTzd/6OGDNsoXZS7rE2t9IYQ5qmLC8vc+bMGUajEWfOnKnIQw/DmORR6h430mEOh8MtA2YQBPzWb/0WX/ziFynLkn/4D/8hH//4x7f0XA+zPgLMDdb9ANMYw9mzZ+n1erz66qv3TQXYSU/a0WjE22+/zRNPPLGp8cVWAXPtvnI7bN+N2Ps5Y4nTpwuMOUqrBXnuM5kY2m0BXc8zDAYBZWlYWFBWby+7SN+HdltMCaR7E/Zrs5kzHis7RpW9Y7d7gxs3NO12zNxcQpKEhKGAqTj9yHvl+2JYAM5vVpiuRSE/JI2GGCTIWyugGsfaOg151g9W4ftu/6lsWLQjAbng6PV7Tc+686DFys5AtavUFgALQVi53RjRTYYhRmv86VTui92tWXDzrMZyLVPWswzW2Eow1Nwc07Jk+cIFVsZjbvT7tDyPepJQi2PZV9brklhiO9uKKet5600LplPpMo2pRq6m0Zh50Ha7+DYwuux0pHO13a0aj2U/+tprsAnT/tvrYZFxlFKV9vPw4cO88cYb7N69m+XlZd5//308z6ukK81mc0fO4VEmomy0w9xOFuZrr73Ga6+9tuXHP4p6LAFzKyPZewFdlmW8/fbbdDodPvOZzzzwi7BTgLm0tMSVK1f45Cc/Sbvd3vTjNwuYt+8r/+qv/mpTj19bD3r/ndGCUoucPXuQLDO02z5KQZJ4XLsW0u9rFhZCQMBnZUWkJIuLonUMAkOvp/A8US5MJk4CUmNuztBowGBQcvPmFaKoyYEDCWU55saNVTxvShzX6XRi2u246krBq/IwnaFBHDv2qzj9gNtrihmCMaL9jCIBLQFBtcbVR1VdpguOFuCUJsr3hbmLkR8sJe0uMLO7U25vWZYyii0KycV0dndBICDrorlAusxaTZiya57P+cS6lBLjeURAUK/T7nSoFQWTyYR+nrN05Qqh1sTNJg2lCJIE5QkRC0viwRoMKAeoIAzaOIZaDdXtyu4yjsXMYN8+dBDgLy0BULbbYoDQbqM+9jHMc89t+XPn3v9HQchRSjE/P19xCabTKSsrK1y8eJHhcEiz2awAdKuxW48SMB/2DvPDUo8lYG6l7gZ0q6urnDp1ap0pwINquyNZJxoejUYP7GZ36hwcmWgr+8rNHt8ltxw+fJQ/+IMmSpXs2uXR60kXprVPvV7S6QjTVX7ffdptje8rul0xHRASjwDR6urMlCAMS2o1w9JSzvLyVQ4fXiCKmgRBSZ7PceCAoV7XDAZT8nzI++/3CUPNwkKdKGoShkGlsUwS2WsqZSpDgigy1rxAzk26xZKy9C2T1l0oaCtjcYShWf6l02YKDhoUBkeUNWVZjSNVlgngGiOd3trO0e0z15ixA2jfnwVKay3MVtuJVrmY1lXHiFhVgFhrrBkvcZKQ9PsQx2Sex3gwYHk8Jut2aRQFSb1ObX4e346G1XSKcoYIYQhJIuA5GAhYimO9SFWyDDUcSjfZbkOWCXO22aT8239725+9RwEyd7sYrNVq7N+/n/3792OMYTgcsry8zKlTpyjLcp32c6Pntxnj9Z2oB11oOJbsj3N9BJgbrLUfFmMMly5d4urVq3eYAjyottNhZlnGO++8g1KKZ555ZstXppvRkm1GX7mZ49/tR+XGjRucO3eOT33qU/z5n3tMpwVhCMvLCqU0c3Mh47GxUhKPTscQRR6Dgcg+hkPRRgaB7Ctt6AXNpqlcf8RUPWU4XObQoYNAbLWPWNN1mEx8Wq2EIEhYXATPK+j3J6yuLtPrTYmiOnNzCUo1LAgLYUdIq47d6pJOQCkfyAnD0qaVqEoNodT68azrOCUs2gKnZ9CoKpkEpTBZJn96HkpLvJfRWsabLsXEEX5cu2qt89ASDG0cy8iYKo6rDAI8Z4nnbO9qNTR2DJxls661ViMcDpmr1eg0mzAYkPo+o/GY/tmzAITtNo0wpNZqodZqL2u1Sn/pnH2U1ugowhdPQiE1jceYIKD86ldhB/aAj6LDfBAoK6VotVq0Wq07fFvPnTtHFEUVeaher9/zfDeaUfmo6iPA/KjuqLIsOXXqFJ7n8eqrr276Cm+rHWa/3+edd97hmWeeodfrPfSFv9tXBkFwT33lVn98bgdMYwznzp2rdsBvvlny/e+nRJEiikK7s/RZWZERqIQvF4RhxOqqZ+UeyjJMFcOh7BMFwBRKKbJMdpHdbsFwOOD5549QFAGNhow/JxNFpyPkTeftKhpMg9YBCwtNPK+JeJWPmUxSut0uUeSRJC1arZhaTaisnjeL/koSw2SikcBu+axEkRxTvAIkAsyZEzh+TCUx8Qx4/iz/EmsM4K2RmBhDacHSRWxV+0RLqAHZfVqtDEwms060LCv7Id9KQrTvy0jWsmKDLIN6XRitljmr0nRG+FEKFUUkSlEPAjh4kDyKSLtdhisr3Fxaoj6dEs/PU+t0iIZDef4kEalIu8202yVwpgUyR8e02+if/EnY4ATnQfUoTNE328Xe7tvqYrfOnz9PmqaV9nN+fn6d9vNRjmQ3UuPxuNKv/rjWYwmYW/3ClGXJG2+8sWnd4draSofpMjNfeuklGo0Gg8FgR3SU96rN+MFu5b1ce9FQFAXvvPMO9XqdY8eOcfFiyZ/9WUqrpQCfwaCk3fZJU9FT5rnPeOyze7fEdc3NabLMp9cTcwKQOC5QDAZijwfSBV6/fpPJRPGxj+0iCHwsP4YsU9Troq0UVx+xyEsS6RKdq49jtwZBnShqsHevIctKptMhq6vL3LplqNcD2u0GjUZCGMrzaS22fOC8aAUYnRG7EFvdXlPuo7WMZD1fwqKxpuqYWRqJdnpLmedWpurGWue5cahRCq0UntVTOos5HUWQZRVwMp2Kq48zWHcay8mEIo7RcTzTWFptpxWSznI0g0CWxnlOMJ3SjiLMvn0YzyNLU8bDIYMzZyRjs9OhoTV1u4ONBgNMq4Vut2WvmmWYI0cwx45t+jN2r3oUpujb7WLXxm454/iVlZVKp7hWuvJBAsztyEo+LPVYAuZW6saNG6Rpymc/+9lNk2zW1mY6zHtlZu5ENue9aqP7yu0YMDiwdcB85MgRDhw4wHBY8s1vjhHfcI9+X8g5SvkUhcaYgMlEsijzXGQlYSgjzoUFzXgsRgTz8wIK9bqMZouiZDS6TKvVIgxLJhN5zNycmBzUavJ8eS5OPyDWdlo7154ZOcfzBEzDUG5TKmB+voPWcwhtZsJgMKHXWyEMIxqNWrXD1FqA0RF7QM4jDGd7Td93HecMOFVZir2elYVUySTOXKAsZ+BWFDOmrNazztERfpSqcjFd0gjOPSgIUG7s6tx5XBxWWeKPRsJmtcHPaMnAVJYVy1pDdmn3xYhgOsVLU2KlqLVaMD8vxgnLy6TXr7OS5/hhyLRWIw9DguFQOuR2m/LLX9705+t+9UEYyW6m1hrHg/hSr6yscPXqVVYtA/nq1assLCw8UH+91droNGs0Gn00kn3cy+VIDodDGo0GrVZrW8+30Q7TWdzt2bPnjszMncjmvL3Wmh9sZF+5HfKSOOKI8YEzatfa8Lu/O+batYJ227M0fU1ZhoxGmvl5B5CQZSHjMezbJzpH0cA5XaZY4OW5vF9FMaXfv0Sns584bpBlN/B90WqOx8qaDghA1mryPFqLflNYqgKmMtI1FswFLKfTGZlIEkwUWtfZtSuhVpsjz0um0xHDYUZR5HjehEajRZIkRJGYLThtptYu2USyOR2TVpkSTyEgWRTyQ2xJPEYpYZ0aMRTH7TDDUO7rgHSt3Z01BzAWBI1lxTr/WO15Eu/leZWsA2vBp4XFVIGli/fCjX6HQ2HFJsmMFev7qDStdpZevw/TKX4U0QxDGk89hdGaYmmJ69eucfPmTcxkQrSwgPf5z9OMInaS1vJhA8zbKwzDyjjexZUVRcG77767Y8bxt9dG37Ptyko+DPURYN6nptMpJ06cYHFxkWPHjvHtb39728w0z/MeGBPW7XY5ffo0zz///F13Ajtlbedq7b5yM+YHW9mjGmO4ePHiHcYHf/qnKbdu5SwsyCg1zzXtdoAxYoHX64musd32iSJNu61ZXZXznJ8XNmqtBv2+EG0WFzWrqyOWl5fYvfsJwjCi0zEMBsZ2t/IDIKHRsrt0RgTttpgTiM2dPLe1RiXLFFabv86IvVYzFgBnputBoKjVOgSBT1lOaTSapOmIwaCLUtBo1Jmba6FUNEsjKQ21mrJduMbDzFx2OAhuAAAgAElEQVR77Huoy3LGfs0yFJDZIGjl++iyFO9XB6jOOs/uO7Vjo9ouVKWpACrMjNelvcUkiZi757kQhpQSkLXaSGWdfExRQKMhQL3WP1brKnnEaS91sylAbJ/H6/WIooiy3ebwvn2YwYDepz7F1SThzFtvVSSYxcVF0YZuA/Ae1Q7zUUhXjDHUajWeeOKJyji+1+uxvLzM+fPnCYKAxcXFTRvH314bkZTAR7KSH9vayAfnbqDlusPtAOb9YsIcmFy7do1jx46R3MNYeiOgu9FK05Tvf//7m97Lbsatx5XWmlOnTlUibweW77475eTJlCwzGCNuPvPzHuOxGJArFRLHEMfQ64kd3WjkMT8vDj6rqx61mkwfm02xlDt/vkdRjHj66cPUaj5BYOj3FXkuWso4dkklyjoCgURqUekpWy3jmrbK3ceRhCQM2v05M12v1cQkwfc1QaAs6Qg8zydJarRaEcYsUpYFZTlmZWWZ6XRCp9OkXm/QbNasdtMQ+KA8X0CtKCoQc8BpBOXRvk8As/2kI+JoLQkjrDEtcJ2j1kIgcs5Aa+8bhgKoWoszUJpS+r4AYFFId+t5cpx6Xfxj01R2mmUpe9AomgVGWzci02yKB63TXkYRjMeYuTmM1kQXLoiT0OHDNF57jY/ZCzdHgjl79iyTyYROp1ORYDbroPOodpg/ivBo3/fX7Ted9vP20OeFhYVNMew32iR8xJJ9DMsYw4ULF7hx48Ydvqw7sTu8V3e4ln17/PjxByYqTK17y3bK5VduRV+52Q7z9hSVb33rW/YcCn7/94dMp5qFhYiioDIdMEYzPx8ynYpmsdv18H3sXlOjlANLQ6sl+8ow1Jw7d5N6HY4e3c9oJGCZZRK9Va+XpKln9ZtyWxCII5DkZVKZE6SpgJ0zIpBxsFxsifvPLMHEgaUxzifWgaUAc57PgqGNgTj2gBaNRosoMkynU0ajIf3+Mr4f0GxEtNtNAYSyxPN9AcOiEKDTWjpHEEQ3pnLZUU6Xac3OKwcfZkxZE0UCdPZzZLBuPGUp41RrWmC0hiTBeJ4waINAgHON3V2VoxnHorm0hB3losF8X7pT95nVGuO6Ua0lIszKYfTu3RSvv77O+u52Ekyv12NlZYULFy5UILG4uLihLurDPpJdWw+6eL9d++lCn0+ePInWujKO73Q69z3fjcpXPgLMx6we5Mu6E7vDu+0wHfnl0KFD6zLh7lXbPQ9jDFmWce7cuS3rKzczFu71epw8efKOEXOWGX73dwfEMTQaASsrJWEoeaUSWhGwsmKo1TyiyKfVktzI69cDFhYMvi8mBXEso1jPy7l27TKt1jz793fWgWCaYoOdQxqNkiSR32nPE0lJGBriWPaStZoArNtrZpm4+ojV6Z2uPnCn6bp9p60rkA9k1a5TpI8zvaYQj2KaTZkolGVGlqWsdLtMRmOa9YS4ViMOQ3ynp7TEHm0kBFoJG0nAUnQtuPgvx5TF8wTI7A5TWVasc/bBAa3noWs1VJri2c5WTSbohQXJtxwM5L5huN7urteTV12rzXxlobrd+cq6d8cbjeT+9Xo1Wtaf+9x9re88z7urg86FCxcYDoe0Wq1qDHm3+K0PoqzkURzn9tDnoijodrvcvHmT9957jziO12k/19ZmRrIfAeaPYd3tCzMcDnn77bd58sknOXDgwF0ft5M+sK6cYbsjv2zlOTZTbl9pjOGll17ashnBRkeyV65c4eLFi3c1ePijPxqwspJTq/n0+5p6XRGGAf2+ptkUlmy7LdZyg4H8d5oq2m3JglxdFaarTCZTbty4ztzcPvbsiW0XJ4A1GKgqmisMdWXEHkWO2GMIAtFdep6MdvNc/s4BY5I4Bx9DWTonH21N1yGOlZWHiBRFayEEiVREjNedG5B8/mbesYA1KhCn2DiOSJKIdqsJCyWT6ZTx6ir9yQQDJEFAvdEgDEP8PMczhsIBkQuGnpnaCrBZ9mslPTEGyzKqXHgqVizIc7hxquehbJfo2V2piePKvN3YkayJIowDVDtyVYOB+MquiewySQL9viSSGINnbfAGR4+y+/nnN/U5vFsXtby8XMVvORBot9sVO/thg9mj2mFqrbds6h4EAbt3764cysbj8T3H3hsF5jRNadoQ8B/XeiwB8/ZyOsdPfvKT92XB7gRguucwxnD+/HlWVlY2bXG3VcB0+8pDhw5tewf6oJGs1pozZ86QpukdmaAAP/iBz9WrE8LQ2DQPQxgG9HrSMfq+Z11yPIZDhbtwzXMDBEwmHvv2yY7xxo0hsMSePQeZnw8oSxiPFfPzhjwXDWVZiqFBGAqLttORcx+NXNhzSRB4hKFiPHZgKoDrTNeFqCOPU2pmTuBkJ2KdKmAZBOI+JCRSRVEEuBivtT6xa5myxjimLGgtGZDK94mjiPrCAkYp8smE6XhMr9tlOhxSi2PCWg3P7jarfWcYClHISkScq48OAtR0OtNeFkWVRblOY7nGtECNRqLbDALpTO1it3pu3xdf2DyXtt3KTYwzSSiK6rl1HMtjATOZSJfpeegDB1h5+mme3sZncm0XtTZ+6+rVq7z77rs0Gg2m0ylZlt2TH7AT9aPaYW6nnHH8oUOH7hh7uzjCfr9Pq9W658VAlmX3DdX+cagPjur1R1Baa06fPs2NGzc4fvz4AyUjO9Vh5nnO9773PYqi4DOf+cymLe62sktdXl7mrbfe4oUXXuDw4cPbZtrer8PM85y33nqLMAx56aWX7gDLS5dy3n7bo92GKArodjVBIJ1as2nwPJ/VVUOjIZpEkZd49PswN+fZTrGgLOHSpRWU6nL48BP4fkRZyli13ZbuztqjWhtU2TdOJk5v78wJRE7ieZrJRBMEBb6vmU6VfT0eYWiqgGlLFiUIjE0j8cgyZQ3UBQA9z6MoBDhBAFACQTxnm4rW0lHKj56ywdTClPWM1auWpewTgwBjDJHv02q12L17N4eOHKEzN0cxHpNNp1y6fJmV5WWmZVmReIxSaGsyoCwhSFnpCVDdxnQqO8RaTQg/llGrxmNMHJOFIf54LJpLq/c0jQYmjvGGQxnvWqs7FxrtOdKP54l+02ZnesNhpRs17TYmjim/8AV5/A6Wi9964YUXOH78OE8++STGGN59912+853vcPbsWbrd7o5rmj+II9nNlBt7Hz16lFdeeYUjR44QhiGXL1/mjTfe4NSpU1y7du2uPIqtns9//a//lY9//ON4nsd3v/vddX/3r//1v+aZZ57hueee44//+I+39Pw7VY9th+lIKHv37r1D53iv2gnAnEwmrKys8IlPfIJ9+/Zt6Tk2s8O8F4lpu4B5r8e70fbRo0fZu3fvHX8/GpX8wR+sIjwRnyyDuTlFmhqm05J2O7R6Suj1oCwlIFpr0ViursJg4LN7t+HGjSvU6yHt9mGGQ8XioqmAbDqV7m5+3o1ipcucTAJ27y4tp0RTluLg02h4VkcpY1vZYZbWRMezhgWela/MxrNay59RJEYHxohPrIvmEo2lb2Ujzh3JjXWFSORuA9txqhKjhIij7H6y6hx9Yc26XMwoDGnPz6OBXZ0Ok8GA7soK6WhEPUmoJwkN30d5npgWaD2zzHOG7HbkqoqiMi1wsV/WAZ5gPIZ6XYg9WSagWxQycg1DTK0mrFir7VSj0Sziy8pMjCUFmXZb9rB2RFv83M9hdu+G99/f8ufxQaWUotlsEkURL7/8cuXfunaH53af2+0+P+yAeXu54OwjR45gjGE0GrG8vMzp06crPfXevXu3dS6f+MQn+L3f+z3+8T/+x+tuP336NF//+tc5deoUV69e5ed//uc5c+bMIzWdX1uPJWCmacqbb77JCy+8sKl09O0C5rVr1zh//jyNRmPLYAkbBzvHvPV9/w4S08MAzJs3b3L27Nl7jra1Nvze7/VYWiqqEavWJdNpRJYZ5ud96+1dYkxk9ZQewyEUhSbPQ8LQ0GplXLw4YGFhkcXFFp4n3eNwKBc9zaax0hEqc4JWS7q5ej1nOo0YDMQxCJzTjmIy8Wg2NUoFRJG2ySTGdonGGgpAlvmAHMMmWKH1jMQj1nfK5jgrPK+wYdKyNpSUEvd4YeJGkYAlaPDFuMG4VBGrl/Rsl1lpLC1wegBFgQ805uao1+t48/NMplNG/T5dy2Jt+T6NJJEYrjyvyDnVKNZbk41ZFLOEEc+jiCLpJqdTeazbgzYaMnLt96tRrANHoMrD1I2GALIDa3t7+dxz6Jdf3vLncKt1u3+r2+GdOXOGLMvodDosLi5uyQDgUe4wHzUb1114NJtNjhw5QlmW3Lx5k2984xtcuHCB1157jS984Qt88Ytf3HAjAvDCCy/c9fZvfOMb/Oqv/iq1Wo2nnnqKZ555hjfeeIOf+Imf2LHXt5l6LAEzSZItRWNtVVbi9nnj8ZjPfOYznDhxYtPPsbY2AnZpmnLixAkOHjx4V+btToxk3Q7T7WO73S6vvPLKPd/Xv/iLId1uTquluHLFo98vmJ+P7M5POkqtNQsLQSUv6XYVZWnYtUvAazhMuXp1ytxch6eealVKheFQgGd+3lRB0jYLmVZLOk55uT5KaZrNwtrrKZpN4cTU65o8F7BrtRzjFZQKEJ19afeqJb5vGI+lcxSz9PVpJXFsbAfq9r3BPWK8sCHSrjuWkbMpCxTWkcdpL52Tj/2RdE4+hWXMKs+TvaWVaERJQi0MWTSGYjIhHQxYGg7Jrl+nGUXUGg3qgOekH+NxtZNU06kQe4zBG40IbcoJIOzXLJtJVRxAep7EgU0mIl3Jc0yrJec2HEqHHARiGN/pQBDsSGTXTtTaHd7tBgBhGFbSlfulh7h6lDvMR9Fp3Q+Yfd/ny1/+Ml/60pf4mZ/5Gf79v//3/Mmf/An/8l/+S/7BP/gH/OIv/uK2jn3lyhU++9nPVv//0KFDXLlyZVvPuZ16LAFTKbXlHMnCJj9stKbTKW+//TYLCwu8bK+kd4I4dD+wc36wL774YkW/v712qsN0Upw4jjl27Ng9v1g//OGYb3+7bx1yQuLYMD/vsbpqrMjfp9VS+L7HyoqApZOS+L7H8rJiPO6RpgP272/QaHh0u5JQIgQeYbVKbiYsLIhbD8zAdG5Ok+cBy8vL5HmTOG6wZ08EeOQ51mhgllaSZRBFypqua8JQdpVxPCP2BIGMb31fE4YKzxM5injHKsuuVRgj40/pPNcyZQHhpVrWrBH2ox25GruPNILG4u5jSTzGajP9ssR3FzDOEMCRchDTAr9WoxkENMsS1W4zySYMRn1WRxkeUPc8GnFMUK/LMeyO0xuNQCmmQSDeuWvdgYJAmLDjMSrLJMkkywRoPU/YsvZ+qizFV9btMLOM/Jd/GR4i+WardbsBgFujrE0PWVxcvKdxwnbYq5upRxXvVZblA8k8WZYRRRFHjhzh13/91/n1X//1O+7z8z//81y/fv2O23/zN3+Tr3zlKzt2vg+zHlvA3Er5vk9mf4Q2Ui5g+rnnnqtGPztR99ph3s904W7PsSnANBP5n2qB8vE8j8lkwne+8x2eeOIJDh48eM+HrqwU/P7vr2IMNtNSRpXdrljP1es+g4HB9xX9vqJeF6Dq90V32evBeHwdYzQLC4cpilXGY8W+fbID7PcFmJRSlS9sr+cRRZJx6cwJej0IwxZPP91gOk0Zj1d57z2JCdu7NwIahGGA1iIxaTS0ZbMK03U6FWME3xfrujD0KcsApTRJIvtQATwwprRGBp4FV8+atTsdpmPKOqmDjIUBfGOJQsbMdpgum3KtTZ62KSZAYTvRO4KhjcFzo1X5kEB0jTrfp2lANxbJyucZTTVLoxHFzZskQUDSaIjus17HaE1oDQlMGIohgixq1+VbVi2551W363pdRrEWQJQ1Zy9ffRWzxcSfR11xHHPgwAEOHDjA2vSQCxcu4Hle1X02m82KDPfjNJLdyHHG4/EDd7//63/9r00f++DBg1VKC8Dly5fv+1vzsOuxBMyt1mZ2mJcuXeLy5cubDpjeSN0N7O63r9zoc9yrVP4WKvsGoEEtoOP/hzRNuXnzJi+99NJ9XYLyXPM//keXWg3i2GdlRfaAURSQJOKI0+2aSl6itSEMfVZXRWLh+4Zbt64yP98gCPZYwo3CqhEYDJQFRZDfYnHtcbeJZ2zJdCoGBmJi4BNFTer1ppV5TFldnXDr1i3iuKTRqNPpJBRFnTxXlTmBSE3We8e6kWxZBlaGIg5E0tcJoxZytJZMzFpNiEGuuyxLAUvft/9eWuzuDFQdorGaSqendKNYbcHUc3Z3ZjbCtWyiyslHWys7z3RR5fdR0zra94BrRNojSD5Ju16HZpOJ1gz7ffpLS6L7jCJKY9BJgj+ZzEzVXTcZBLKrtOeoRiMxM1AKb2VFOuJaDUYjYcXOz1P+rb+17nPysPNdd6rWpoc8/fTTZFnGysoKFy9erIwTtNaPRF7xQXEUgoeXVPL666/z9/7e3+Nf/It/wdWrV3nvvfc4fvz4jh9no/XYAubtIcYbqY0AZlmW/OAHP0BrzfHjxx/KjuH2c3/QvvJutWHA1DdR2e+BWgBVg3KJwc3/wNLST/PEE0880FLvD/+wy8WLE+p1n6KATkdhTMClS4o9e8RFp9MxFEVAt2toNgVk2m1DmpacOnWLQ4fmabc7QIlSHsvLAfW6MF1rNTEr7/ep/GGjSDxmBwMJZnbOPWEI47G49jQaotEUfImZn485fLhDnmtGo5Reb8Bkskyj4VEULaKoSbst5ybRXiJLEQmjSFKE7+LIP/LndDqm1+uxuLirMjUwxlnneZUe00lMwkA+L8ZKQpw/a/VvbsHKGDMbuWot41vb/Sn7GTVaz+zrsgylUzDLUJSYSNpclTaAFXTNr+zuYs8jEY0PueeR9nro1VUunz9PA4gbDZJOB9+auJNls1Gwk7CkKbbVlp2nlbOQ5+Q/93PrrO/g0VjWPYyKooh9+/axb98+jDEMh0Pee+89Ll26VMVuOeOEnQa3R9lhPuh3bLtJJf/9v/93/tk/+2fcunWLL3/5y7z00kv88R//MR//+Mf5lV/5FV588UWCIODf/bt/9yNjyMJjDJhbqQcBpgOuAwcOcPjw4Yf2A7D2eTeyr7xbbRwwl+xBaxhjuLVcEvnXefLJw/CA4KXvfnfIiRNj6nWPMPSZTIT9Ohjoyos1TWU/MpmIvGQ6VaSpJgimXLzY5dln96B1ncHAMDfnMZ16tNslWQarq2JOUBTiJWuM7CtbLWGvJolGKcNwKBZ6Yosq3exoJK47tZo0Y86cABS7dzeAppWcZIxGKcPhJVZXFbVak4WFOmEYW7KPHEt80cXMQYwQFMPhiNFohb1791OvB/a+MtaVVaSAflHI7jMK5d9VF4X4xHqeMGW1roKhnaesY8o6faUvJ1ARa1jrymMKfP0dlLoO2RBVlBjVgbLAhFNQLRnbWm0k06noJo0h7PcJazVWw5BDe/eSac1oMGB47hwAYbtNI46J63UB4MFAXkMcV+ftSD8Axc/+LNwlT/bDCphrSylFq9Wi3W5XILmyssL169c5c+YMSZJU0pWdyK58lB3mg44zGo22NUn7pV/6JX7pl37prn/3G7/xG/zGb/zGlp97J+sjwNxE3Q8wtwpcWy2XX7mRfeXdasOAqTqApsynXL+5RKtpaLefZrgakWX3dgu6fHnKX/91nyQRxmCvV9Js+ngeFjACBgPNrl0RsrvTZFlImhrKcpXV1Qn79x9AqRrTqeRXiikBCEnHVG4906nsMCcTcfUxBsZjQ6cjRgNJIo2PyEZM5RcbBGJYEEXGuuwImKapWOTFsSKKarTbEWU5Z0OsB3S7XabTCc1mQr3eot2OUUqkJtLkKfr9HlnWZ//+/faKWKG1GCAEgehKxc1I9p6eKilLiePyHdBYZqr5/9l78xi70vPM7/d9Z797bawq7myRUqs3dbeaijzjCWZGku3AiJ0JBrZsJ8ogyAhWYseIxxrPWDAC2HAUOwGSCHCsCWRLsPOH/5DiaWuxLFuGNV4lSz1Nskl2c2nurPXW3e896/flj++cW8Vikawqkq2WyRdosPrW3eve85znfZ/3efJdyGJuqY301gBSvnqS5gpaCuAs2KdlYcVnkKqJIkCkPsjrIK6BqiMym4x337pOok2GpgxDw2Y9D5mrbwN7jbI8jz7oEdvvIFwa0V9eZkkpykmCNzVFUKvh5Gsj2vfNrmathnriCdSxY1t+Xv4+AGZRxWuxbZs9e/awZ88eisD04jiRJMnY/LzRaOwK+N5OLdlHIdoLHgPmjmordarWmkuXLrG6urojI/P7OUBkWUYYhvT7/W3nV26ue6aNaA26A8KhH7+fYfuLTE808PwGyvuJfJdwa8AdDjO+8IUVut2Uet0jTQUTE8aart9PqdddLEtQrxtGmGWKRsNCKc1gsEgYukxO7mdiwlxWqWiGQ4c0NeYE3S44TkaSCNJ03ZzAvDcQRfoWu7oCLD1P5w4/hlFGkWGZvm9atlobMJXSrJikqcwxyNx5qSQQoo7vNyiVFMNhxGjU4+bNJkI41Goe1WqZbreNlBmzs/vR2qzMGDJoWLVxANK54McInGQe46XTBKVzEE1TIwNSyqhMcwMDWax35MCppEQWjkDksV/GVgg5GiHTFkpqUKB9C7IGRA2UeAeZW0doB0S6DrS5IkkXJgWjUf6YS1jpt8A3wdF+7wpu6fuoNPYxJQRxt8tgOKR/8yZCKZxGg7LW+LlBb7ZhPeC7UW/VnHQrIDOCtDLlcnmcXdlut1ldXeXChQt4njdmn9sFnreTBd9jwPx7XruZYW5Wp6ZpyqlTp/B9n5deemnbH96Cqe5Gel60fS3L4plnntnx7Yu6K8PUGhH+HiL+M+Ikpdeapj7/P+EEVZScAlFCyqUt3z+tNX/wB6sMBikTEzajkd5gRKCZnLTp9016iAEx44yztpaxsLDIxESDAwfqBIEkN4LB900epucpul1Jr2dRKiW4rs4NC2SuwM3yfUrGdnX1epEGYtZOBgORt2pFzvY0w6Eci3eMQ4/IE0Y01ep6/uW6k4/xifU8n3rdJ8sEWZaQZV1u3LiBlJpGo85wOKLR8ACLLGMs+JFS5fv7AtsWWJYwM0ytsGwbS2t0njCitDaOOoBKEqwkQUlprOeK979ghfnZwJiJxrGxu7OryP4yEKBFCmGK8ufIrL15YojJtxy3YpVC9vtIdQEhXkdnAqtyCEuuwsgDXHM/bgyyCaqBHA7xLUlQW0bUb6ISh0Hfpr/YoZmmdJ57jmqzydTU1JaCmLeCYb5VLHY7AGNZFlNTU+P0ntFoRLPZvMX8vDBOeCtWVO5W22WYf9+TSuARBszd1MaW7HbSTe5Uu92BXFtb4+zZszz11FOcPXt2x7ffWHdNG4n/BBn9HlFs5mXzM1209Vdo61/e8/Z/+ZdtVldjXFfQ6wnSVDE15RSOa3nOpaZelznjUiwvK5aWFnniiRmkrKK1mU9KacZdg4HC6EUsLAsmJjK6XWOSHgQiF/EohkMzD6zXyd1/zI5kkoh8B9OsimSZYDBYN2X3PLM+UrRnDSFab9kKYRS3RqCjcoAU+b4mucpVs7g4Ys+ePUxMlBgOR4Rhn5s3W1iWRbXqIkTFJIxYBjiFMArZNAWBxs4PsipJjFWdZSGTxJimG9Q2oAgQhqjipM84HpgTnfzzqQBhg1AClR5FsgqihdAJ2p1HicPrhuj5nmRhwScHA4R+A2n9BcQCmQpma9cQwzmE00NZMWLgIDKLLMjzMP0EkZ3E6pxH6wDLV9S4Qenwf0b6wj/EP3SIZrPJyZMnAcarGIWZ96MGmJsrCAL2799/i/l5s9nk8uXLY3CdnJzcVubng67HDHO9HgPmDqoAzKWlJS5evHjPdJN73c926077lfdzALgraId/TBgpEHX8wAfdhuQUOrj77c+fH/KNb7TzVA933GpsNg0jM5eZNtLiooWUGq1Der0Vjh7dx2gUIKWmXrdxHPPa1tbM9SYmRL6ioWm1bOI4zdNIQGuVr5QIJifNPDJNyVu2gmo1y+3qyH9nwK4wYLcsMc6/3NieTRKRt2wVSsncfci837adobXMre2GLC832bNnimrVMM5SqUy9XkYITZomRFHI6moLrU0Eku/71GoltDZM1hIKRb5LKYTZp8xFO9g2IklwLMu0XKMI5TgGFMMQnSRkWYaKY4TjILI2zvCvEXqARpGK/4Q0+EeQtJBJhpZV054tsjCTZGySTpahgwB7dBJCC6FdtJ0hkz54K6BjZFchtEK5Dpq9CPsKMnkN2b1qnq9voXUdHImYitDPPksNbkkRWVtb4/r16/R6PSqVCvU86uth1lsFmPf7OHfK/Lx8+TKDwWBsnPDdbDFvroe1VvJ2q0cWMHfzgRZCMBqNuH79OsePH9/1rtVOGGaxXymlvGVeWdzHbiXWWz4HregPhkRrHaZqNpadz2N1CtbEXW/faiX8+3+/QhBIfN+i3c7wPEkUCSoVI4DodFKCQBKGxsc1TbusrGiOHDlAkrh5brCk1dIEgVm7qNfNl3VtrTAigEpF4bopa2umvVmpmDxL2zbtWdDU64xN0eNYorWgViu8Yw2Aj0amvWqSQgxYhqHM9ynNfNGyDLMFKJcN8ColEMKA5WjUoddbY3Z2H+WyM14bcRydX0/g+y6e5zIxUcnd4yLCsMdgYIKVq9WAarWKY9smOksIo0zUJt5LZZnJnSwMDPK2rZUkRGnK8toa042GYWppjD38C7QMUZaNDGMc9S0S958i0rIBOa1v8Y8VSqE9z+RbFrufWYKwQNsKRikishC2RqdTEAxR0kIMMkTcQeqziKSNLueq3d4IkYboko36R7d7NTuOw+zsLLOzsxQZlktLS/R6Pb7zne/cxj4fVH2vGgpszvzsdrs0m82xJ/bDer821r3udzQaMT8//1Ae++1Ujyxg7rTiOObkyZMIIXjxxRfv6xVmuz8AACAASURBVIO5XYZ5t/3KBwqYagEZ/i7x6Ar9lkdj6gNY1hdBmZQJhI/yf/KW22+cAaep4stfXkFKheNYrK1l2Db4vj1+ju22yo0DLKIoYzgckSRljhyZJwgcej2T1tHpmJmm61qYFChBuy0plTSlktmtBMFwaNFoZPi+mUEWRjOepzYYFhTOP2ZfMwwN2NVqjNdOlBJ5q9YYIhgnHxMcbYQ55P8qosiwQdN50rTbTeI4Ym7uEL4vcuGRaeWarEydh0jnb6MwwF2pBDQaAcbJLiaOQ1ZXV4n7PUq5MKTkOOuuMYUNXmFagDkoD4dD1lZX2Ts7i5ebHai0h7CHaF1BjGLQHkp00FkbbU0iCrDUGuU4BqDNHa6bHHgeMjuGTE6jGSFijbI1uB7oEiQWQiZmPSVITKpKqiAMELINKTAP+r0ulv0NUv0judr69ioyLM1qUciTTz55G/ss2pG7sbPcWG8nkcxuq0gOqdfrNJtNnnvuudverwJA7/f92kk9bsk+rnF1Oh1ee+01jh07xoULF+77LG47DHPjvHKrNZXdGsHf9hyyK8jB/8ZwNKQ3rDO3x0HKcyjnv0Wk3wThoNwfBftdd3wNf/RHq1y6NCQIrNy4XCCERauVUioZT1WTFmKxshLTbi9i2y7T0zVc16bdLkDIuOrYtkWnQx4kLfB9kzzS7Rr3HykhSQYkiUealrEsxusiQhhhDxj1bBQZpljMUKtVA5KFT2zhHQuCJFn3jjVetgZERR5kXUR7JQksLa1QKsHevfO565smScwMFNaFPcXtC/G0EIV6t2j3GvZZLZUQ01OMhkP67TaroxG2bVNxXSrlMpZljR12tFIMWi26vR579+41IiHLQicJlrIQyoVsBI6NFhlipCCz0CIji2NkfiC1RqOx2TpJYnIslUL2emh9gMxtIpJFdNmm1ZlhMomR+hrajUCFUHKx+BaiG4K2oJagZwW8U6LrHkocQ6ARagktAxB3PoAXbczN7LPf79NsNnnttdfQWjMxMcHU1BS1Wm3H38O3cob5sB+neIyt3q+1tTVee+01lFLj1ZV6vf5QTxbu17jge6UeA+Y96saNG1y9epXnn3+ecrnMhQsX7vs+78YwtdZcvXqVxcXFu+5X7iQT8063D6xTiMGfkUUnCKyUcqOCFsdAJ2jnWbT3wbveXinFK690OHmyR61mkaY2/X5GreYyGmkaDYswlAyHGfW6Q6sV0est0mjM0+mMsCwDUhMTMBhY+e6kRRwbkU4YWrRagkbDrIKYAGjFcBgwMzNBvz8gDJcplVwGgxr1ekC1auE4hhV2uwbk6vX19zYMxYb2rAFfEzRt5pqF36ttm1buxqxL0ESRYnl5mclJj8nJSdK0WH0UY/GPEfSsW+AZ+731FRKzd2quq5RAaIUlQAtJEASUPA+0JhoMCAcDFpaWyOKYaqlEEASM2m3iOGZ23z6s3JBd52brWrpk7nNY4bfNGUI2QIt3Iv0SOgmxxAI6BpVNG3N6V0OSIrOcBkcRQp5CWBeN+CfTaEtTSRcQlRBlS0RPIDIP7QgYxug5C3VsGjl/0/Sw8dHMInQbwTJ++N+jaaCtY8Tu/4CWt3vIbgVmhRFAtVrl8OHD49nnjRs3eP3113fMPt+qluxbwWTvtLpSvF+HDh0iTVNardY48zMIgrHz0P1mfm6uxwzz73nd64ujlOLs2bOkacrx48dvkXY/iKH+VuzwTvPKndzHtp+DSJjwv8baWsJ0LUEIB80QkV4EOQPi7h9+IQTLyymvv95CCIXWLsOhMScwrUZFmtqEoaZWs2i3uywstDly5CBJYlOtjkgSExBt2w5papx+ksQ4/ZgsSgOcSkn6fcHkpFHCVqsgZRnLqjI/r+j3E5Tq0Wq1WViwmJz0KJUq1Gounmd2PU2L2KySeJ4xJ9BajNdGjLCnmGsaICuM1sNQ5tFcCUtLN9mzZ4pyuUqSGPZrklI0jlPY3emcler8Z5lrdwyTNdZ4eYtWKQRqvGMptDYrJFmG53l4vk+tVkFGp1DJK4T9DqPoCJZ9mGG7Tdn3kXnGpPY8cx/xPMr6Jyi6yOQNpPU6IvoWchQBGm0NQApQPsQRhC6aGomzH+xZZHQZkTYRmQIRgxUi/EnIBDLuQAaUFPpghDpchcoEqf0TZNYzWOlf4KT/H+gOghYmwkwgaKHVDdz4/yDy/lcQt87/t/Odul/2+fehJbuTx7Btm5mZGWZmZtBaj1dXzp07RxRFtxgn3Gm0s11h0WOG+QhXGIacOHGC2dlZDh06dMuX70FI4LdimBtt9Q4ePHjP+7hfwBwO1rDjkMnJMoIyEJkDNwotGyaV5C4VRZo/+ZMhlUqVet1Fa02lYpx4kiSj0XDQeb7wtWtrDIcxTz11CLBy9mfyLQ8csMgyA2LDoZMHSUuMDaoiji3CUFCtpvks0ORFDoeGEdq2iWqrVKYYjaYRIsW2BzSbbdrtEY5TplwOmJ/3Ucre4BZkxENFjJdti9yzXI2Zr+MUtnUapQYsLa0xNzdPpWL6q4U3rFJyPKsUQuX2rYIijaQAVOP2I/K2rcnFlFIjpW2ALo+OU7lKVog8JDo+DeIMUZTheVUOlpcYJXvp9wXXlpeRSUI1CPBLJTwAx0ELgd35G4RaBhEiwhTtpaBTxNCwMW21EZFC+wOEbuINbqApgbWGVkCQQGau7+ohOCOYiNGHY5hNEAIk19FaoUUD5DSZ+89Q1nG86JfM7i0t40GsQ4Tugxoh1Sso63bz9Z18p7Zin61Wi5s3b96RfX6vqGS3UzsFZSHEOPPzwIEDY+OEIrbMcZxbjBOK57/dx7lfa7zvlXoMmJuqmB2++93vHufhbawC7O7nDHIz2N1rXrlV3c8M89q1a1y7tsqx+T24VgsyHy1KCFK0dRSsd9z19lprvvSlJnGsmJx06HTS3DDAx3WhXjerJEop2u0mQeBy5Mi+3IggIwhMHmYQaNptAzSVimmllstFkLTZ1dRaU6tljEYGbIo/SblswK7TKeaj5v4syyIM68zP1/B9TRSFRFGfixe7SAnT0x6VShnXdUkSI8Ipl42ZumUZI4E4NvmXQpg542jUodMZMD+/l2rVPCfToi0AcN1VyGxqGDN1zyuUsoVbkJltFu1Z2zIesFopo34tUu2jyLDMXC0kxCLhUODZNWzLQuslPKeNN2U+LzoMGY5GNFstsjAk8Cym/b8C1QcrRKchQrqIzIYYEAotY0SqQbmILIbQAisBexkx1IjMAkfDUEI5hX1D2D9C+5AHhZnnSgS6icz+FmW9Bwhx0s8h9AowQhDmqzNDBAOEFjjh/0nqfYzM/k9v+VwJEoRaRYvaXeedW5XjOLfY0G1knyaU/MH4t26nvheUuJuNE8IwHAdmj0Yj6vX6eO9zO8LC4XBIpVLZ9fP5XqlHFjA3f6i3myVZAOb9xPcU97HdeeVWtZsZplKK119/nTRNee6553nzQsLs7HdALwIZShxACJ/M+y/uej9/9VdrLC+HZFlGr2dAe2LCYzRSY9MBrRN6vSXK5UlqtXpuZ2eAsd9XxLFRktbrgmpV0uuJnHHZ2LamUoFeD5LEMFfLEtRqZkfStGohiqBWMyxvMDArKFFkZp0G6GQO4gEzMyBEwtpayMJCG8uKKZV86vUSYVhGCDkWBDmOaZ3GMfR6qyiVcuDAHI4jiGOjfg0CciAsWKYYC37AzD2zzMxAHUfn80yzzlK4/ZggEgOKVnFGH0WGWQqBSFOiMCQdRJTsYhaaImIPZGD2MJVCuC5l26bqeWggDBdRyRAlh1hpgkh8QKMZgSMQqW3AMnEAhdYJwhOQSsRQQCbBSdETfXgmhMk8A1aAabFaFPFlmhKaeazsO2TqHFItIdR1057NXkOTImjn1xdofCSLONH/TWZ9PwgJOiXQv8/T83+AM/LQYpbE+x9R1lM7+nwXdSf2ubCwQKfT4fTp0w9VSfpW7Ec+6Lav7/vs27ePffv2UWR+NptNLl26RBRFXL58+ZbMz801Go0eM8xHpdI05fTp09i2fc/Z4U5NB7YqKSVxHHPq1KltzSvvdB87YZhxHPPqq68yMzPD4cOHieOYOK2iSr8A6qcR2VnQEco+CnLujvdz4UKfP//zFZTKcF2LUsnMqNbWUqQU1Ose/f6QZnOZcnkOz/MIAhvzlgnW1kzbslSy0VrhurC2ZmZ8k5OSJDFOOq2WJMs0s7PkRgLGZD3LBBMTGQW7M4pXkaefkJuam31K2zZm6EUL1ux6OuzfXyGKYDQa0u+bIOlSSZMkJsarXrdJEk2zuUAQOExOzuXgRj6rVGSZzNNPin3NdZ9YxzErMiYsumCjheAHwIClRoLOkOh8JSTNJ35mhjns91lpNtk3/SK2+hboCJFEaFElcw4iogShtWnhxjEqd/vxRRlbWGgGkFpoL4YsQYRG6KEZIJRABykiThGRh2GNIwhS9L4hzPXBUetkcnyMXP/MKQIENhk+tj6HF/4boATSQ4sKmfU8QjdBLWOxhKaCOeQoBDdALYGcw05+F1/+vygtEMQIHeFEnyIK/ncQ989aCvbpui5LS0vs3bv3Nva5W+Xtd6se5px0Y+bn3NwcFy9exPO8WzI/i/ZtQRwGg8GuGebHP/5xvvjFL+K6Lu94xzv47Gc/O44N/OQnP8lv//ZvY1kWn/rUp/jBH/zBB/Y6d1OPPGAOBgNOnjzJgQMH2L+NBPj7XecAI+65evUqTzzxxK5jwHYCmN1ul1OnTvHOd76TmZmZ228vK2h5/J73024nvPzyAtWqBdjcvKmIIoVSFvW6BUiuXFkjirrMzR2gWnUxRgQK3xdobRilEC5XroT52oZFraZzcwIjsnQcSaWSYVmwtmYjhGZiohDRqNw71oiATJuzSDIp2rMit7aDwUDmPrKG9VmWuUwIzdRUCSijlCZNUwaDEcPhAu12RhQppqer1GozSDmOlcyB07SoCk9a44EublHKAvlepjkZKFirmZOK/PoKizzLMjdVL1qx7VaL0XDIgfl5bKXI5D9GqAVwJVrPI1IT6zXmMraN0BrCECE8MquBTK+A7SJ0BqELaLQ9hFSghQNZCJENlkJPt2FPF+rx+h/8NrAsLt6LxkPQRzGFwykMCPbNTZQLqgJWDYEgtf4hMvtyfmuFoAdk+NG/IZPPYemTgG1OILCBJG/fNtEPADCLKkDmbrPPcrk8blXuln2+FaC7HX/XB1FFGPZG44Rer0ez2eT69eu8/PLLDIdDtNa79rz90Ic+xCc/+Uls2+YXf/EX+eQnP8mv//qvc+bMGX7/93+f06dPc/PmTT74wQ9y7ty5x3mY360q5NbPPPMM9frWi9Wby7Is0lycsZsqLK4mJye3Je65U20XMBcWFrh06dJ4LWanty8qTRVf+tJNkiTFtl06HYXranzfoddLUUpy6dIKtp1y9Ohhej0jfOl2yc0DJL2ewvNsOh0olTRSCuJYYduSbrfYwRR0uypX2lr4vqJSMTuYZifT7GIGgWI4NHPDet2snRj3IKN0rdfNvqQBNRMcHQTm90W013Bo5oulknEiqlQqjEY+S0vLzMz4ZJnixo1LlEo+pVKVatXH9+3cCci0XMGYJUCxjlIEShtPWiP4KUwLzLoLmBmtJTSyUMrm+ylKKZpLS2ilmJ+bG+dbalVFZIXzkvHg1a4LSWKyMcHY2rmuMRIYvhuRnjMpJHGG9jVCS8TIBSXBisx882gHpnuQgzwb/hFwG1iadmwLbX0ApS0s9SdsZJ3m6jE2f02WzRPJHyezPoSlXkPqBQQdIAEc0ClWdgJEG0EfWxo9rcY2FoDi7uHkO62tVLKbZ5+DweC+2ef3Ykv2TrUZmAujicLm8ODBg3zlK1/ha1/7GsePH+fJJ5/kh37oh/jhH/5hZmdnt/UYP/ADPzD++f3vfz+f//znAXj55Zf58Ic/jOd5HDlyhKNHj/Ktb32L7/u+73uwL3IH9cgC5nA45OrVqxw/fnxHZ5K7VadunFceO3aMXh60u9u61wxTa8358+fp9/u8733vu+3sb6ev44//eIlLlwYEgY0QknIZWi1Ju53iuoIbN25QLgfs2bOfTkcTBBIpJb6fYVkOnY7G90V+mUJrSacDe/YYRul5ZtG/3ZZYFpRKxkLPtgXttgGjRsMYEShlVLJKweSkYZdG1Vq49pjXlabGNahw7fG89fZsFBmWacKmTSs1DIesrrY4eHCaUsknScD3NaNRwnDYY2WlCVhUKiUajTKu6+Xt13UzdjPjM6/F7GMyNjYo5n4gkGRIYf5OWqmx8fni9et4rsvE9LRJIclj2ERiEkU0GKN08oNmkoxbsSLPrDRioTm040LaR+CZmWU2AinQ032YXoTSYNOHZjufhAzBACv7w/z/7/Td0VgsY3OOWP9zhta/pZT+KhYdwEVTRbCAEnMIHaG1hSDDMNCEzPrAHd2Bdlv3Uq8KIahUKlQqlfEe49ra2gNlnw+q3i5ZmDMzM3zkIx/hM5/5DK+88gpnzpzhq1/9Kq+++uqu2qe/8zu/w4//+I8DZgf+/Rsi4fbv38+NGzd2/iIeYD2ygFkul3nve9+74/bJbmaYWZZx5swZhBAcP36cTqdDOw/Y3W3drTWcpiknTpygWq3ywgsvbPkad/K6X321zZkzHSYmbIZD6HTicc5lqZRy6dISlcok8/OTRBE0GpLRSNBup9TrNnEMjYaJ82q3M2o1i35fUqnEOI5kbS2jVBJEkUWjYVZH1tZkvuMI1apppbZaZh+y+H8pjVWe1oKJCZWDk3Hn2dyedV3DMh3HtEwL27swNCKeJGnR7/fZv38e17Vzpaw5wAaBS7U6hdbTZFmKUkaBGccJtVqJUqlMreZjWq5mH7NII7FtjVIGPD1P5u+7QkizPoJSSK3JlOLa5cs06nXqtdp6ZFcBqAUoRpG5PB+qatddb8UCKveGxXXR0QwyiQGNLq9AbQ0mQpCFuMwIlDaXFl6uft3i17d9bOLNF9xyZZuzBPZJZPLHSNbQBOb5IBGA1G00ZRI9AaqLIwPAQ8udJQBtp3a67rE5AHoz+9y491mA19s5EeVhP46UkmeeeWbL2MEPfvCDLC4u3nb5r/3ar/GjP/qj459t2+anfuqn7u9JP8R6ZAETdjdr2ClghmHIq6++yt69e8fzyvvdoQTz4UyS5LbLB4MBJ06c4MiRIw/EDHlxccQ3vrFEFKW4rk+SKCYmzA7laJRw9eoik5OzzMyUSRLNaJRh2x5Jomk0JHEMo5FRFRvgNCwwDMH3JcOhCYhWyiKKBJ5nYsGqVbPPOBwWqx2CUknh+8b6znHMvNN1oVTKGI1kvp6yboFXzDVrNdOeLVhsGBoLu2K2uLa2RJJIZmb2j0U860pZ08IFIyZyXYlSDUqleu5PO2Iw6NPrreVtXY96vYLj2Bg8LNyCADRZZgC1YJRCKcI05eaNG8zNzFAKAlQRBm1ZxsGnmFUWLFNKRBwbQ3Ywvn8b0kuMEChGpH30dAIT19BeBqQIMjRmpCA2ouEt80ofiG4FR73p3/F171YatMSOP2P+KHhAP2eSKZCRsQclnkbpc8anlhDBCC0e/ArI/Tj93Il9Liws8MYbb4zZZyM3wX/Y9XZhmEXdqw39p3/6p3f9/ec+9zm+9KUv8fWvf338/u3bt49r166Nr3P9+nX27du3jWf98OqRBszd1E4A8077lQ9KabsZdFdWVjh37hzPPvsstVrtvu4fYDRK+fznr9HtJkxMeChl/F37fc3qapMgUBw6dIAskwyHEMcZExNubjpgZoTGiMBGKYFlGbu7MNRUq8b8wKxlOAyHklJJIYQ9Vrf2+3LMDo1YxlxWtFLj2LC44bAIkDaK1DRl3GY1aSTk3q0GAKUskkk0168vUCqV2LNnglLJgGiSFEYG5jkbq1WB5xkABLNjqbXAtkvMzZUwsWERcTxkaWkVpSLq9SpBUKJcdlHKwiSlkK+WaFAZozhmZWWFfXv24DoOSutxYglKIdPUBEkrhRQCqRQqTY0he5Fekl93nIVZraKqCcpaAHsayFubqkkmD2Cl/xHBKmYemd0ClpoSsMXK1GYM2MA+jZmE2gJAbdADRNbCtFozIMx/ts2KifQZqPfjpH9N4PUxqypVrPgPSXgvQgYPDBgepNPPndjnmTNnGAwGXLx48Tb2+SDr7cQwkyS5r5Drr371q/zGb/wG3/jGN25ZTfmRH/kRfvInf5Kf//mf5+bNm5w/f573ve99u36cB1GPLGDu9ixwO2B3r/3KB8EwNz4PrTWXL19mZWVlxzPZO5XWmpdfvkGaGnOCVsuw2VLJo91exvME3a7PcAiVip2fgQtaLZUzPJO2US6L3IhAUatZaG3s5FZWPBYXuzQaS7mgpkSSBAyHgokJTZZBqWTAqtORuVEBuTBI0+mY9mylYlqzUhbRXlCvq5zJGwAdDkXuQ6s3+MwqVlYWmJ2tUq/XEcIAcGEAX1jbbczKNPmdOjdVN49l/GfN+xUELr7vUa83cJyM0WhEv9+l201wHIdKxaNWM6sVkozBYECn02F+ZgZno2lB3opFKSP4yTJkkpgGqnmwWy4HUI6DrtVQjTo4ApAw2gNqBUQDdBdEjcz/1xD9Hlb6FTQVRPbGGOw0FbTYg9DbGBfcwj4tMuUiRYjhrS5SJhj3qEXWJUTF+gqAhcBDZxfx0/8Fxxdo+RRamJasVKuI7E0y/SRZflIgpbwvkHhY7dKN7HN+fp7Tp09Tq9VYXFzk3LlzlEqlsXjIK1z477OUUvcFUtutLMvu+TjD4fC+bPF+5md+hiiK+NCHPgQY4c+nP/1pnn76aX7sx36Mp556Ctu2+c3f/M3vqkIWHmHAhFsjqrZblmVt2QotavO8cqsv+INkmIX/rG3bvPTSSw/srPNv/maFK1eMMCkMbVxX4vuSc+eu5QeHGdrtq0xMuPR6BWg4uC6Uyxa9ns7P6J3cwce0Wo13rIXvOzz77H7a7Yx2e0ivt0oYwsyMT7dbQ2ufqSkYjUwSiZSGXdbremyLV7RnXde49BjVrhq3Z6tVo54NgqI9K6lUFINBzOrqAvv370HK0jilxKy0FKHUBmQLiz4pIY6NeMiAqRobt6epGLd4QeUiH5tSqUK9XgE0cRyRpiOWl1dI4wjXsUjSlH2zszhCjFuukM8hk2QMnOOUEiEQYZjLijC7l5UKqlZDl0rI5E9x49+GOEZZz5F4P40d/z5CXUJbB0i9j4KskHn/JSL9G3R6HkuKMfiZVY5LbFP9U3wSEVJgYZ67BnSWr9iIDSeFQmPYZWE+74JuoTIX26kgaaPVdbCfzd2NwPUCMuGOTT6yLBsr1C3LGoPoduutShGxLOsWD9eN7DPLsi1nnzutLPcafti1nce5X+P1uwVafOITn+ATn/jEru/7QdcjDZi7qbutlWw1r7zTfTwo84O/+7u/2zIv837q4sUef/ZnS4BiYqJEkiiiKOb06RUmJyfYv3+KONb5/C/L9yQ94tgwiVbLHOgnJ81lRaalOVhI4tgcuHo9C7A4csQjTSWDQUaSRCwt9XDdBZLER4gaQRAwHFrjdZAkEbe0Z8tlnZsb6DFY1mo6B7P1yC7XVYxGfZaX2xw+vBfwEEJTKhmlrNbGnMAIdAojBAPIhWuP66q8LSvGgGnbKu+gCjOfFOsh0sbhR1Cp+AgRUKtlLC8tgADXtlm8cQPXdfFdl3KpZM6gC8EPmDmnZRlhT8EybRvl++j5+UKCi8hex47/XW4OUEVmp7Djz5MGv3Tb33cYVlm4dpx37b0Bogys5r/Z7TpETOEAJBBYVrj+q02zT42DEBlKJwg0lm2h5R60LiH0DXTWBJGirKNo+QRSrLNKpdQYOIsOzU7Y51thvr6ZxW41+2y1WmP2GQTBWHm7EwB8O7VkH5WkEngMmDuuO7VTd+IH+yBasoPBgOXlZV588cVt+89upzqdmC9/+Tq1moWUDmtrMUkyotXqcvToPL4fsLaW4PsWWWZRq0ksyyhdXVdiWRa1GkhZBEkLHMca+7UW5gRBYABQCE2rZT6GtZoDOExNVQjDGYbDCMfpcuPGKpYlqVSqhGGFRsPkbhYWeN2uYX6lEmMGWARIr7dnFd1um8Eg4tChvdi2zPcpjQhIiMLurhjOiXxuWQh+DHNMUxMi7fs6NyZYXysxj10wa2PUAEZAZEzeU5rNBaqVCrVq1TBKIQjDkLDTYWlxkSxJKAcB5UoF17KQ+edEK4X2fbJSCb2FhaLILpr9TFkYjdeR2akt/r4dzpw5w/NPv4CUf4XWNkKv5b/dzWdy8202nUxuFg5pzTCu4sgQ27JIxUEsMYEWHmgPZf8DtJxFOR+8LdGkOHAXbbmiw1KAaPHzndjn28EUfXOCyGAwYG1t7Rb2uZ38yreT6OcxYD6uO9Zmdqi15tq1aywsLGzbD1bmu3W7revXr3P16lUmJibuGyw3HkSyTPGHf3iVXi+iUnFptVKiqEMYRkxPz+K6Hu12RqVigLEIZW61VH6ZpNtNsSw7NywQuSmB2dWMIpty2axXdDrFkr+N5xmwM2YHUKkY9jY/75CmMwSBoFKJaTaHJMkCg4HCsqrMzhrW5vuKIIDRyBgZmNaqacXGsWGZo9EySgkOHdqTGyZIgkCTpqbl6jhG2ANmd3OjUjZJ5FjkI6UBzoKRrscKFgbsciwUMqYFZvcyjjOWFq+xZ880paAEat1sPbAsgslJGkAWhoyGQ5orK6jRCDsIcGs1yjMzWHfzLxZ18r54bjE0Qst8cVy1sOLfIxmdY7RW5/nn/iVV8RlEeh3BiHsBpSbIr7flA7O+Y3q3EmgxzergBSQjZO2d9EcRjv5bsuwqluXRFz9LdeL4tmdzG1nlVuwzTdPxdYrv3HcbMDfWRvZ58ODBMftcWloa51feiX0+ZpjfnXqkAXO3M8wCMIt5JcBLL7300AfShXl6kiQ8++yzvPnmkCyY0AAAIABJREFUm/d1fwXTLZ731752g8uXe3ieOUNfW1skCDxqtXlKJQspJZ5nzjg7nQzH0fllOr/MAI/j2Hieid5qtRRSKnzfQ0qRX2YOspWKTRQVLVsjCJqZ0aSpHs8c09SwRMtyqNXqVKt1RiNNlvUZDLr0eivUag6ua1q39bpFmrLBe1bR7V6nUqlQKk0ipTE0KHYx09S0UA1YMhYXGU9YwxwLu7vCD3fdG3b9usb6z7wuy1r3nZVSEkUxi4s32Lt3Ft8voXWGlc8tdZIY4MxnlY5lYVerlGs1Msdhrd9nYXWV1tWreJ7HzMwM09PTt52YKfv9qPR5ZHYStAAcEvejyPiPsaPPkKY9kqjMgT1LoP4VQg/QZIhdscqitt7jXDdoz0Vp+GjxJGdv/DO09SRHjx41cVNljVBX0KpDZ1CnuZpy/tIr4ySN6elpyuXytkDuTuyz+DfLMpIkwXXdhwo29wPKm9nncDgczz7TNB3PPuv1+tuKYQ4Gg0ciCxMeccDcTRWAud155YOqOI45ceIEU1NTvPvd7yYMwweyy1kA5smTa5w926bRMFZ3Z85cZn5+kkplAtcVhKGg3U6o190cxCyWl53cnMAd710miUWrZVhoFGmqVYUQLu02ueuO2YsUwmJtzYzgbFtSrRoAa7WsDd6xRilbRHtNTJh2qTmZrZIkNaanFVkWMRoN6HSaNJtO7jhkznhXVm4yMbEH369sUMoaEdFoZIwMTLSXEfFEkTkIFZZ6pm1rGKll6Zw5muuaGC/GrWXjpynGu5e2LRgM+qysrHLo0H6jXla52boQRuWa/y10lqGFIPN9tG1Dnok55XnjCKbhcMjq6ipnzpwhSRImJyeZnp7O23c2qf9LiOw0giFKHMGO/x9k+i3IFpFCUin7IGaQ6hUM0KXce24pEISYVZONYjeb29qv5p3DAGaGZpKk9OskPMPJkyeZnp6+1Q5SCLR1GCyoN8x/sB41dfHiRYbDIY1Gg+npaSYnJ7d9UrqZffb7fVZXV5mZmRmLhzayzwdVDwrIjMK8TLlcvoV9FnaeBfh7nvdQxT+PGeat9Rgwd1gmbzHkO9/5zh0zMx909Xo9Tp48eWfz9F1WcR9LSyO+/vXrDAYpjgNXry5w+PAsllVhOEyxbT8PhbYJQwjDlFrNI8sEtZrMDQs0juMxGmlqNbN/ORxq6nWHXo/cdUfS62lc16LblfmKiKTfN+AYhoatViqawcCcgJRKpj1brZr2ahRJJiYUYWhAzcwVfaamfNJ0GstKSNM+N26sEoYhU1NlpATfT0lTiyQx4Gys9NZbsbYtxgDpumYdJUmMWYIxV1fjQGkhxNjuzhitm1Zs0cKFYvWlR7/f5/DhA2NnJlvkKxb5vqUWhuMpI/W969+rVCpx8ODB8QG0WJwvApOnp6eZmnoS13UR2euI7CTD0CNwLCzpgF5G6WkM8ytyUe4EmIL1GC8NVIAIiPJdTXITdbiFTYppoAa0ydwPE6mnePXVVzh48CBzc3dOwdlYm6Om2u02q6urXLx4Edd1mZ6eZnp6etsH6V6vx5kzZ3juueeoVCpbsk8w34edKm8318NifpvZ54kTJ9Bab8k+H+Tjb3eG+ZhhPgK1U1aotWZhYYF+v8/3f//3vyWBtIuLi7z55pu85z3vuSU+50GkpkgpGQ4TPv/5K/T7KZYVsrTUZv/+OaQsE4ZqbERQuO1EkdnLTFONbSvCUJMkOt+x1AiREMdOvp9pDkDGb9Wm1wPPK0zUMxzHotORSElujWcwo9sVeXtWkabkPq+mPdpo5LmK2hgAjEbm/gtTc8exGAxslIKnntpPHGe02wO63TWkdJmc9MiyMlI647BoIYyIR6lCKSvyfVGVr5AYI4M0NQBTCH6MscGt+ZaGZWparRZpmrJ//+z4gGMJ064rAqOVlGavchfdic2L871ej9XVVU6cOAHA0b3/gZnSVQLHQkoLww41giaaOoIYGG64x43gWRwgi/1JgVHCWmgqKPu4SUDJ/hKRO/aMS6cgNcr6Pnrpf87JU69w7NixMUveaUkpmZycHJ+YjkYjVldXeeONN4iiiImJCaanp5mYmNgSKJrNJufPn+f5558nyAfOm9nnxv+AcUD8bsDzrVhdKZ7X/v378TyPNE1pt9tj9hkEwXjv836PUdsBzEclCxMeccDcSRXzSq01pVLpgYDl3eYdWmsuXLhAt9vl+PHjtwVW7yZAenMJIfjyl6+Sphlp2mZxMWbPnjmqVTM3KpUs2m2F1hm1mo8QEASSdluhlMbzih1LwxzTNKFWs1DKBDwPBoLBwBgWpCl5ALSk3daUy5IwNPNJrSXNphwDUbls2qatlmlt1usGSC1LMRgYgKrXzcE9CMxt+n1j6r6yskaWjTh6dJ44NtFgBw6UEEKTZRH9fsi1a6vYdkK5XKFaDahW/bEZu+cVhgVmtpok6zuWhVLWpJToXPBj2rxFvJcQGSsry1iWxZ49M1iWARwpMgSaTJv4rnuxyZ3+HYsEiSeeeIJR7ztYg6/nKt0MpTTgoK39KPe/Q3ADK/4i6B6CFqZ9WkWLOTL3v0bZ/wR79K+Q6hyaCpIlDOC6CBKgROb8AHZ2Ebg6fh6aaaBE4n+c7vAIr50+y9NPP/1AXKeKCoKAAwcOcODAAbIso9VqsbKywvnz5/F9f8w+fd9naWmJK1eu8OKLL97RzGMzeAJj9lkwUFifjb4dVleK51g8jm3b49e9cfZZ6B3uh31uhzEPBgOmp6d3/Vq+l+oxYG6jwjDkxIkTzM/Ps3//fv72b//2vu9zs+BmY6VpyqlTpyiVSrz44ot3NE+/3xih114bcP78gHa7g+sGHD68j3LZzCWlFAjh4PuCIHDodtP8eTu4rqBctllZgX4/oVRyEULRaEgGA0GaZpRKhpnW64Y5hqGiWrXzGabIRT0az5N0u2btJAiKGC8z63RdTa1mjAiiyIQ1CwHVaobWgjA0RgaGZaasrS2hlMvevfuIYyPsKZcVaSrzNRQfy/KZnq4jZUa3G9Httmk2M3zfodEIsKwKQkgcpwijNvPKwlqvEPa4rhEmKSUw506CLEtYWblJrdag0aixLvZUaK3WJ34PkYEMBgNWb3ydI3MlpLMXkV1D6wFpWubvzn8MadXYPxuztxpiEaOZIPF/AW2/B0QNRIAJtV5FyydASJT2keoiGo1mDpm+hrb2k5T+Nc7wfwZ804qVAUJ36HaHnD73Ou95z3seKvOwLGsMFMVr32hPB/Dkk0/uSHW78d+NzLNYWSnY3Z3Y53dbvbp59lmcVBTs0/f9sfJ2Oyf92zkBGI1Gj1uyj8tUq9XizJkzD3xeeSfAHA6HnDhxgkOHDrF3750TG+637XPpUpdvfatNFIUcObIPzyvnytg092otEUXmLLbVytBaMTVVIoqMfL/VMi441aqD1gopNd2uSeswLdvCT9YiSUyCiVnyN6HRwyGUSuZ1eJ7CdYtoL8Pc0rRoz5r3Z2pKjU0FksQAYLWq8vciY2XlJr5fZ2qqNvaelbJIIymuK/L3XpBlDvW6je+bAOk4DhkOQ5rNBYIgo1yu4vtlqlUjcloPhl5vx5okFHO/YRixunqT2dlZSqUAxzFuQMW6xcNPSIR2u83Zs2d579PvxJbfRgsfbR8D3cVyDvHS8X9MOFzCC3+dwbBCmjXw3AxH/S6q+u+QstiRKYKczaxT6Ayw0PIAiDpap1jJfyBz/xuQs2g8EB7ojDSNuXSlzQsvfPAtcaLZWAVQFG3RvXv3srq6yoULFyiXy/mMd/sGAVutrWwGUbiVfX63AXNzbTypKNjn2traLexzcnKSRqOx6+f9WPTziNTdQKfYr7x58+a29yt3UoXadmOrtZjN7CTQejfV7cZ84QtngBEHDsySpl6uALWoVkVuRBDhuha2LanVBFK6NJsJjiNwHJdqFQYDyfJyRLkscx9VI9BZWzPAYjxmTYB0Aab1ukWSmDbraGQzHBqWWMRxWZbxiS3as6WSac92OuvtWa3NHDGKBFGU0O/fYGJihnq9hGXpcYyXlORrLoowNOywSDFxHIWUZjbqOOD7AeVygG03iKKM4XBIp7NMq6XxfY9Go4IQJSwLzPHWKGONV21Es7nAgQN7CQIHy8qQ8q2AyPVaXl7m0qVLvPDCC7ieQo/+EtT13H/WJfM+AkDg9XCUjes3jNF8HJMmTU7+x68jnUPjg6t0/yvs+LM5ox5gVLLV/NFSYzQgPFLvY9jRb6J1SJKEXF/9Bzz17A++JT6nm6vIgI3jmPe85z1IKZmdnR0bBKyurnLq1CmKYOiZmZltB0NvtbayWTS08ee3onZ60ryRfW5uaV+4cGHH7LOoxwzzES+l1Hheefz48YeyX7lR5aq15sqVKywvL/PSSy891DPzLFN89rPf5vz5RSYmqoShZGbGASz6/YRKxaXdTqlWbYSw6fUypLTpdFLKZYltO3S7GVpLtK4Thm2SpEWrVaFWK+M4FVwXKhWLXg+yTGPbBjgnJwXDIYShMWxPEqjVzAwzigw4DoeSIDDt2cHAtFWTxPxbqyniWJIkgkoF+v0Rg8Ei+/fvRSkP29ZE0TpLLYwVTPvaxIApZSLHKhXGzNF1zT6m2Z0U+UyoimVViWNQqk+vN2RlZZVy2aJcrhIEZcpli35/wNraCu94xyylkkSIt+6AWdS1a9fGrk/FCVgS/Coy/Q4Qo6ynQM6BWkLGX0Co66AHIPfiugrhlHn+xX/KYMgGUNnDgbl/wXR9Ac+fxkr/DKEXQBmRUur+LADK+UfE8h3cvP539Ac+R5/80FvCsDaXUoqzZ89i2zZPP/30He3pDh8+TJIkrK2tcf36dbrdLtVqdcfB0AX7tG17zD6TJDHJM/v2kSTJAzGMf5i1mX2ORqNbZp+NRoM0Te/JZgeDwWOG+ahWMa+cm5vj4MGDD03xVjDMjWbtD9I8favSWvPZz/41586t8Y53HKDfN2sBUlp0Oim+b2HbVr6baNHtZnieyM3STTpCp2PYk+PYTE4GuG6FVksTRUPiuEer1cTzfFqtOkFQYnraJkmMo06nI8myoj1rmGOa2oShyPc1jfm56zK2uzORWmZ21O+btu7EhKLd7tDp9Dhw4CBZZucxXkYx6zjGGk9Ks6Ji5ouaJDG3N0Ih0x4uQLbwlC3McgrBj/GvrVCtVpByijhOGAyGDAbXWVgYkKY93v3uo5RK9sMcTd7x73nhwgXCMOSFF1649bMjApTz/Ruu3MUd/VtQbbSoIvRNyIZoOUvq/SxCVqhUuAVUms0mb1xbpdfr0aj/C/bvOU+1lCG8F9DW00BupvFGGynfxbve/a6HrhDdqrIs47XXXqNWq3H48OF7PgfHcZidnR2zz80K48I0oVqtbpt9pmnK6dOnmZubY3Z29qGtrTysMiK/EqVS6Rb2ubi4yLe//e0x+5ycnByrjYt6vFbyiNTmL8N255VCiPueVRT7nGfOnGF+fv6hmx8kScIf/MHfcPlyxDvfuY8ksej1MqamLLIM6nWLOJa0WjH1uperWgVJYtFuJ1SrLnGsqdXIL8solw3YTUxIoE6nU6dWgyhKSZI+vV6TpaWASiVgYqJOEChctzBnF7krj6bRUIShZDQSNBqm1VoqGUVqt2syMY3VHThOxuXLZmXj2LF9aC1xXdNmHQyMv2ySgO8bQB4ORd4WvjUYOopEbo23vpZi1kZMy7W4rpSCNJXYtrlduewyNSW5du06UibMz89x+fJlhsPhLSsOb4Xr0+nTp/E8j2eeeeaenx2Zvgq6A9JYKWrVALokwf8F1u2fdcdxmJubY25uDq013W6XpZUGZ99cQ8oR09OXmZyc5OLFizQajW0B1cOoNE05ceIEs7Oz7N+/f8e336wwjuOYZrPJlStX6Pf71Gq1sWnCZqV6UUmS8Oqrr3LgwIHxrulWs8+NrdvvBfY5OTmJ7/scP358rLx94403xuzTtm3m5ubuqyX7y7/8y7z88stIKdmzZw+f+9zn2Lt3L1prfu7nfo6vfOUrlEolPve5z/Hiiy8+4Fe583qkAbOojfPKF1988bYzqM31IIb7SZJw9uxZnnnmmfsSE23HimswGPDnf/5tzpzJ8DyTx5imGY2Gk4t4Imq1gDhWTEw4jEaKMFTU6x5RtD53HAyMq48xJDBWdsNhhuuaHctSSeO6NmkqKZdn8DyLRiMGRty8uYRSGUFQp1SqsGePl5sggONI0pQxyzSACcOhYZm1mon5imPF9evLOI7LO985A0jCcGMaiQE+k2tpnHyKsOmNySVmhlnEdJn/ilWRYnaapgLPy2OqcqYaBAopE06dOpWDhGFUGxfsN86DNq44PMhKkoSTJ08yMzNzq3POXUusr1UCCAvwxwB611sKQb1eH8/VwzBkeXmZV155BSklQRDQbDbfkhOFjRXHMa+++uqOTBHuVa7rMj8/z/z8PFprOp0Oq6urXLlyBSnl+G9aWPZFUcSJEyc4cuTI2FRkY22cfTqOs6VhfHG9txv73ChK3Mw+2+02X/jCF/it3/otpJR84Qtf4MMf/jCHDh3a0WN8/OMf51d/9VcB+NSnPsWv/Mqv8OlPf5o/+qM/4vz585w/f55vfvObfOxjH+Ob3/zmA3+NO61HHjB3M68s2qm7FTbcuHGDVqvFsWPH7gsst2MobWZSZzl3zgh7JiZ8skyjdZabAWTMzvooZVSdo5EmDI1DDwgsKyOOLQaDlGrVyo0ITMRVv6/wfZn7yYJtW7TbxlTdcax8n9Gj2w2YnYVqVdDtDun11njtNY3j+Bw44CNEBc+TKGUyMysVw+Z8X+P7hWAoode7wcSEWdkoRDxmBirGLLSwuzPgZwwXjFKW8f1alhEErQdDm9e+MRg6CAxDrVQySiWdK25DXn315JYH6M0L9oXI5PTp02RZNm7zbVdkcqcqRgaHDx9mdnZ227dT9gtoOYlQq3kKSELm/PNdr7gsLCzw9NNPMzU1RavVGqtR7+Z3+yCrsKY8evToQ9sBFELQaDRoNIxnXxRFNJtN3nzzTQaDAZVKhU6nw7ve9a4twXKrupdh/HbY5/2uk2237rT2Vnj9fvSjH+WjH/0oH/jABxBC8NM//dMsLy/zC7/wC/zET/zEth5j447uYDAYfzdefvllPvKRjyCE4P3vfz/tdpuFhQXm5+cfzIvbZT3SgBmGId/+9rd3PK/cbZ6lUmrsULJv3747tni2W4V5wVZfLK01V69eZXFxkeXlSSxrRL0u6HSSXK1aIo5DpBR0Oml+WYDW4PuCXs+cCVerLllmGOVwKEjTwjvWtGyjyJiuV6sWUQS1GmSZTaejCQKR712a59puS6SsMj3dwODNkMXFiMFggclJjedVmJoqo7VDv288Z0cjkHLE2toC1eo8nuejtfGg9TyVG6yb6yYJ48xM4wmrx6ssrmvEQ1lmADlNxS0pJdb/z96bx9d513e+72c7+yLJWmzLtrzIthzH8hbaBKZzM9y2l8ulBTq9pbTczjDTgTudmc5Mp1C47W1JOymFLkAhNHmxBEITSEggcZzATVlCWsIrJMG2vMirLGuxliOdfX+W3/3jOc/jI+lIOpKOpNDo83rlBdZyznMknef7+36/n0WxGb4OuSgatajmXmUyGc6dO0dPT09dCTEOG7Grq8slmQwPD5PJZIhEIrS1tdHS0rKkQ1c2m+Xs2bMcOHDAvYnXDSmE7v8Yiv4EkjWNpRzH0v7XpT1G5Rqcn4NzDQ5hBmZqIR2/27a2NqLRaMNGtrlcjrNnz864hrWA1+tl69atbN26lUwmw5kzZ2hqamJgYIDh4WFXtlLveHK5cWVrkboCzHtvmQ1d1/m93/s9PvjBD1IoFEgmk0t6nj/8wz/koYceIhqN8v3vfx+wm4rqjN9t27YxOjq6UTDXE4qisG/fviVHZC2nYJbLZfr6+mhubqanp4fBwcGGhEjXssdzGIP2G3ArV68OIcu2NMTrVQgEbCZssWgBCi0tEsGgl1TKrOzu1Ip/q4dMxsIwRMWIQFT5yVpVe017dGkbEajkcvZ+0ONRKJVs6YVD4olEbO9YXQdZDtHSEqK7W1Ao6MRiBSYmJigWJZqaPPj9QbJZQaEQY9OmbXg8WsUtyB6v2rtkqZK1KbkWfg6Jx+ezzQVM0y6KQti7UcdaT1FA1+2vtYukPXqdfY9w7NV6e3uXtauZTTJxxnzXr19H07S6vFHj8TiXL19e9jUAILdgev/D8r6XWzrPQ4cOzbBprMZsw/B4PM7Nmzfp7+93/W5bW1uXfVh08jwXuobVhnN4Onz4MOGwLbUpFotMTU1x5coVCoXCsvbZ9Xafr6WkEsAt6mA7Mc1eaf38z/884+Pjc77v3nvv5e1vfzv33nsv9957Lx/96Ef5zGc+wz333NOYF7AKeF0XTI/Hs6w8yaUWzEwmw9mzZ+nu7qa9vR1ojHl6LT9ZZ6/T1taGJDVz4sR5QBCJBCkWTSRJJh7XKx/zksvpKIpMImFgWbBpk49y2R5pJpNm5WNeDMPu0rJZCcMQRKNqhelqUS5rFIu23Z2dJ+kwagUej4QsK4TDFooiEY/LSBI0NdlFy7IEmYyEZXnZtUtDkqKUyyblcp7BwQSSVKCpKYgsFwkEZNJptbKXpFLYLHTd7mRDIbs423FjtkRFkgTBoLOrtNzC6ffbdnabNpm0tMzsJqsxOjrq7rbrlRwshOoxX3d39xxv1OqOzLkpjo+PMzQ0xNGjR9fcDMBBLBZjYGCAo0eP1j1qnc/v9vTp0wBu8QyFQnV1TM6hodoXdq2RSqXo7++fc3Dx+Xxs27aNbdu2YVnWnDG181rrve6Fus9sNossy5TL5XnDshuBRhXm73znO3V93W/+5m/y1re+lXvuuYfOzk6Gh4fdz42MjNDZ2bnia1kpXtcFc7lYSsGcmJjg2rVrblLCch5jPsz2k3UK8969e/H5Ivz9358jHNaQZYV4vIjHo+DxqEQiEpIkMzJSRAhbBxkO26fb6WkdSRJ4PBrhsFwxMTAqJgIeNM1O9rA9ZqmMbO0CmM2CYdjesYWCM56VSactAgGJXE4mFLJQVZlk0rbACwRs44BAwKqMfG3W7dRUkUhEZvPm3aRSOvl8mlgshc8nsWmTn2w2gqKohEKOxtKqZGDKhEK2Z62qCvx+m3ULtrWeEBCNWmzebHeU892nhRBcu3aNXC7HsWPHVo3MMtsbdXYCCdi7s2PHjq2LGQDAzZs3GR0dnaHzXCpqsVGdLjuXyxGNRt2RZq2f9eTkJIODg+t6aHAK9uHDhxcsfLIszxhTO7Fs/f39lMtlN5ZtKe46TveZTqe5evUqt99++4wD82owb+vpMIUQKxoRX7lyhb179wL23rKnpweAX/7lX+Yzn/kMv/7rv85LL71ENBpd93EsbBTMZaGeYufccJPJ5Lzm6bquz/Pd9aG6S52cnOTq1av09vYSCAR55JGzTE3lCYd9ZDIGkYiGECqZTJlQyEsuZxAKKZTLFoWCgSSp5PO27tHr1chk7MctlyU8HolQSCWTsSpGAFqlS1QoFkVltOvBMOzOz2akWoBKLgc+n82ELZftN1YyqSDLguZmu5gZhq2btHeROqOjY0hSiC1bWikWZYJBmaamVsplCSHKpFIF8vkYfn8JXQ+iaeFKaoNcYco6Buo2CQigudmipUXQ1jZ/N+mgWrLR29u7ZnIJRVHcCCfnGrLZLIqicOrUKVpbW2lra6s7VHmlEEIwODhIMpls+KHB4/G4+0DLshYcU4+OjjI2NsbRo0dXvPdfLmKxmOuktNSCXR3L5hyKJiYmuHTpEoFAwH2tiz1uMpnk4sWLczrs1YorW4vR74c+9CEuXbqELMt0dXVx//33A/DWt76VZ599lu7ubgKBAA8++OCqXke9eF0XzOXedBYbpzrm6X6/n2PHjtX8o2tkhzkwMMD09DR33HEHHo+Hf/iHAa5fT+H3qyiKjKKYFSOCMh6PgqapeDw6hqGQyRTx+WyGq8dj4PE45gTg82moqlXxmLUq1nReTNP2ak2lRGWvqWFZtqykWFQrcV+2SYA9DpVJpezCaVkK0ajNSHXSSJqb7RxKwyhz9eok0WgL27YFEAKCQXuUm8k4xdDD5s0amhYlnxcUCnlKpQTDw2X8fg+RSBghghVJCLS22t1kS8v83WQ1HMlGe3v7DNLBWsI0Tc6fP08gEHA1lk5H5oQqr7bmUwjB5cuXMQzDtZlbLciyTHNzs7seqR5TZzIZZFmmp6dnTSUr1RgfH2d4eLghBbv6UFRt2Xfu3DkMw3DZ1LNJUtXj6Nkj8cV2n8sNy66nw6yXGDQfnnjiiZoflySJ++67b9mPu1p4XRdMWF7qx0LFzjFP37Fjx4Iz90bFcznG0sePH0eWZS5ciHHhwiShkIplySSTRcJhH6YJkYitkUwkioTDXopFnWAQfD6VRKJEMKhRKkkVjaVMMqnj9SpYlkw0ao9xk0kTRZFQFBW/X8Lnk4nH7TdpMOhFlqGpiapdp0wmA9GobbrumAvk8zYBJxCwv7ZUKpHJTNLe3k5rqwfTlCrkH0GxaJuc+3xQLNqm5zZpR2Lz5gCWFaRUAk3Lk0oVSaen6OjIs3t3gK1b65c3FAoFzpw5w549e+qWCTQauq67TlPVQvzZHVn1jqzRmk+nu/X7/ezbt2/NDQn8fj/btm2jWCyiqiodHR1uhFcgEKCtrW1JJuorwcjICBMTExw9erThI/HZln3zkaQkSeLGjRt1dbfz7T6X031uZGHOxeu+YC4H8xVMx4exHvP0lQZAO+Lx9vZ2brvtNgCmpvI8++wlCgWDaNROG2lu9lW0lUUikQDFokFTk6dClLEZsLaHrIYkKeTzJl6vbYvn98t4vSrptIVpqmSztjYxHNbIZm2f2ETCHn/aJgi2tAO0ihEBFfNuu7PM5RQUxcLnsz+mqhLptEQul0WISXbs2IbDhYdyAAAgAElEQVRlaeg6Fb9YqyL1AE2TKq49gmDQTkqxLKpM1QWtrX5+5me8tLRE3L3R+fPn3ZP7QmbbDvuy0fmNS0GhUKCvr4/du3cvWLBn78hWovmUrGEk8ywQwFLvwjAV+vr6aG1tXYIpQmMhhKC/vx9Zlt0O2yEOzTZRb5S+tRZu3LhBPB7nyJEja9LdziZJZbNZ12M6GAwyMjKy5NdaT/c5H3Go3izMjYK5gQWhKAqlUsn9d7Xmsd5kk5WMZFOpFOfOnXNT1QHKZZPHHz9HoaDT3ByoZDU6RgQGTU0+hJCQZYlyWSKfN2hu9jM1lWd8fKTimxmktdX2z/T7bRPyZNJE0+wEk1BIoCgq8bgtvQgGVbxeu2AlEgA2e9bOi7TTSAwDolHbMD0ctlm6iYRckXwISqVpLCtHNLqzYrNn/zy9Xls3afvM2oXYZt9CJiMjyzb71e+HHTtMOjvtiDAH1XsjwzCYnp6eo4N0CCZO0sd6si8dqcJtt9225KSa2ZrPWq+1luZTMk6jFT8Cwk7qNKUuXul/N9u2dzfMOWepsCyLs2fPEg6H2bVr16Im6rNfq0McWkk3KIRwzQlWexw9HyRJIp/PUygU+Lmf+zmAGa81HA67r7XeMfFC3We1dZ/TfZqmuSgz/PXkIwsbBXNZqC52s52ClsJ6W06HOT4+7tL7x8fH3cf41rcuUy6bRKP+GUYEtmOOh0zGHsdEIn4sSxAOS+RyEAhsYvNmL6lUEV3Pcv16EiFUNm+Ooihhd4xrp5WopNP2ftLeS4pK9qRKIGAbHiSTNmsuENAQQtDUREW3KYhGbSefYNDC4xEMDEzh90Nb23YUxTYfKJXsgm4zbCV8PssNlPZ6JQoF24hgzx6L7dtt4tBicMZ61TpIh8ThUPV7e3vXrVg6Os9GBC7P9oCtJtP4PAbdnd8n7B9BVncjWRcqdnkRLMvEKF3ktj0TBFr+xaLPsxowDMO1/Ktnfzzfa71x44brRtPW1kYgEKi7I3N2t6ZpcujQoXXxxwXbSWl0dHTGKHi2t+/U1BRDQ0PuxGEpEh2Y231W/+ekr3g8ngU7zddTFiZsFMwV7TBLpRKnT59eVrLJUjtMJ5kinU7zMz/zM6iq6hbdH/94mHPnxpFlCUXx4vPZ+ZTJpM3CVVUvqioRidgsWcOw8Pm8lYKmUioJJEmluXkzXq+Jx2OSzRYZG7tJICAjRIiWlgCKoiHLttlBKkXFY9Vm1wIkEgpCCFpaFMplgSwLCgXN1UhKkm1bpygmly/HCIf9dHVFK2HMth5TCImmJnsUq6p23FY2a2sro1HBzp0m27fbTNjlwNFBRqNRV/vY1NTkElwWG902GmNjY4yMjDRM51mNGZrPPbuRs/8DjH6MoowkXcWjZjGkLUiYFIoFgn4V1WvRkIAyK4la+iyydRlL3oXh/U8gz29hVy6XOXPmDNu2bVuWfGC2jV2xWGR6epqrV6/WTZJyRsGqqnLgwIF1K5ajo6OMj49z9OjRmtda7e27Z88e17JvtkRnKU5Ss4tnOp1menqazZs3z9h9Vodlw0bB3EAdUBSFfD7PK6+8Qk9PjzsWXQqW0mE6rNtAIMCxY8fcN7KiKAwPp/je9yYBaGoKks/b47VEoowQ0NwcqMRrWSSTOqYpaG72V4qURSYjME2L5mYvlmV3iabpQ9O89PS0YpqCdDpDKpVmaChe+d4I4bAfWVaJx61KqLJWMROQiMftAhgO2+YGfr8gm1UxDAm/v8TAwCSdnc1Eo0FSKSeNxHEHEuRyTuEUCAE9PSbd3RbL8JioCdM03bHf/v22gXpXV9eio9tGYjUlG7WfMIbKNVCbUTUJAWAWEWaCfCmApkpYlkxJ9NS8KUjGK8jmJYTciqW+ueJHO99zmWiFDyNZg4AX2foRmjWIHngApLmHAscfd8+ePbRuioI1BVJ04edYBD6fj87OTtcYfzGSlGVZnDt3jlAoNGcUvJYYHh5mampqSXvTasu+2RIdO9v1lkSnnteVyWRmyFeqO8/qxBVZljd2mBtYHNPT08Tjce66665l/7HU22EWCgU3kWE267ZQMPnudwcJh21XmKmpPJqm4PF4CIVkFEUhHi8hyxIej4dAwDZFTyR0ZBk8Hi9+v4THY5sTAIRCNguvuVlxbfGam5vxeGDbNolUqkgslmVqagrDCNDaGiAUCpPLWXg8MoahVgKkb1ngBQJ2hJiiZJmYmKK5eSvhsEYmY3ec0aigUJAqXq82UWjHDot9+yx27LD1lI1CqVSir6+Pzs5Otm7dOuNzC41uNU1z5QArZaIKIbh48SJCiDXckdm7ZQeSEJgiRDK3g9boOBZ+xlK/wo0rReDlGZpPtfwYSvlLgAHICOV76P4/rySeACKHrH8XSaSx1OMghZGsYSBUMXf3IFkxJGsQoeybcVW3fGH30xwaRMu+F4kyAh+6/08R6uEVv/KFSFKGYdDc3EwymaS9vZ2dO3eu+PmWi8HBQVKp1Ir+JmZLdJZq2edoPavNGWoRh5wC+sILLzAwMLDMV/zTB2mRceTa2OKvI3Rdr7vTc/Yb6XQaVVU5evTosp/XNE1efvll7rzzznm/xsnnPHjw4ByTacuy+Oxnn2dgYJrt2zeTz1sEAh4UxdZbBgJe8nmBzyejaSrptI7Xq1YccOxcx2zW8aZUsSxoavK4PrGaZkd/NTWpmKZCNmtWvsdOAfF6NZLJEoZRYHKyhCzDli0RPJ4QqqpRKGgI4VjgyUxOpsjns7S0bCUSkV2dpMeDy35ta4OuLov9+y2WyHupC45x+L59+5acEuOwbmOx2IpGt053G4lE1raTEQK1+JfIxg8AGcMok8rtwt/xt6jazK7P0XzGYjEKhTRv3HcPkuxHUTzYt4Qiuv/PEeoREHm0/H9BtkYRwgKKILUjiZsI2kCuhIuSxvD8B4R6ECH3gCSRTqcZvPr/cbT7CVRpAkQOQQTkIIgSoFEOfQ2k1SOVFItFTp06haqqGIbREL/b5WBgYIBsNsvtt9++ageo6k47kUjMseyrNkao51B44sQJPvGJT/Doo4+u60FjlVDzjfm67zDrvWE5+rimpiYOHjzIxYsXV/S8i41kR0ZG3N1WLTLK9753jZGRDB6PjKpqqKrtK5lKldE0GY9HwzSNig1dGVVV8Ho9lTgrqdJlSkQi3opEQyIetzveSMQDSGiaTCYjYZoW4bBtThAOQ7ls+8QGgz5MM0Brq4SuW4yPFykWp9w0lJaWIIlEiEQijs9XYsuWToJBu5NMpyXCYYtCQaKry+K22yx27pxrfN4oOMLv22+/fVmm3Uth3c4HZ0+3devWtffFlCQM3/9ALveQir9MtrCJjq7/G1mZOyKdofk008hZCd0wMY1pNDWPhMAq/iNS6Aiy8QMk6yZCiiCJSSAHYhDQkBhFWC1I6EARtfQglAWm9n8Qy/86A1fPcFfPl5HI2PZqlJFIIUQAJC+IMpI1jlD2rMqPRNftbNNdu3a5ZJqV+t0uFY4jWLFYXHWSUS3LPkcKl8/n0XWdnp6eunbpJ06c4FOf+hTf+ta3VhRR+NOG133BrAfZbJa+vj727NlDR0cH5XK5IaYDtSCE4NKlSxSLRe64446aS/uLFyc5d27MTRNxzAl03SIS8WBZMvF4gUBAq7BTPQhhF1O/304biURs3WUyaaBpMkIoBIMKHo9tTiBJ9m5EUaiwWwW6Xp1QImOaciWhRCaf12hr0wgEmkinBcVinuHhPJnMFC0tEAi0UyjY3rHlskQ0KjhyRLB/v0kl8GHVMDY25jq1NELsvpzRbT6fp6+vb1XzGxeDJSTOX92Douxzd7eLQVYiSNpBvNIpJLI4kWly+QkunQuzqbnE5pCBJFtABudgLqRNSCKFJe9Eti4CrSD7QFhQPMHNoQ6O3N6FbCSAYtUz6iAyIPwgWQhpdW7GDmGvWvNaj9+tI9FpxM7ZmVhZlsXBgwfXfG/qhEIHg0EuXbrE/v37SSaTXL9+nUAg4DJvZ3ebTz31FJ/+9Kd55plnXlfFEjYK5qJwPFoPHTrkRvk0wtauFhxbtmg0yuHDh2u+gaanczzzzAXy+TKaplIqmXR2+iiVBIWCQSTirxgRqAghUy4b+HwamYyB32+br5dKBiCRSpmoKoRCHvJ5AyEs7Cg7QVOTl1LJJgRlMhq67mgsQVFsI4NcTlR8WW33HlWVSSTsk2w0GiSfT7FtWwQhwsTjebzeISIRi7vu8nD0aBN+/+oFDIN9Q7p+/TrpdJrjx4+vCrFmNjuzUCgQi8XcPMhNmzbh9/u5ceMGt99++7qZIjij4I5N43S258CYxFLfdGsPCWAlkMQEQmoH+daNUPffgyf76yCygBfkFjRZp2fXAJPZX0I3nsCyEvg8AgkLJAVJjAEminUKe/dpIUQHumFimRa39XSgKnkwCthF9ta0RSKJoIzh/TDIDWJ6VcFxdFpsND+f3+21a9fweDx1xbLNB2eP7dj+rRfJKB6Pc+XKFY4dO4bX62XLli0IIeYYf7z44oscOHCAXC7H/fffz8mTJ193xRI2CuaCnd7AwADxeNz1aHXQiGiu2cjlcpw5c4bdu3fPKxovlw0ef/wM+XyZpqYA+XwJIcyqYml3T4oisCyZfN6oOPhI+HxURrY6Pp+CEBKhECiKSiJRRlUlVFUhHJYqTFez4qrjRZYlQiGp4h1rEo16KJdtu7ti0dZm2tFbtn5S18tcvjxFa+smQqEIwaDEkSMeensjSJL9Rrxw4ZYrTVtbW8U4oXE3DScTVFGUeQ8fqwG/3z9jdHv9+nUuX76Mx+NheHh41Vi3C8FZJ+zbcYo2/2OIsoWEjKm+EcP3EZAkZP0F1OLHK/tGgeH/fSztzUjmJZusI+8Ey7y1T7SKqOarbPV/r/IsEYSIgMggYeLSHyQTkIE8phHHND34vF7Knm6ENQoEgMKtr0dC0I4kCbugNxgOyejAgQNLMoioJtPs3bu3ZixbvQkkQgguXLiAx+Ohu7t73YqlI7s5cuTIjMmLJEkzzDAMw2BoaIi/+7u/45VXXuFf/at/xcmTJ3nLW97ixhW+XvC6L5i14JzGvV6v69FajUb/gTt7hEOHDi3YgXz72/2USjrRqI9Mpkw+X8Ln86CqduByKlXGNO39oe2wo5HLCQyjRCTip1Cwu8RSCTIZnXDYQzptEg7LSJJKOm13oaWSgs8nEQhopNN2Jqam2YSPpia5knAiUFWNUokK+1amVLLIZgsMDWXYurWd48e9HDxo0dVVzR27tQvUdd0VmmezWZqamtyR10qID85uatOmTXR1dS37cVaKiYkJkskkb3rTm9A0bdVYtwvBkWzs3r2NNt+H7L0gBqAhGy8iWRcQ8nbUwr1IxLG7QVALH8EwR1H1h5GEjqCIhIkQOmAikQfi2N2hALJIUrAiBZGAMghsIpAAJAuJLF7vFgzfh0HegsCHkJqQRKHqihUgjKAIlGgkHDel22+/3Z0WLRe1YtmqE0jm87t1fHqDweC6ylecYnn06NFFd5aqqqIoCoVCgWvXrjE6Osqzzz7Lu971Lu677z7XmvP1gNc9S9Y0TQzDcP/tyDi2b98+w/x6Nl588UXe+MY3rui5X3zxRTo7OxkfH59zypuNV14Z4rnn+gHbiECSJFQVBgfHaW/vQFU9lMsWTU1+CgWLUsnA7/eRz5tEIlrFy9UgFPKRydg+sR6Ph1zOIBj0kEpZyLIgEvFXTAdsWQhAc7OGacroukDX5UoxVhBCQdctZNmO8SoW00hSlre8ZRtHj9rm7PXCsiySySSxWIx4PO7edFpbW5ck6Hf8WHfu3ElHR0fd39dIONMJh/VYq5t0RrdTU1Pu6LbRhgkOK7inp4emsIk3979jF0Tn8VV0/ycQqHgK72fu2z2CQEYiU/m3HeMmAKlmMfNVPYYPSGPvPAEkLMvPmRu/gyn32gWlpYVQ6VeRGK56DAkhtSDkHvTAp0GadXASadTi3yFZlxGuIcKssa3IoxbvQzbPIOStGL7fJZEOuYfS1bRyq/a7nZqamuF3GwqFOHfuHNFodF1ZpVNTUwwMDHDkyJG63ltPPPEEDzzwACdPnpzD1v9njA2W7GKIx+P09/fXlHE0GpZlUSwWSaVSi1rqjYwkee65i1iWYNOmMMWiWYnXKqPrtt2dYdimAamUXonc8iOEhN8PhYLddTkj21BIqdjd6QSDGuUyRCJ2AUwmDTweueImArKskEgIJMnA7/fg8diEn2TS9qqNRlXyeWhrG2fPnhx3371/WeNGWZZpaWmhpaXFvenEYjHOnDkD4HZjC93s0uk058+fX5Yfa6NQPQpeKEtz9ui20YYJjkTAYQVL5g1mFkQB6AgpiKw/S+2zcb7SjVajVPtOAtjFOAJkEJIHSQgQICGBpKEoFof3vkDC/HliUxmmhj9HuG0YkECqGsnKO9H999YoliZa/g+QzIuAgmQOolnX5hgiaIWPIBs/QUgakjmBnPlPXL38uxw58qZV7eZhfr/boaEhYrEYwWCQzZs3YxjGugSCOxOOeovl448/zuc+97nXW7GcF6/7gunc0IaGhrh582bd5ukrgSMvUBSFnp6eBYtlLlfi5MmzhEIasqwwNVVAVW0pSSTiJZOR6e8fIhwOEY02EQgoaJpGIqEjSRAI+FAUQSjkJZMRGIZOOOytdKMq5bJEoWCiaTbj1u48bdMCRZEpFOy0kEhEo1AQFdcgBcsSdHUp9PSAZV1g06YIu3c3xk6s+qaza9cuSqWSK74uFou0tLTQ1tZGNBp1f3axWIxr1641xI91uXAcmZqbm+nq6qr7Z9Fow4RYLOZ2ENXfI4hWmK46oCIIgyij6s/O94rqer6ZXx8HVCQRq1pLispzChTzx7TyDja1bbK/Buy9qVuvLfSyjuUpIMszb9CSuIlknkWiaoRrMtMQQeSQzZ8gpABIEqahYBoZjh7SUFb5fV0Lzu/v5s2b7N27l3A4vGK/2+WiOgS7Ho3p17/+dT7/+c/z9NNPbxTLCl73BdPZKZimyRve8IYlneiFEEv+I3ckKnv37uXGjRsL+tgKIThxoo+pqQyBgI98vkwgoOLxeEmlCng8KtHoViIREyhz8+YokiTh9UYJBIK0t4coFm1bvGzW/t9o1IsQtlFAuSyTz1sEg3KFGCTQNIVUykJVbaegUIhKwohNBmlt9bJzp8qRIyrRaJm+vjNs3759Wf6f9cLr9bo2Z86+aGxsjIsXL7pkoXw+z/Hjx9dUbF6NUqnEmTMr/1nUw7pdaHQ7OjrK2NgYx44dm/GzEPI2hNyNZPVhv+1lhLwLxfghAoGETDVTdWUwqjk8zhVUfb6IJEYr11HdXdpf5pEuUEq9h+HErxAMdxKM3oXX3wHmcGV3KuHsTiWSIKoPnKr7OdMw0Q0dn1dD10Lrsl8yDIPTp0/T2dnp/l1U+90uxYVnJZicnHQzNet5jzz22GN88Ytf5OTJk+s2rXkt4nW/w0wmk0xMTCypIwB46aWXOH78+JLGKo5Epbe3l1AoxKlTp9i/f/+8HdH3vneJH/7wGpqmEAr5KRTs9IBkslwxHQhgmlaF/WogyxJ+v4dMJksulyWVsvD7/XR0tBAI+JEkiUwGLEsQiXgxTXsPms9L6LrdRebzEsEgmKa9w/R6bbu7zk6Vo0c99PRolRxLe/x54MCBdTt9OoedTCaDoijuad5xLlkrOMzL5TgILQXO6DYWi80Z3cqy7FqrHTp0qOYNV81/GMX4HnYnKAAvgs1AHIkyVHduK8GcYrkQHNJQ7c+ZVhjd8HN2+D/T0Zpje+STSFK56mtUSqHnoKobVYr3IxUfw7IMVNWDUPaiB/52Rd60y4Gu666t5WL79NkuPI0MBZ+YmGBoaIgjR47UVSwfffRRvvSlL3HixInXc7Hc2GHWQjQaXdbN1dFi1lMwHaPtqampGRKVheQply9PcObMMNGoF8OARKJAKOSryEdUhFBJpYoEAh4KBbPiziOTTuv4/SE8nijt7aDrJcbGEuj6OIFAiEAgRHt7mEJBUCoZBIPeiiGBfYO19aV2QHQwKHP0aJBDhzy0tNy6ATv5kes5/jRNk/PnzxMIBNyQYYfq39/fv2pEmtlIJpP09/c3hHm5GBYa3ZbLZbxe70ySkUijFh9Asq4i5J0oxg+BIDYZxwSKSIxhF9AG6YqXVCzBJgfNX6gVOYfsUTm69zkmcv8Ww/QBEoosbJ9aebNt1F6Fa+P/G1JZYde2DKayFdPzjjUvluVymdOnT7Nz5866pBeL+d06xKFoNLqkv2WnWFbHhC2Er33ta3z5y1/m6aefXjfN8GsZr/sOUwhBuVxe/AtnYbHu0IFzY1dVdc6+8ty5c2zfvn3OKS4ez/HQQy+SyRSJREJkMmVCIQ+GAfm8Xkn50PH7VTweT+XzPtJpu8uMRv3k8waappLNCoSw2LQpQCqVJ5XKkE7ryLLKli1RgsEwui4BdsxXKKSyebOPw4f97NvnQZZvvTmFENy4cYPp6Wl6e3vXbfxZj8Xc7G6s0S4tcOvgsJ5Zmk7KhqZpBAIBpqenK4eFJva1/TmaNIStgzSAHHbBzFQ9QhOQx94xWqzoLW/TZ5cACQhXrqtWwVYAgWATyC2UQ48il7+FWvobhGWhmz7ODf17SmaX22mPj4+Tz+c5ePDgugQ/wy0XoT179jTE1ckwDOLxOLFYjHQ6Xbff7fj4OCMjIxw5cqSuYvnVr36Vhx56iJMnT6764e+nADX/kjcK5jILZl9fH7t3717Ql9R542zZsoUdO3bM+fyFCxfYsmWLmywAoOsmX/rSDxkfTxGJBACFXK6AqnpdJx9ZViiXDWRZI5czCARUZNk2KJAkmXTawONRkWUVr9dOGkgk7GKqaV40TUIIndHRLLlcnmBQJRSKcNddrdx55yYikbkFxbIs1z93MaLSasIZf+7du7fuWDXHpcWRrPh8Pnd0u1yrvOHhYSYnJ9f14OAELre2ts74+zIMg3T8ZVrVD2NaErKsoCgSipTCHio5e0AZaMW2phPcsrZb4i5zyV2lgxC693eRy6+iiOeofbtRgQim9vMY/v+n8nwFEEmQWkHS3MnC4OAgpmmydevWOaSwtUKxWOT06dOrNp6v9rudnp4GavvdOgHU9RbLRx55hK985SsbxfIWNgpmLSy3YM7XHTpIp9OV2KL58zIvXbrkjlocnDhxmuvXY8iyRDqtV4zPA5gmeL1q5WOCaDRY0VBqFItQKllEIj4yGftjkqSSzRr4/SqFAmiaRDDorUooURACDhwIsW+fh1DItv0qlUruKNMZ/zhGAC0tLUve9TYSiUTClUqs5E3tSFZiMZulWR1ltdhrc4K8C4XCqiZLLAaHZLRjx465zlCigGScQyt8GLAzSU3LRFglSkYbYd9A1e3Ah6m8Cdm8PEsPWSfqLpa1SEV2h2mTjjI1vgfAi6W+Cd3/Z/OmljjOOZqmsXv3bhKJBLFYjFQqRTAYdLvPRgd0z4ZjudfT07Nme33H73Zqasr1u1UUhUwmM28A9Ww8/PDDPPzwwzz99NMbxfIWNgrmfCiVlu4o0t/fT0dHR81T5Pj4uEvrX2hke+XKFaLRqLvj+MlPbvDcc+ewLIGmeSiXDcJhX0XOYeL1Ol2mDyEUcrkygYCfbNbuMjVNI5838Pu9pNN2Ukko5EXXbZ/XVEogSbBlS4CeniC9vWGCwZlvKNM03VFmOp0mEAiQyWTo7u6e17JvLTA+Ps7Q0BC9vb0Nlf1UR1nl83lXslLL4syyLPfGvG/fvnU7ODhG7rW6GKX0MGrpAewCZctHQAZJwpL3Ipn9CKuELN36m7eIIku2ycCSsKTOciEWrkP8mf1AYUBQCv8DSLV/5wsFPwshyGazxGKxGd1YvYejpWC5lnuNhGVZXLt2jfHxcTRNc/1u29ra5l0ZPPzwwzzyyCM8/fTTy0rx+WeMjYI5H5ZTMC9fvkxzc7ObdAC3uo90Os3hw4cXHYUMDAzg9/vZsmULo6MJHnrohxiGRXNzCF03MQyLUkmqGBEEsSyBZQmKRakiEQlgWbZEpFikkiLipVyW8HjANBVyOZNAQMUwVPbtC3LkSISurvqIOolEgvPnz9PU1EQ2m3VHmW1tbat+WnfgEKaSySSHDh1aVbG3aZpud5JMJgmFQm53IkkSfX19626357CTDx48OIeUIRmn8BT+OwinAJURRBDqESxlP0Lahlb8KJDALVC13v/11JFlj2FrYTZT1t6p2yYIBqXwSZDmdj6mabq/k1orj9mYfThqlIwjm81y9uzZNSF+LYTR0VEmJiY4fPiwa2XndJ+O320kEqG5uRmv18tXvvIVHn30UU6cOLFRLOdigyU7HyRJWlAPWQuzE0sc0XogEODYsWP1RSfJMqZpks+XeOqpU5VRqsz0dBZFkdE0H4GAnTCSSBQrGksfigLhsEYmo2MYJqFQEMMwiEY1DAOKxTJer59czqS93cfRoy0cPBjB76//puBEYt1xxx1uR5fL5ZicnFyS+85KUL03XUkKfb1QFMXdBzm7olgsxuDgIPl8no6OjhkHpLWGk+k5HztZti7b8VlY2EQakChgeP41lvoGJHMAqo3RoeKmY2ts3Q/Prl2zsaxiuZB8xOkunf9kbFN2A0s5WLNYGobBmTNn2Lx5c93ZorPTRxwZx9WrV5ct43D8aQ8dOrSuRWdkZITJyUm3WEJtv9sXXniBj3zkI7S1tZFKpXjmmWc2iuUSsNFhYp88l1owBwcH0TSNzs5O1392x44dSwoGHh4exrIsXnppjMuXx/H5PBV2q0IwGCCX01FVmVLJvtk0NYUolQx03cKyFAxD0NTkQwiZQkFHkjyUSibNzX527oxw5EgzW7cujb3p+KCm0+kFOzrHfWdycrLm3nOlWK5rTqPh+LHu2rWLcrlMLBZD1/UZbkNrcW3OSPrw4cPzEpVk/QW0wh9hk3eqRuF9P90AACAASURBVJxSC6XQSZD8KKXHUEsf55anrIdbDNlZWOgt0fCX7AEphO79AxT9KSQxjqUcwvD9/pyC6bCk69E31otq/1cnRae1tXVBSVIqlaK/v5/e3t51k1eBfR+Zmpqit7d30U5ZCMFDDz3EY489xpvf/Ga++93vUi6Xec973sPv/M7v1PV8/+7f/TtOnjxJe3s7586dA+ADH/gATz/9NB6Phz179vDggw/W3OPu3LmTcDiMoiioqsorr7yy9Be8NtgYyc6H5RTMoaEhAMLhMBcuXOC2226bwXatBzdv3uSFFy5y5UoKRZEJBv0YhomiqBXph0Ig4EdRBJIkk0zqyLJEMBiwJWiyTDJpVK7DTyTi5fDhTRw82ITHs/QRk2ME4PF4lrSjm733XKkXarFYpK+vrzahZQ2RSCS4dOmS68fqYDbNvxHerwthaGjIvSEuOJIWFmr+P6OYP6r6YAgklXLgSwilMko2B9GKH0M2zwOVjEsEM4OcZz92jY+tuGg6D6CAFMXQfhXT9x8X/I5GSzZqwfF/nZqammEQ0dLS4v78Ha/ew4cPr5ukCOy/jXg8Tm9vb12xYg899BCPP/44J06ccCdDiUSCgYEBjh8/XtdzvvDCC4RCIX7rt37LLZjPPfccb37zm1FVlT/4gz8A4GMf+9ic7925cyevvPLKuoWoLwEbBXM+6Lq+5HzLmzdvuruQI0eOLOtN86MfneOpp16lo6MN04Rcrlxx9BGV8axCOl3C7/dQKoHPp+L12jFeiiIjhIKqKhw+3MahQ610dCz/jVsul+nr66Ojo4Pt27cv+3EcQf3k5OQMCUe9e09nxLWeDkJgC75v3LixKMmo2kBgenoar9frvt7lSlaqH/vatWvk8/n6GbnmTby5X8PuGDVs93OFUugZZP051PLD9pd5fh3JvIyiPw2SF0SRBZ1+qsewDSueMkLaheH7jwilByHPnw4E9Qc/NxLO79eRcaiqSjAYJB6Pc+zYsVX3nV4ISy2WX/7yl/nGN77BU089teI1yuDgIG9729vcglmNb37zmzz++OM8/PDDcz73014wN3aYy4AQgrGxMQqFAnfeeeeyiCjJZI7nn79IOp1h06YWCgWTYNBTeaxSRU9ZQpZlvF4vQhioqkIiUUSWJXbtaubAgVZ6eppR1ZXt9hyGX3d394r/kGd7oS4ldcTZJ/X29q5qBNNicMwZjh07tujvtvr17t27l3w+TywW4+zZs1iW5bIUqzVy9cBJPVFVlUOHDtX/vcpWDN9/Ry39Lfbb20L3/Qmy/kO04idwqp1a/DSW0lv9SuZ/zFk7SyH5KvFe4tbnZxfRBS/XHgXrnt/H8v4qUAZKNgFpnteZy+Xo6+tb8ySa6t9vd3c3N2/e5Nq1awQCAU6fPl0zCGAtcOPGDZLJ5JKK5Te/+U1OnDix6uPjL37xi7zrXe+q+TlJkvjFX/xFJEni/e9/P+973/tW9VoajY2CuUQ4ZANVVWlra1tWsTQMk8ce+xGlkkVrazMTE5OUSjqhUBRZ9tLcHMY0BaGQradMJgv4fBpCyNx11zaOHOmgpaUxY6Dp6WmuXLkyZ+zYKDjJ7Tt37pyTOlK996w2DV8rBu5sCCG4fPkyuq5z5MiRZd0AA4EAXV1ddHV1uQHZ169fJ5fLuazq5ubmBR/bCTB3chOXuiM1Pf8aU/0XSNY4Qt4Ocgta/vewoz0qP1tRBlFASCEkkcXuSGXs8WxVpzmH4CNR9n8RT+F3kZia9bmqr5+XOORBEMX0vgfL86so5S+glr4ESFjKPnT/X8/whYXXDrFmcnKSkZERfvZnfxaPxzMnCGCtNJ+Dg4Mux6CeYvnggw9y4sQJnnrqqVUvlvfeey+qqvKbv/mbNT//T//0T3R2djI5Ockv/MIv0NPTw7/8l/9yVa+pkdgomEtAPp/n9OnT7N69G4/Hw8TExJIfQwjBM8/8hFQqR0tLiExGR1UDhEIBpqZSGEaO69cTKIqXzZtbMQzBnj2bOHZsK93dLTOs6laKkZERxsbGOHr06IrHh/VgdurI9PQ0o6OjnD59GkVR2Lt376rsAOuBo+fz+/0cPHiwIUQeTdPYsmULW7ZscVmZsViMy5cvuzfX2fZmuq67tn9bt25d/pPLHQj5FiFGEGBOHqbcQtn3ZyjlE0iUMNW7kK0bYE5j6S8jGRfQlNysgudFFteQ0LFlHwJ7Dwo2cac04ylm/C8SQvKhBz+JUA4i6/+EWvoKtgWehGxeQiveix74S/chqneF60msqfZkdX5fiqK4E5NqzaczTVkNzef169fJZDJ1jeiFEHzxi1/k6aef5sknn1z1n9+XvvQlTp48yXe/+915X69Dimxvb+ed73wnP/7xjzcK5k8b6vljnp6edl1motEoqVRqhqykHgghOHVqgP7+YXTdQAhbVhKNBrEsiUDAj8+3iUCgRCAg09amsXmzzNatMk1NJkJY2DeXlaHarebYsWPrUqQcCcfExARbtmyhvb3dlXCstd5T13X6+vpob29f0f52IVSba1ffXE+fPo0kSa6x9uXLl9m9e/eK5Cty+Tso+qOAjOl9L5Z6J6b339pkIFHpHiUfhve9IG/G9N0ai5ncYXd05w9x8OBB2vglbnnP2n8nivED7G61cvsQGvZYdRak6v8TwLRksEqMXn+MPP8XO9teRZPKt0wJhIJk3tqJOdOP2bmea42bN29y8+bNBQ3MJUkiHA4TDofZvXu3q/l0dtCN0HwODAyQy+XqLpZf+MIXeOaZZ3jqqadWnZj07W9/m49//OP84Ac/mLcw53I5LMsiHA6Ty+V47rnn+OM//uNVva5GY6Ng1oGhoSHGxsa444473E5stg5zMQghGB2d4lvf+knFnCCKELYDTyZTrpgThNm8OcqRI53s3r3J1Yc6pJKBgQF8Ph/t7e20trYuq5iYpsm5c+cIBoNL2401GE4nVU0ycljGS9l7rhTFYpEzZ86wa9euulIlGoHZN9dSqcTIyAinTp3C6/WSTCZRVZWmpqYl/37k8nfQih/BloqAnP999MAnsNQ3UA58EVn/FiCwtLcglF1zvt/p6Nw9ckYF4cUe1wKYCKkZUGzNpyRj30a8LJh4Imkoim2U0Nm5n/F0mFhcxRuVQDKQZRlJMkG2DwpOCst6jujhlr6xXps5B43WfF67ds21Y6zHvvELX/gCzz77LE8++WTDi+W73/1unn/+eaampti2bRv33HMPH/3oRymVSvzCL/wCAHfeeSf3338/N2/e5Ld/+7d59tlnmZiY4J3vfCdgr7Z+4zd+g7e85S0NvbbVxgZLFvuXV6v4OcJ5wzA4ePDgjDdMoVDg4sWLHD16dNHHt0XweR588PtYloWmqcTjeWRZxuPxEQh4OXJkO7292wkGF745OOYBU1NTSJLkFpN6xi2O/+i2bdtWNu5bIRxrtz179izaSTnax1gsNmfvudJi/1ph5DpF6vbbb8fv97uSlVQqRTgcdvdi9ezLtdy/RzbPcessrGOqd2MEPr7o9zqHssOHD9s3clFEy/02snWh8hUqSAHKwb9HLp+0GbeSgpAi6P7PICQNpfQ4qv4gt3SdDq1WBXwIuZVy8CGQIiB0tPx/AaMfywLLgv6x38NgD7lcbk4I9lpjaGjITeZp5BRmKZpPhyldKpW47bbb6iqWn//85/n2t7/NN77xjXWVvPyUY0NWMh9M08QwjBkfc8TRra2tNYkXjgzjjjvuWPSxTdPkqad+zNWr42iaSqFgoigyvb07OXiwkx076kvdmI1SqUQsFmNyctLNf2xvbyccDs+5Xqc47N+/f80o+bXg5EfWsnZbDI3UezquOYcOHVpXRu6cIlUFIQTpdNqVrDgB2W1tbfN2JlrufcjmGWYWzJ/HCPz5gtcxNjbGyMgIhw8fdjs6Lf8BZOOHQAlHplIO3I9Qj9nfZCWQRBohb52RN6kW/hJF/zp21yljW/T5ML3vR0gasnUDIe/E1H4ZAMk8jSTyWMrtDAwmGRsbw+v1usVktTNNa6E6jHs12a8LaT4VRVlysfzc5z7Hc889xze+8Y11HWP/M8BGwZwPswtmNpulr6+P7u7uecd0hmHw6quv8rM/+7M1Py+EwLIsLMvin/6pn3/8xwsoikJHxyYOHdrO7bdvw+dr3KjJyX+cnJwkm83OYGROT09z7dq1dS8OExMTDA4ONiQ/crb+cSl7T8f2byHXnLWAwww+fPhwXZ1UoVBwu+3qYlJ9QJKNF9HyH+TWTtFLOfh3COX2eR93eHiYWCw20xhBFPFm7sYueI5jkIru+xMs7c0LXqdS/Dxq+Yu3iqjQseRuhLIXRf82tkGCF0s9ju7/VGWsywzPYEVR5mSa1jIQaDQcp6v1yNScrfl0QsEPHjy46PtWCMEDDzzAd77znY1i2RhsFMz5UF0wY7EYV65c4dChQwsaKQsh+NGPfsQb3/jGmp9ziuXAwARPPvljbrttG0eO7Gbr1qW5AS0H1YxMh8nb3d1NR0fHqpqXzwchhDveOnTo0KqM2WZHdtXaezoB2IlEYtWN3BeCYyjvdDDLGfc5nUksFiObzdLU1OQekDTxE5TyYwhUTO9vIJRD817HHCKJlUQr/r/Ixhlsso8XJ8gZVHT/n2Fp/8vCF2cl8OR+C0kkAAskD2Xfn+ApfNj+tzum1SgHv4Al73d3dPMVqeoDUjwed7vt1tbWho0dHTJcuVyuq6NbLQghuHLlCqVSiaamphnm6bU0n06x/O53v8sTTzyxUSwbg42COR9M00TXdQYHB5mampoxlloIL7744pyCKYTANE3Xau/KlTF27erA41nbm7NlWa6mcPv27e6p1ePxNMyJph4IIbh06RKmaXLgwIE1ObHP3ns6N5rx8XEsy1qz66gF5+dhWVbDgrgtyyKZTBKLxUgkEvj9freYzPd3XH0dBw4ccIuDJ/seJOtSRTbi3AA8gIKQt1AOPgxSHQVKpFD0fwBRxFLfCJKKJ/tubDKScy/yUvZ/kosDQffnUW+Rcrrtqakpdx2xktGto8Fd6nU0Gs51CCHYv3+/ex2O5tPZbfv9fl5++WXe9ra38eSTT/L973+fxx9/fKNYNg4bBXM+6LruagGXcjOdXTCFEG6nul43ZLhlXN7U1DRn/5rP513SkBBiVRmojgA/EonMySpcK5im6U4NTNOktbWV9vb2VfN9XQiO1jMQCLBnz55V+XkIIdxue2rKNhZwiqejB3Q8g30+H93d3beuQ2TxZu5G4tZ6QuDBkg8g1GO2DEVa2t751gMZeHL/J5I16j6ykJo4M/xRVC068zqWiJWOboUQ9Pf3oyjKuuacOocYYEaxrPV1sViMv/mbv+G5555jenqa//pf/yvvfOc7l9QZ1zJRj8fjvOtd72JwcJCdO3fy2GOP1fTI/vKXv8z//J//E4A/+qM/4t/8m3+znJf8WsZGwZwP09PTxOPxujL1qlFdME3TxLIsJElatzcc2Cfvvr4+du7cuWiSQy0Gant7e0MIFg4jd/v27WzZsmVFj7USOOQth+K/3L3nSuE4RK2m1rMWqjMgC4UCTU1NpNNp2tra2LVrlqxE6HgzdyJVyUMEAXT/x7C0n1v5xVgxtMKfIFuXsaTtnBv6DTz+7mW5Gc2HpY5uhRDu4WG1DjH1QAjBxYsXkWW5rqIthOCzn/0s//iP/8h9993H9773PU6ePMnAwAAvvvhiXdOjWibqH/zgB2lpaeFDH/oQf/EXf0EikZhjoh6Px7njjjt45ZVXkCSJ48eP8+qrry45fOI1jo2COR8sy0LX9SV/34svvshdd93l7ivXu1imUik3OWWpfpsOA3VycpJMJuPuxFpaWpbcLTuRWGtpkl0Ljln3fPKV2XtPp/tsdLftHB66uroaFke1HBSLRU6dOoWmaei6PiMg23WvKX4WtfwQEkUEXoS8h3LwyzNYsPNCpJGsBELebBu6z4OlBj+vBAuNboUQnDt3jlAoxO7du1f1OhaC0+GqqsrevXvrKpaf+cxn+OEPf8jXv/71GcXRNM0lTU5mm6jv37+f559/ni1btjA2Nsbdd9/tdr0OvvrVr/L888/zwAMPAPD+97+fu+++m3e/+911P+9PATbM1+fDSoqcs69c72LpMFCXm5yiKArt7e20t7fP2IlduXKFYDDojjEXI+w4co3V8qatF+l0mvPnzy94eKj2uXW6bcfn1tl7Lsc8oBqO5nS9Dw+lUsnVvra3t88IyB4aGqqyeXsvQf8BZPMUQt6Cqf1KXcVSKT2KWvobbK2mh3LgswjlwJyvczrtLVu2rIkW2O/3s2PHDnbs2OGOboeHh8lkMhiGQUtLy6oX7YXgFEtN0+oaSwsh+PSnP82PfvSjOcUSWPGawXHeAti8eXNN+8/R0dEZU5Jt27YxOjo65+v+OWKjYC4TtkuPypUrV+jo6FiyprCR1zE4OEgikWiY0FuWZVpaWmhpaXFt3CYnJxkaGnJN52tpAW/evMno6OiaedPOB8dRZSn+ox6PZ4bPbTwe5+bNm1y8eHHZek+naC9Hc9pI1IrFkiSJSCRCJBJhz549FItFYrEY/f396HqATZt+2e7ENM+iyV2SeQW19EnsUGoTRAFP/r9QCv3DjPSR1Qh+XgpUVaWjo4PW1lbOnDnDpk22m9arr766KqzbxSCE4MKFC3i93rrGwUII/vZv/5aXXnqJr3/966u+RljvJuC1iI2CuQw45J5Dhw6RSCQYGhpytY/t7e00NTWtCenHiYCSZXnZ6RqLodrGbc+ePe6I6/z585im6d5kJiYmyGaz6+ZN68Ap2iuxVJttql1tTej1el1rwoUOBY4P6nqbhmezWc6ePbto0fb5fGzfvp3t27fP6cSi0egMMf1sSNYVHAN1GzKINLYsxX7OtQh+rgemaXL69Gk2b97sGoHDrdGtfWBYOet2MTi7U7/fz+7du+sqlp/61Kd4+eWXeeyxx1atWHZ0dDA2NuaOZGvp0Ds7O3n++efdf4+MjHD33XevyvW81rCxw8T+YyyXa5hH18B85B7LslzadzKZXJELTT1wDMPb2trYvn37upwEnTHmwMAApmmydetW2tvbG2Jbt1QIIbh+/bobe7RaRbuevef4+DhDQ0McOXJkXX1QHcu9lRhWCCHc8Xx1IHj1gUEyz+LJvR/bEcjRWAYohX8Akux2uPv3719XYohhGJw+fZrOzs4FiWirbZhQXSz37NlT19d/8pOf5NVXX+VrX/taQ/+mZu8wP/CBD7Bp0yaX9BOPx/n4x2faKsbjcY4fP85PfvITAI4dO8arr766riuHVcAG6WchlEqlBT9fbUaw2KjC6UomJyeJx+P4/X63K2nEyNQJfK7Hi3U1UV20Ozs7icfjTE5Okk6nF+1KGgnH81eSpDXV0NXSe1qWRS6X4/Dhw+tmjAC4SRm1LPdWgmrJimVZbiceVT6Pqj+KG1od+Gss9U73b/XAgQNrGvw8G450bKnj4EYbJjiSnmAwWBfRSAjBJz7xCU6dOsVXv/rVhhbLahP1jo4O7rnnHt7xjnfwa7/2awwNDdHV1cVjjz1GS0sLr7zyCvfffz+f//znATsk+s//3LZb/MM//EPe+973Nuy6XiPYKJgLYaGC6RRL0zQrqQr135AdXZyjfXTINQv5gS6ERCLhGnUv5ES02nDkK7VSPqq7kunpaQKBQEMPDNVwGJe1NKdrCcMwOH/+PJlMBlmW3QPDeug9x8fHXeu/1exwHcnK1NQUuVyOza0FWjdZBCOHkdW210zwc7lc5vTp0+zatWvFB8yVGCY4OtxwODxX0lMDQgj++q//mr6+Ph555JF1nVa8DrFRMBdCuVym1s+i2rmnEUvwaj9Qy7KWJGW4efMmIyMj9Pb2rqujx1LkK7UODE5XslJyhUMi6ezsXNf0FWeXrKoq+/btA5ih9/R6vWvmrjQ8PMzk5OSad7jVdoyJRAKPx0M+n+fw4cPrSnhydqfd3d1s2rS8kIP54Ixup6amZoQB1BrdWpbF2bNniUaj7Ny5c9HHFkLwV3/1V5w9e5avfvWr65ra8jrFRsFcCLUK5mo798we6TkJ7bNPq07Ej+P5uZ6kGmdnuVwDdYeNOTk56RqIt7e3EwqFlnQYceQae/fubfiNcClwOtzm5ma6urpqvoZae0/HXamRgv3r16+TyWRWPWFjMUxNTXHp0iXa2tpIJpNuWHi9MXSNQrFY5PTp02si6VlodOv1el3nra6urroe6y//8i85f/48jzzyyEaxXB9sFMyFMLtgrrVzT620ESeqq7+/H5/PV5eoeTXhdC+9vb0NeRPruu660ORyuRnax4Vu+E6Hu95j6eV0uM4Yc3JysmF6T8d/1DCMdTUNB5icnHT1wM4IsVgsur/nUqnU0EzT+eAQjXp6etYl67R6kuR0n93d3YuOboUQfPzjH6e/v5+HH354o1iuHzYK5kLQdR3LspZE7lktOOOtsbExJiYmCIfD7Ny5c132YXDrhqzrOrfddtuqdC8Oy3hycpJUKjUvy3ilHW6jUCwWOXPmDLt37172Xmy2ofZymNWWZblavpX4sTYCY2NjjI6OLhhX1shM0/ngEI1uu+22dR0HW5bFmTNnaG5uxu/3Lzq6FULwsY99jMuXL/OVr3xlo1iuLzYK5kLQdd3tKpdD7mk0HHu57u5uVFV192FOEkVbW9uavKFM0+TcuXMEg8E189qslXXZ3t7udmf15keuFhxt44EDBxrWvcx+zfXsPR1ze4fwtJ4YGRlxd6f1Fr75XnNra+uyd/TO72a9pw/OqL61tXWGK87s0a0kSfzgBz/gHe94B48//jhXr17loYce2iiW64+NgrkQyuUyuq6/JmzuHKea2fZyjWbcLoZq4/JqkfdaI5vNcvHiRbLZrGvTt9b7MAfJZJL+/v5VZ35WyzeEEHP2no6kZ7YAfz1Qne25kulDPp93R7fL2W87rNze3t51DUo3TdM12t+2bduCXxuPx3nggQd48sknGRsb433vex9vf/vbecMb3rDsn+WlS5d417ve5f57YGCAP/3TP+W//bf/5n7s+eef5+1vf7vL1v2VX/kV/viP/3hZz/fPFBsFcz6USiXe85738Iu/+Iu89a1vXVdx9fDwMBMTE/T29i5KIy8Wi0xOTro3mLa2toaZhztjrfUm1TgjR03T2Ldvn0uUmpycdGn9zq53tQ85k5OTXL9+veHaxsUwO3EkGo2SSCTYs2fPupq5O2S0YrHY8FG9s9+empqaEZA9XxhAKpWiv7+f3t7edXVWcoplR0dHXQcZIQT33nsvg4OD3HfffXz/+9/n6aef5vTp07z44osrXjuYpklnZycvvfTSDMLR888/z1/91V9x8uTJFT3+P2NsFMz5IITg7NmzfPOb3+SZZ54hGo3ytre9jV/6pV+io6NjzcaQly9fdtPel7rPmU0mWUlUVyKR4NKlS+tuoG4YhptqUYtdWIso1dbWRnNzc8P3rKOjo4yNjb0mxsGnT58mGAxSLBZX3VFqPvz/7Z17VFNnusafICAiF0UJCAiIICrWcl06jqKtjSCS0NqeWuv1WK8dR7xgtbVS61Snrdd1qlMvU7U9a6bOWZJAtYAoR7R0VIoKKFWLoAS5JCDXBMh1nz+69j5cIuxAki3w/f7CZAMfQfaT73vf93no7EaKosxuFtE2DKC2thb29vbtArLp/68vv/wyp3Vt2naPrbE8RVH47LPPIJVK8e2333aqZ5riNc3IyMCnn36Kn3/+ud3jRDC7hQgmGyiKQklJCSQSCX744Qfo9XrMmzcPQqHQbCHIWq2WGWhm4yvZHTqdjtmRNDU1GSUklZWVKCsr43zWk47E8vb2hru7e7fXd5wDdHR0ZISkN/OIlrLcYwNdn6PnX3tS9zQF9Nypra2txRuNOgZka7VaaDQaTJo0iVNrtp6KZVlZGc6cOWO2mdkVK1YgNDQU69evb/d4VlYW3nzzTXh5ecHDwwP79+9HUFCQWdbQRyGCaSwURaGqqgrJyclITk5GbW0toqOjIRKJMGHCBJPsYlpbW1FQUGC2oGVaSORyOerr6+Ho6MhEdbW9+dOpJ/X19XjppZc4tXWjj4N7Oj9HURQaGxsZIbG1te2RkNC7KL1ej/Hjx3M620gfOXblC9td3dMU0AP4Tk5OrNxqzElNTQ2Kiorg4eGBurq6dmM6zs7OFvt9sfWopdHr9fjss89QXl6O06dPm+1vTa1Ww8PDA4WFhZ2O7hsbG2FlZQUHBwekpqYiPj4eRUVFZllHH4UIZm+pq6vD+fPnIZFI8PjxY7z66qsQCoUIDw/v0c6Djn8yZbdlV9BCIpfL23WfjhgxAsXFxeDxeAgMDORUGGjDcFMeBzc3NzONUhRFMeLZVa2XtjGzt7e3WHfw82ibfML2yLFj3dMU857P6/zkAkPznh3HdEx1ytAVtFh6eXmxPgnZvXs3qqqqcOrUKbO+MU1JScHRo0eRkZHR7bW+vr7Izc3lNEnmBYMIpilRKpVIT0+HRCJBXl4e/vjHP0IkEmH69OmsalxyuZyZJ+SqSUGhUEAmk0EqlcLGxgbe3t7g8/mcHcXSIdjmbKrp6K5kqNZLhxzz+XzOhUEmk6G0tLRXySeGhMTQKUNX0MLg4eHBqQ0h8P9eucHBwc/9W+t4ymCOvEtjDd31ej0+/fRTyGQynD592uzH+++88w6ioqIMGqNXVVUx/Rk5OTl46623UFpaSvIv/x8imOZCrVbjypUrEIvF+PnnnxEcHAyRSITZs2d3+uOkKAqlpaV49uyZyRxzego9fO/r6wtnZ+dOHbeurq4Wa/qRSqWorq626GtCD9HL5XI0NTVh2LBhGDZsGKRSKXx9fTntQAV+n22UyWQm9YXtSd2TNi/38fHh/DWpqKhgmq+MeU06mqaPHDkSI0eO7HHeZU/FUi6X49SpU2YXS6VSCW9vb5SUlDB+fpyYcgAAIABJREFUz8eOHQMArF27FkeOHMHXX38Na2trDBkyBAcPHsS0adPMuqY+BhFMS6DT6fDvf/8bEokEmZmZGDt2LIRCIaKjo2FnZ4dt27Zh8eLFCA0N5fTok55ZM3QcrNFomNGN3nbcdgdFUSgqKoJKpUJQUBBnr4ler4dMJsPDhw9hbW0NJycnZhdm6Tc1dD2Znm005821ubmZ2XEbqnu+KMHPQM/MEQzRMe/S2Cg6Wix9fHwMBix3RK/XY9euXXj27Bn+/ve/c9o4RmANEUxLQ1tjicViXLhwAfX19ZgyZQr27t1rsXEVQ9DGCGyOgw3twvh8vklGN+hsQDs7O85t3eh6Ml07VSgUTN2TPs4zl0FEW+g3EBqNxmSNZWzpWPd0dHREXV0dJk6cyHk4sFQqRW1trcnfQOj1+nbOO3RAtqurq8EjcI1Ggzt37rCOCtPr9fjkk09QV1eHkydPErHsOxDB5IrHjx/j7bffxrJly6BQKPDDDz/A2toasbGxEIlEGD16tMXE4unTp6iqqmJljNCR541ujBw50ugbAe1U8yLUCbtrqmlrpN32uNqU3afA/49r2NjYcG6039TUhPz8fDg4ODDiaWzd01S0Hesx9xuIrpJl6J2lMWKZmJiIhoYGnDhxgohl34IIJhc0Nzdj5syZOHbsGMLCwgD8vosoLy+HRCJBcnIyFAoFM65iriFwiqLw6NEjtLS0ICgoqNd/vM/ruKWHybuCrp0aCp+2NFVVVZBKpaybagx1n/L5/F4nb9C+sHRe4ouw26bt/zr+ri0170nPRDc3N3NyXN/2d93c3Ay1Wg1vb2/4+Ph0uxa9Xo+PP/4YCoUCx48fJ2LZ9yCCyRUqlarLG0tNTQ1++OEHJCcno6ysDK+99hpEIhFCQkJMcpPQ6XQoLCzEkCFDzHb0SXvcVldXMyHRhjpuzWFc3lOkUilqamowefLkHjXV0N2ncrkcjY2NRtfCaOiuXDc3t269R80NPdbT1XF9d3VPU0C/waOPprl8A6FWq3H79m3w+XyoVCrU19fDwcGBGVnpWOPW6/XYsWMHmpubcezYMSKWfRMimH2BpqYmpKamQiKRoLCwEDNmzIBIJMK0adN6dFNXq9WMSbelbsYdQ6JHjhzJ3GyKioq6HL63BPTNuLW11WQ7F4qi2tm3DRkyhNlxd9U09CJ1oD579gyPHj0yaqyn446bznHtjXEAbRgBAIGBgZyKJd305O/vz3gqUxSFpqYmptN40KBB4PF4sLe3x7hx4/DRRx+htbUVX3/9NRHLvgsRzL6GSqVCZmYmxGIxrl+/joiICIhEIsyaNYvVDa25uRkFBQXw9/fnrMOR7rgtKyuDQqGAp6cn3N3dzRoe3BV0ndDa2hrjxo0z2/F3x1QZQztuOuSYa4N7wLARgLGYwjiAoijm98N1HZcWy4CAgC6bnlpbW5GVlYV9+/ahsrISLi4uOHLkCKZOndrrN2O+vr5wdHTEoEGDYG1tjdzc3HbPUxSF+Ph4pKamwt7eHmfOnEFoaGivvicBABHMvo1Wq0V2djbEYjGysrIQGBgIkUiEOXPmGMz9o2OouM4FpOdOa2trERQUhIaGBrN03LKBdqoZPnw4fHx8LHYzNrTjHjp0KEpKShhfWC5hE/xsLG2NA2pqaljVPelkGjs7O87dlVpbW5GXl8fanlGv12P79u1oaWlBTEwMLly4gFu3bkEoFGLPnj09Xkd3Djypqan46quvkJqaips3byI+Ph43b97s8fcjMBDB7C/o9Xrcvn0bSUlJuHjxIkaNGgWhUIiYmBiMHDkSZ86cga2tLebPn8+pgTqdwKLVajuNSNAJFHK5HHV1dXBwcGCOMM1xjEVne3p6enLqVKPRaCCVSiGVSmFra8scV/fGsq43lJWVobq6utezjd3RXd2TtiJ0dHTk3KOWFsvAwEBWUX96vR7btm2DXq/H0aNHmf/nOp0OZWVlvQr37k4w16xZg1mzZmHhwoUAfj/CzsrKMosv9QCDCGZ/hD7Comc9W1paAADffPMNp80SOp0O9+7dw9ChQ7vdLXTcjXQ3C2cs9NHn2LFjWY0DmJO2IyyDBw9mmoYaGhosHtVlyXGNthiqezY0NIDP5/dKXEwBLZbjx49n1ZSm1+vxwQcfAACOHDli8tdxzJgxGD58OHg8HtasWYPVq1e3ez42Nhbbt2/H9OnTAQCzZ8/GF198gfDwcJOuYwBi8IbFXSQFwSTweDxMnDgR48aNQ3l5Oerq6hAREYGEhASoVCrExMRAKBRatB6k0WiQn5/PutGIx+PB2dkZzs7O8Pf3Z+p/+fn5sLKyYsSzJx6gL1JXLu0LGxoayrwRoC3a2lrWlZSUGDWmYyxtg58tLZYAYGtry3jS0h2ogwYNQmVlJRQKhdkN058H/cbKGLHcunUrrKys8NVXX5nldczOzoanpyfkcjkEAgHGjx+PyMhIk38fAjvIDrOfsHLlSowZMwYfffQReDweKIpCdXU1UlJSIJFIIJPJIBAIEBcXZ9abZEtLCwoKCuDn52eS3Rxd/6uuroZWq2WOMNmMMNDBwlx35QK/B1DThhFs6oRtm4Z4PB7TNNRb4/AXqQOVHqdxd3eHp6dnj+qepoIWywkTJrCqKev1eiQkJMDa2hr/9V//ZZE3Hbt27YKDgwMSEhKYx8iRrNkgR7L9mYaGhi7/0BsaGvDjjz9CIpHg4cOHmDVrFkQiEaZMmWKy4z/an9ZcjSwajQY1NTWQy+XdmgbI5XI8fvzYrMknbGmbM9qT11qlUjFNQ7RxuKurKxwdHY0SPLqpZvDgwZxbEdKnEF1lSLate+r1erM5LNHd5MaI5ZYtWzB48GAcPnzYbGKpVCqh1+vh6OgIpVIJgUCAxMREREdHM9f8+OOPOHLkCNP0s2HDBuTk5JhlPQMMIpiE32lpacGlS5eQlJSEW7duYerUqRAKhZg5c2aPj//o2pyl4spoj9vq6mo0NjZi2LBhjGlARUUFqqqqTNr12RNoX1i1Wo2JEyea5MZKG4fL5XIoFApm7nHYsGFdfv0XKfjZWPNyoLPrTtt8z968rs3NzcjPz0dQUBCcnJy6vV6v12PTpk2wt7fHoUOHzLqzLCkpwRtvvAHg99/7u+++ix07drRLHaEoCuvXr0d6ejrs7e1x+vRpUr80DUQwCZ3RaDS4du0axGIxrl27hkmTJkEoFEIgELA+xqyoqGDGEkxdb2ND245bmUwGHo+HgIAAuLq6WrwO1nZN5p73fJ63b8f6n06nQ35+PlxdXTn37aWNGtj6sRpCp9Ohrq6OaZbqaVC0UqlEQUEB69ErnU6HTZs2wcHBAQcPHuQ0bYhgdohgErpGr9cjJycHYrEYGRkZ8PHxQWxsLGJiYgy219MxVPX19Zg8eTKnriZ0bU6n08HT0xM1NTVMHYzP55us45YNdIcwPSJhiaPPjoHJtra2cHV1xfDhw3H//v0XIvjZkGtOb3nez91d3bOnYuno6IgDBw4Qsez/EMEksIeiKBQWFiIpKQmpqalwcnJCbGwshEIh3NzcoNPpcOzYMbz66qsYP348pzcQeoZv6NCh8PPzaydQbdMneDweI569bZ55HnQjC9cpLM3NzaisrERpaSns7Ozg4eHB1P+4gG6qYTvb2FPY1D3pzmnaXL47dDodNm7cCGdnZ+zfv5+I5cCACCahZ9CpERKJBCkpKdBqtVCpVAgLC8PBgwc53VkaExOmUqkYg3hjO27ZQJsjjB49Gu7u7r3+er2BToTx9/eHo6Mj0zSkUqmYpiFzBIIbwtimGlNhqO7p4OCA0tJSTJ48mbVYxsfHY/jw4di3bx8Ry4EDEUxzsWDBAqZVv76+HsOGDUNeXl6n67rzhewLVFdXQygUIjAwEFVVVaitrUV0dDSEQqHJGlvYolKpkJ+f3yPjcmM6btlAC9TYsWM58+2l6Wo3Z85AcEPQR59sm2rMhU6nQ3l5OYqLi2Fra8sky3RV99TpdNiwYQNGjhyJL774gojlwIIIpiXYsmULnJ2dkZiY2Om57myuXnQqKysRGxuLvXv3IioqCsDvs47nz59HcnIySkpK8Morr0AkEiE8PNysO0+lUom7d++y9vrsCkMxXXw+Hy4uLqxukvRa2A68mxOFQsGM9nQnUHSzFJ2wMnToUMYswRTNUsYefZoTeuSJ7uJuW/e0sbFhfm56BEmn0+HPf/4z+Hw+Pv/8cyKWAw8imOaGoih4e3vjf//3fxEQENDp+b4umFqtFsXFxQgMDDT4vFKpxMWLFyGRSHDnzh1MmzYNcXFxmD59uknHOxoaGvDrr7+axVi+o4jQHrfP24l0DFvmksbGRuZ1MXYtFEVBoVAwZgk2NjZM/a8nc6z06zJ58mTOTSO6W0vbuudHH32EkJAQVFVVYcyYMUQsBy5EMM3NtWvXsHnz5ucetXbnC9mfUKvVuHLlCiQSCbKzsxEcHAyRSITZs2f3quGmrReruRp3aOjcQ7lcznRgtu24ra2txW+//WaRtXQHHfxsqrW0tLS0a54xJiS6oaEB9+/ft9hMblfQbyLYrqWyshKbN29GUVERbG1t8corrzBv+nqy6y4rK8PSpUuZcafVq1cjPj6+3TVZWVmIi4tj5mPnz59v8ISKYFGIYPaG1157DVVVVZ0e37NnD+Li4gAA69atg7+/P7Zs2WLwa5SXl7fzhfzqq68GhC+kTqfD9evXIRaLcfnyZfj7+0MoFCI6OtqoJpDKykqUlZX1KrOxNzQ3NzNNQxqNBjqdDpMnT+Y8nqsnwc/G0NEsfcSIEXB1dTVY76XtCIODgzl3WKKFm+2bCJ1Oh/fffx9eXl7Ys2cPNBoNrly5gpSUFKxZswbBwcFGr6GyshKVlZUIDQ1FU1MTwsLCkJycjIkTJzLXZGVlYf/+/bhw4YLRX59gNohgmhOtVgtPT0/cunWLleG4IV/IgYBer0dBQQGSkpKQlpaGESNGQCgUIjY2Fq6urs/dvZSWluLZs2eYPHkyZ2YENBUVFXj69Cnc3Nzw7Nkzxq6Oz+fDwcHBopZzpgh+NgZD9V7aYam+vh6PHj1CcHCw2b1fu8NYsdRqtXj//ffh4+ODv/zlL2Y7ho2Li8P69eshEAiYx4hgvpAQwTQn6enp+Otf/4qrV68afJ6NL+RAg7aOE4vFOH/+PAYNGoR58+YhLi4Oo0ePZnISf/rpJ7i4uCAoKIjzehIdht3WqIHuuG07vtCbjlu2VFRUoKKigjMLQIqimHqvTCaDVquFv78/3N3dObUkNPZ4WqvVYt26dRgzZgz+8pe/mO139uTJE0RGRuLevXvtGrKysrLw5ptvwsvLCx4eHti/fz+CgoLMsgYCa4hgmpPly5dj6tSpWLt2LfNYRUUFVq5cidTU1Of6QhJ+h6IolJeXQyKRIDk5GQqFAgKBADk5OfDz88OBAwc4NQunKAqPHj2CSqXqcnymtx23bLFU8DMbaKP7cePGoa6uDjU1NRg0aBCTsGLJo1laLNkeCWu1WqxZswZjx441q1gqFArMnDkTO3bswPz589s919jYCCsrKzg4OCA1NRXx8fEoKioyyzoIrCGC2ZfZtWsXTp48yfhv7t27FzExMZ2uS09PR3x8PHQ6HVauXInt27dbeqkmQSqVQigUws7ODmq1Gq+99hpEIhFCQkIsvsukQ7qtrKyMisSid2ByudykYxtcBT8borKykvERbrurpGPZ5HI5dDod0zRkziNrY+untFj6+/tj9+7dZluXRqNBbGwsoqKisHnz5m6v7+vd9P0EIph9GTY1T51Oh3HjxuHSpUvw8vJCREQEvv/++3YNBn2BmpoazJ8/H6tWrcKSJUvQ1NSEtLQ0iMViFBYWYsaMGRCJRJg2bZrZ65l0ykdvfWE7jm3Qnqd8Pp917ZHtLtdSVFRUoLKyEi+//HKXv4eOR9ZtE1ZMJVJ0x3JISAir+qlWq8Xq1asxbtw4fPrpp2YTS4qisGzZMri4uODw4cMGr6mqqoKbmxt4PB5ycnLw1ltvobS0tN2aysrKEBkZiVu3bsHFxQV1dXUIDQ3FlStXsHbtWty4cQPTp08ndVDTQQSzL8NGMK9fv45du3bh4sWLAIC//vWvAIAPP/zQIms0FQ8ePMCTJ08M1ndVKhUyMzMhFotx48YNhIeHQygU4pVXXjH50Z9Wq0VBQYFZUj7adtyyCYh+kYKfgZ4fCev1eubIuqGhAU5OTozjTk+Plmtra1FUVMS62Uir1WLVqlUYP348du3aZdbXMjs7GzNmzGh3GrB3715IpVIAv0d0HTlyBF9//TWsra0xZMgQHDx4ENOmTev0tb788ks8evQIJ06cwJo1a+Dr64sPP/wQmZmZaG5uxvHjx4lgmg4imH2ZXbt24cyZM3ByckJ4eDgOHDjQyfbs3LlzSE9Px9///ncAwH//93/j5s2bOHLkCBdLNjtarRbZ2dkQi8XIyspCYGAgRCIR5syZ02tDA9oX1svLy+zp9YYCott23NLBz3Z2dhg7diznYllaWoq6ujpMnjy5V7tciqLQ0NDAOO7Y2dkxR9Zsd930SE1ISAirz9FoNFi1ahWCgoKQmJjI+WtpDBqNBmFhYVixYgVOnjyJvLw85hicdNqaHIP/Mbjtzye0o6tZz3Xr1mHnzp3g8XjYuXMntmzZglOnTnGwyhcHa2trzJo1C7NmzYJer8ft27chFotx6NAhuLu7QyQSISYmxuhakKV9YQcPHgwvLy94eXlBq9WipqYGjx8/hlKphIuLCxobGzFixAj4+fmZfS3d8fjxYzQ1NfVaLAGAx+Nh2LBhGDZsGAICAqBUKiGXy5Gfn89q111TU4Pi4mKjxHLlypV46aWXmL+lvoSNjQ327duH6OhoZGRkcNqJPFAhgvkCcfnyZVbXrVq1CrGxsZ0e9/T0RFlZGfPvp0+fwtPT02Tre5GxsrJCeHg4wsPDsWfPHjx48ABisRgLFiyAnZ0dYmNjIRKJ4OHh0eWNkmtfWGtra7i7u8Pd3R1qtRq3b9+GlZUVZDIZWltbmeNLLhqfiouL0draikmTJpnl+w8dOhRjxozBmDFjmF33/fv3mV23q6srHB0dwePxUFNTg5KSEqPE8r333sPLL7+Mjz/+uM+JJU1aWhpGjRqFe/futZvlJFgGciTbR6isrGSOBg8dOoSbN2/i7Nmz7a7RarUYN24cMjMz4enpiYiICPzzn/8c0DNdFEVBKpUy4yoqlQoxMTEQCoUICAhod+M0p0etsWg0GuTn58PT0xOjRo0yW8ctG+h5Wa1WiwkTJlhcbOhdd3V1NRQKBezs7NDS0oLQ0FBWdWuNRoMVK1YgJCQEO3bs6LNimZeXh0WLFiEtLQ3Tp0/HzZs3mXsCOZI1OaSG2ZdZsmQJ8vLywOPx4Ovri+PHj2PUqFHtZj0BIDU1FRs3boROp8OKFSvIrGcbKIpCdXU1UlJSIJFIIJPJIBAIIBKJUFFRgRMnTuCf//wn5/6narUaeXl58PX1BZ/P7/S8IaN02uPW1A47L1qzUVVVFYqLizFs2DA0NjbC0dGxy5guWixDQ0Px0Ucfcb7+nkJRFKZNm4bdu3cztpo3btzAP/7xDwBEMM0AEUxC92zduhXnz5+Hra0txo4di9OnTxs8muwP2Z4NDQ348ccfcfToURQXF+P111/Hm2++ialTp3JmBtA2+HnEiBGsPqdt2gZFUUztr7fCT8+f2tjYwN/fn3OxkcvlKC0tRXBwMGxsbEBRVLuYLtoc39nZGQ4ODlCr1VixYgXCw8Px4Ycfcr7+3nDixAlkZmbiX//6F4DfR8giIiJw6NAhfPzxx3jw4AEUCgVGjBiBb775honfI/QYIpiE7snIyMCrr74Ka2trbNu2DQDwxRdfdLquvwxXf/fdd/jmm2/w/fffIzc3F2KxGLm5uZg6dSqEQiEiIyMt5ova3NyMgoKCXtVP1Wo1M66iVqt77HGr1+tRWFgIe3t7+Pn5cS42MpkMUqmUEUtD0KM627Ztg1QqxdChQzFt2jTs27fPJOvvzhREpVJh6dKluHXrFkaMGIF//etf8PX17fX3JXACEUyCcUgkEpw7d4459mlLfxBMqVSKDRs24B//+Ee7nESNRoOffvoJSUlJuHbtGoKCgiASiSAQCMyW7WhM8DNb6NqfXC5nOm7ZGAbQZg1OTk5M5BSXVFVVoaysDCEhIazqtWq1GsuXL8fgwYPR0tKCiooKREVFYdmyZRg3blyP1sDGFORvf/sbCgoKcOzYMZw9exYSiYTZERL6HEQwCcYhFAqxYMECLF68uNNz/SXbk6KobsXjl19+QVJSEi5duoTRo0dDKBQiJiam0xxsT+lN8DNbDBkG0B63bY+fdTod7t69CxcXF3h7e5tlLcZAW+8FBwezFstly5bhj3/8I7Zu3QoejwelUomMjAx4eHhgypQpPVoHG1OQqKgo7Nq1C3/4wx+g1Wrh7u7OGFMQ+hxkDpPwO2yyPffs2QNra2ssWrTI4NfIzs5ul+05fvz4Ppnt2d3NzMrKClOmTMGUKVNAURQKCwuRlJSE+fPnw9HREUKhEEKhkLE2Mxba/9TcIdRWVlYYOXIkRo4cyRgGyOVyFBcXw97enonoKiwsBJ/PZxVRZ26MFUuVSoVly5ZhxowZSEhIYH4fQ4cOZYIPekp5eXk7tycvLy/cvHnzuddYW1vD2dkZz54969OnMIT2EMEcgHQ373nmzBlcuHABmZmZzxUBer6Tz+fjjTfeQE5OTp8UTGPg8XiYNGkSJk2ahMTERDx+/BhisRjLly+HTqfDvHnzIBQKWdf86MF7S4cttzUMoDtuq6qqcP/+fUa0VSoVp5mWtE9tSEgIqwYsWiwjIyOxZcsWsqsjmAVu3ZsJLxzp6en48ssv8cMPPzy3y1KpVKKpqYn5OCMjA5MmTbLkMjmHx+PBz88PCQkJuHr1Ks6dO4fhw4cjISEBs2bNwt69e3Hv3j3o9XqDny+TyZjBe0uKZUd4PB7s7OxQX1+PiRMnIjg4mDmW/eWXX/DkyRM0NzdbdE3l5eWorKxEcHAwa7FcunQpZs6caTaxZGMK0vYarVaLhoYG1p3OhL4BqWES2uHv7w+VSsX8oU+dOhXHjh0j2Z5GUFdXh/PnzyM5ORklJSV45ZVXIBKJEB4ejkGDBuHUqVPw8fHBzJkzzW460B1dzXyq1WrG41atVmPEiBHg8/mM2445ePr0KeRyOWtTd5VKhSVLluDVV1/Fpk2bzLYuNqYgR48exd27d5mmH7FYjP/5n/8xy3oIZoc0/RAIlobegYvFYty5cwceHh6ora1FcnIyXFxcOF2bWq3GnTt3WHnmarVaPHv2DHK5HAqFAi4uLnB1dWUav0yBsWLZ2tqKJUuW4LXXXsPGjRvNfgxryBQkMTER4eHhEIlEzHru3LkDFxcXnD179oXw/yX0CCKYBG4Z6HNsn332GS5evIgJEybg3//+N4KDgyEUCjF79myLuwvRBgkBAQFGCzfbjltjKCsrQ01NDSZPnsxaLBcvXow5c+YgPj6e1CwJpoYIJoE7Bvoc286dO/H06VOcPHkS1tbW0Ol0uH79OsRiMTIzMzF27FjExsZi7ty5cHZ2NutaWlpakJ+fj8DAwF6PxrTtuK2trcWQIUMYj1u2aRpSqRS1tbWsE1BaW1uxaNEiREdHY8OGDUQsCeaACCaBOwb6HNutW7cQEhJiUBD0ej0KCgqQlJSE9PR0uLi4QCgUYt68eeDz+Sb9+Wk3oQkTJphcmCmKYiK6ampqYG1t3a3HrbHZmrRYzp07F3/+85/7xf8NwgsJmcMkcMdAn2MLCwt77nNWVlYIDg5GcHAwdu/ejUePHkEsFmPx4sUYNGgQ5s2bh7i4OIwePbpXAqFUKlFQUGC2NBYejwcHBwc4ODjAz88PLS0tkMvluHv3rkGP2ydPnqChoYG1WLa0tGDRokWIjY3Fn/70JyKWBItDBJNAeIHg8XgICAjAtm3b8MEHH6CiogISiQTr169HY2Mj5s6dC6FQaHTMVlNTE+7du4eXXnrJbG5CHRkyZAh8fHzg4+PDdNw+fPgQKpWKOa4NDg5mLZbvvvsuRCIR3n//fSKWBE4gc5gEi0Dm2IyHx+PB09MT69evx+XLl5GWlgZfX1/s3r0b06dPxyeffILc3NznznrSNDY24t69e5g8ebLFxLIjtra28PT0REhICFxdXaHT6WBjY4OcnBw8ePAAtbW1z/05WlpasHDhQsTFxRGxJHAKqWESLAKZYzMtTU1NSEtLg1gsRmFhIWbMmAGRSIRp06a1m+2srq5GcXGx2a332FJSUgKlUomgoCBYWVkxHbfV1dWor69nOm6HDRsGGxsbRixff/11rFu3joglwVKQph8Ct5A5NvOgUqmQmZkJiUSC69evIywsDCKRCBqNBocOHUJqairnYklRFEpKStDS0oKgoCCDwkd33MpkMqxcuRJOTk5oaWnB22+/bXJTgoGU+0roEUQwCQODsrIyLF26FDKZDDweD6tXr0Z8fHy7a7KyshAXF8fEV82fPx+JiYlcLNekaLVaZGdn4/Dhw/j5558RGRmJ119/HXPmzDFLow8bKIpCcXExVCoVJk6cyEr4FAoFlixZgiFDhkAmk8HJyQmvv/46/uM//sMkTWADLfeVYDSkS5YwMLC2tsaBAwcQGhqKpqYmhIWFQSAQtJv5BIAZM2bgwoULHK3SPFhbWzNm6vfu3cPTp0+RlJSEw4cPw83NDSKRCDExMRYTAIqi8OjRI6jVatZiqVQqsXDhQixYsACrVq0Cj8eDVCpFcnIypFKpSdY+Z84c5uOpU6fi3Llzvf6ahP4PEUxCv2PUqFEYNWoUAMDR0RETJkxAeXl5J8HsjyiVSpw8eRJpaWkYPnw43NzcEBYWhj179uDBgwcQi8VYsGAB7OzsEBsbC5FIBA8PD7PUBmmx1GgA5rinAAAJrElEQVQ0RonlggULsHDhQqxcuZL5HG9vb2zYsMHkawSAU6dOYcGCBQaf4/F4mDNnTp/PfSWYBnIkS+jXPHnyBJGRkbh37x6cnJyYx7OysvDmm2/Cy8sLHh4e2L9/f7sGpP4MRVGQSqWQSCRISUlBa2srYmJiIBQKERAQYBLxpCgKv/32G/R6PcaPH2+UWL777rt47733er0Otrmvubm5EIvFBr9feXl5u9zXr776qt/H2BEAkBomYaChUCgwc+ZM7NixA/Pnz2/3XGNjI6ysrODg4IDU1FTEx8ejqKiIo5VyB0VRqK6uRkpKCpKTk1FVVQWBQACRSMTaUMDQ1/ztt99AURQCAwONEstFixbhvffe68mPYjRnzpzB8ePHkZmZycrLd9euXXBwcEBCQoIFVkfgGCKYhIGDRqNBbGwsoqKisHnz5m6vJ80dv9PQ0IDU1FSIxWI8fPgQM2fOhEgkwtSpU1mZolMUhYcPH4LH42HcuHGsG3zeeecdLF68GCtWrDDFj9Et6enp2Lx5M65evQpXV1eD1yiVSuj1ejg6OkKpVEIgECAxMRHR0dEWWSOBU4hgEgYGFEVh2bJlcHFxweHDhw1eU1VVBTc3N/B4POTk5OCtt95CaWkpmfNrQ2trKy5duoSkpCTk5uZiypQpEIlEiIyMNOgNS1EUHjx4ACsrK6PEcsGCBVi6dCn+8z//0xw/hkFI7iuhG4hgEgYG2dnZmDFjBl566SXmSHHv3r2QSqUAgLVr1+LIkSP4+uuvYW1tjSFDhuDgwYOYNm0al8t+odFoNPjpp5+QlJSEa9euISgoCCKRCAKBAEOHDoVOp8Pp06cRGRnJug6qUCjw9ttvY/ny5Vi+fLn5fwgCgT1EMAmWp6ysDJGRkbh16xZcXFxQV1eH0NBQXLlyBVevXsVnn30GAPj444+xbNkyjldLYINer8cvv/yCpKQkJq5NoVDA29sbf/vb31iJZVNTE95++22sWLGC/N4JLyJEMAnc8OWXX+LRo0c4ceIE1qxZA19fX6xZswbh4eHIzc0Fj8dDWFgYbt261et8RkvTnRMMRVGIj49Hamoq7O3tcebMGYSGhnK0WtOj1Wrx1ltvoaGhAUqlEk5OTsy4Cn3k3RFaLN977z0sXbqUg1UTCN1CjAsI3LBp0yaEhYXh8OHDyM7OxpEjR3Du3DkIBAK4uLgAAAQCAdLT07Fw4UKOV2s8V65ceW6zUFpaGoqKilBUVISbN29i3bp1nWLN+iq0xWFwcDA++eQTAMDjx48hFouxfPly6HQ6zJs3D0KhEH5+fuDxeIxYrly5EkuWLOH4JyAQjIMIJsHs2NjYYN++fYiOjkZGRgZsbGwM5mOWl5dzuErzkJKSgqVLl4LH42Hq1Kmor69HZWUlY6zQl9HpdJg7d267Nzl+fn5ISEjAli1bIJPJkJycjISEBNTW1mLmzJm4evUq4uPjsXjxYg5XTiD0DBLvRbAIaWlpGDVqFO7du8f1UkwK7QQTFhaGEydOdHq+P78xsLW1fe6JAI/Hg7u7O9auXYuLFy8iIyMDbm5umD17NhFLQp+F7DAJZicvLw+XLl3CjRs3MH36dLzzzjvw9PREVlYWc83Tp08xa9YsztbYU7Kzs9s5wYwfP544wRhg+PDh2Lp1K9fLIBB6BdlhEswKRVFYt24dDh8+DG9vb2zduhUJCQmIiopCRkYG6urqUFdXh4yMDERFRXG9XKOhQ7D5fD7eeOMN5OTkdHq+u+BsQs/YtWsXPD09ERwcjODgYKSmphq8Lj09HYGBgfD398fnn39u4VUS+hNEMAlm5eTJk/D29oZAIAAAvP/++7h//z7u3r2LnTt3IiIiAhEREUhMTGQagPoKSqUSTU1NzMcZGRmYNGlSu2tEIhG+++47UBSFGzduwNnZuV/UL18UNm3ahLy8POTl5SEmJqbT8zqdDn/605+QlpaGX3/9Fd9//z1+/fVXDlZK6A+QI1mCWVm9enW7hIdBgwbh9u3bAICZM2dazArNHMhksk5OMNHR0Th27BiA3w0SYmJikJqaCn9/f9jb2+P06dNcLnnAkZOTA39/fyaI/J133kFKSsqASK4hmB4imARCD/Hz80N+fn6nx9euXct8zOPxcPTo0V5/r4cPH7aLoCopKcHu3buxceNG5rH+GordFUeOHMF3332H8PBwHDhwoNMcr6Gmq/4y1kOwPEQwCYQ+QGBgIPLy8gD8fszo6enJ7G7b0t9CsbuK6Fq3bh127twJHo+HnTt3YsuWLTh16hQHqyQMFIhgEgh9jMzMTIwdOxY+Pj5cL8XsXL58mdV1q1atQmxsbKfHSdMVwZSQph8CoY9x9uzZ584/Xr9+HS+//DLmzp2LwsJCC6/MslRWVjIfSySSTg1XABAREYGioiI8fvwYarUaZ8+ehUgksuQyCf0I4iVLIPQh1Go1PDw8UFhYCDc3t3bPDbRQ7CVLliAvLw88Hg++vr44fvw4Ro0a1S6iCwBSU1OxceNGxsqPRHQRWEDM1wmEvk5KSgqOHj2KjIyMbq8lodgEQo8xKJjkSJZA6EN8//33zz2OraqqAv0GOCcnB3q9nglIJhAIvYc0/RAIfQSlUolLly7h+PHjzGNtZz7PnTvXLhT77NmzrLIpCQQCO8iRLIFAIBAI7SFHsgQCwTArVqwAn89v12laW1sLgUCAgIAACAQC1NXVGfzcb7/9FgEBAQgICMC3335rqSUTCBaH7DAJBAKuXbsGBwcHLF26lIlg++CDD+Di4oLt27fj888/R11dHb744ot2n1dbW4vw8HDk5uaCx+MhLCwMt27d6uS4QyD0McgOk0AgGCYyMrKT+X1KSgqWLVsGAFi2bBmSk5M7fd7FixchEAjg4uKC4cOHQyAQID093SJrJhAsDRFMAoFgEJlMxiSruLu7QyaTdbqmPwdkEwgdIYJJIBC6hcfjkY5bwoCHCCaBQDCIm5sbYz9XWVkJPp/f6Rri1UoYSBDBJBAIBhGJREzX67fffou4uLhO10RFRSEjIwN1dXWoq6tDRkYGoqKiLL1UAsEiEMEkEAhYuHAh/vCHP+Dhw4fw8vLCN998g+3bt+PSpUsICAjA5cuXsX37dgBAbm4uVq5cCQBwcXHBzp07ERERgYiICCQmJnZqHiIQ+gtkrIRAIBAIhPaQsRICgUAgEHoKEUwCgUAgEFhABJNAIBAIBBYQwSQQCAQCgQXdxXuRSWUCgUAgEEB2mAQCgUAgsIIIJoFAIBAILCCCSSAQCAQCC4hgEggEAoHAAiKYBAKBQCCwgAgmgUAgEAgs+D/pMvAS9zT0nQAAAABJRU5ErkJggg==\n" - }, - "metadata": { - "needs_background": "light" - } - } - ], - "source": [ - "\n", - "nodes = list(gr)\n", - "for i in range(3):\n", - " nodes[i].plot_hyperplane()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -174,7 +99,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "7277d3d9d17e4ae49cc23898525a2099" + "model_id": "37b951957160456491b7691f31d7b0f0" } }, "metadata": {} @@ -182,25 +107,15 @@ { "output_type": "execute_result", "data": { - "text/plain": "" + "text/plain": "" }, "metadata": {}, - "execution_count": 5 + "execution_count": 6 } ], "source": [ "%matplotlib widget\n", - "k = list(gr)[0]\n", - "k.plot_hyperplane()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "plt.close('all')" + "gr._tree_gr.plot_hyperplane()" ] }, { @@ -215,103 +130,11 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "8f884afcdd424c6785439ad7eb80163c" + "model_id": "0e10725310904f0abcacd0ec69d2c60b" } }, "metadata": {} }, - { - "output_type": "error", - "ename": "ValueError", - "evalue": "'c' argument has 1500 elements, which is inconsistent with 'x' and 'y' with size 300.", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m~/.virtualenvs/stree/lib/python3.7/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36m_parse_scatter_color_args\u001b[0;34m(c, edgecolors, kwargs, xsize, get_next_color_func)\u001b[0m\n\u001b[1;32m 4230\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# Is 'c' acceptable as PathCollection facecolors?\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4231\u001b[0;31m \u001b[0mcolors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmcolors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_rgba_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4232\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/stree/lib/python3.7/site-packages/matplotlib/colors.py\u001b[0m in \u001b[0;36mto_rgba_array\u001b[0;34m(c, alpha)\u001b[0m\n\u001b[1;32m 339\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 340\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mto_rgba\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mcc\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 341\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/stree/lib/python3.7/site-packages/matplotlib/colors.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 339\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 340\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mto_rgba\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mcc\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 341\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/stree/lib/python3.7/site-packages/matplotlib/colors.py\u001b[0m in \u001b[0;36mto_rgba\u001b[0;34m(c, alpha)\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrgba\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# Suppress exception chaining of cache lookup failure.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 185\u001b[0;31m \u001b[0mrgba\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_to_rgba_no_colorcycle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/stree/lib/python3.7/site-packages/matplotlib/colors.py\u001b[0m in \u001b[0;36m_to_rgba_no_colorcycle\u001b[0;34m(c, alpha)\u001b[0m\n\u001b[1;32m 267\u001b[0m \u001b[0;31m# Test dimensionality to reject single floats.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 268\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Invalid RGBA argument: {orig_c!r}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 269\u001b[0m \u001b[0;31m# Return a tuple to prevent the cached value from being modified.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: Invalid RGBA argument: 0.0", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_leaf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_distribution\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/Code/STree/trees/Sgraph.py\u001b[0m in \u001b[0;36mplot_distribution\u001b[0;34m(self, node, ax)\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0mfig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_plot_size\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_subplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprojection\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'3d'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 44\u001b[0;31m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_X\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_X\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_X\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_y\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 45\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_xlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'X0'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_ylabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'X1'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/stree/lib/python3.7/site-packages/mpl_toolkits/mplot3d/axes3d.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(self, xs, ys, zs, zdir, s, c, depthshade, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2237\u001b[0m \u001b[0mxs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mzs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcbook\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdelete_masked_points\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mzs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2238\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2239\u001b[0;31m \u001b[0mpatches\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2240\u001b[0m art3d.patch_collection_2d_to_3d(patches, zs=zs, zdir=zdir,\n\u001b[1;32m 2241\u001b[0m depthshade=depthshade)\n", - "\u001b[0;32m~/.virtualenvs/stree/lib/python3.7/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1563\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0minner\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1565\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msanitize_sequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1566\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1567\u001b[0m \u001b[0mbound\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_sig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/stree/lib/python3.7/site-packages/matplotlib/cbook/deprecation.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 356\u001b[0m \u001b[0;34mf\"%(removal)s. If any parameter follows {name!r}, they \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 357\u001b[0m f\"should be pass as keyword, not positionally.\")\n\u001b[0;32m--> 358\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 359\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 360\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/stree/lib/python3.7/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, plotnonfinite, **kwargs)\u001b[0m\n\u001b[1;32m 4390\u001b[0m self._parse_scatter_color_args(\n\u001b[1;32m 4391\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0medgecolors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4392\u001b[0;31m get_next_color_func=self._get_patches_for_fill.get_next_color)\n\u001b[0m\u001b[1;32m 4393\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4394\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mplotnonfinite\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mcolors\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/stree/lib/python3.7/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36m_parse_scatter_color_args\u001b[0;34m(c, edgecolors, kwargs, xsize, get_next_color_func)\u001b[0m\n\u001b[1;32m 4232\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4233\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mvalid_shape\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4234\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0minvalid_shape_exception\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxsize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4235\u001b[0m \u001b[0;31m# Both the mapping *and* the RGBA conversion failed: pretty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4236\u001b[0m \u001b[0;31m# severe failure => one may appreciate a verbose feedback.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: 'c' argument has 1500 elements, which is inconsistent with 'x' and 'y' with size 300." - ] - } - ], - "source": [ - "for i in gr:\n", - " if i.is_leaf():\n", - " gr.plot_distribution(i)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "from trees.Snode import Snode\n", - "import matplotlib.pyplot as plt\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "def plot_distribution(node: Snode, ax=None):\n", - " #if ax is None:\n", - " print(\"shapes\", node._X.shape, node._y.shape)\n", - " fig = plt.figure(figsize=(8,8))\n", - " ax = fig.add_subplot(111, projection='3d')\n", - " plt.plot([1, 2, 3, 4], [10, 20, 25, 30], color='lightblue', linewidth=3)\n", - " ax.scatter(node._X[:, 0], node._X[:, 1], node._X[:, 2], c=y)\n", - " #ax.set_xlabel('X0')\n", - " #ax.set_ylabel('X1')\n", - " #ax.set_zlabel('X2')\n", - " plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "plt.close('all')" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "output_type": "error", - "ename": "TypeError", - "evalue": "'NoneType' object is not subscriptable", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_distribution\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/Code/STree/trees/Sgraph.py\u001b[0m in \u001b[0;36mplot_distribution\u001b[0;34m(self, node, ax)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_xlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'X0'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_ylabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'X1'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_zlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'X2'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: 'NoneType' object is not subscriptable" - ] - } - ], - "source": [ - "for i in list(gr):\n", - " gr.plot_distribution(i)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ { "output_type": "display_data", "data": { @@ -319,55 +142,268 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "d1dcba71fdce480992bfdbfc4ef53132" + "model_id": "a012f2a3a9384a2b9efea7daa07c13f7" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "bba277da6b504f42bdee020168bee398" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "b46819eb713b42d387a1222351a1cf45" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c17186e480b14991a94565c13925fa22" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "f7e8eac66a3f4bfab4df1d84598cf11a" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c87bebfd1b164b87ab8596af10995df8" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "07588cc0e50942088d6e984b81cbd6ed" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "7833bb59aa884d9881934909903ffc58" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "967561350a574250aa1cf10077d329b6" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "8497a0225dd743c99be1f00bb170e0be" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "0177f6bc025e47b2bcb4885606b77a6f" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "deb8b28ac0244bfa97b660999898e9e0" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "e3a167e2c62d4fddb948361f0fe0ad9e" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "93f6574e3f874f96837e347cae828606" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "db0e4daed62942b593812703426b5a36" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "12fd4a1e0f594bbb97de7e3d12967ed5" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "d4fcc5b4189948e9864b6795061a70bf" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "a87b7691875b417aa2f7f339a2790381" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "e416d08ea8f94f00a68610615496be1f" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "dc2a275ceed44d61a82d3087eab9e3ef" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "61341cabc77e46c583c572da49228d87" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "b4b1656f655349b4a8be1d514217d120" } }, "metadata": {} } ], "source": [ - "%matplotlib widget\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "import matplotlib.pyplot as plt\n", - "from matplotlib import cm\n", - "from matplotlib.ticker import LinearLocator, FormatStrFormatter\n", - "import numpy as np\n", - "\n", - "fig = plt.figure()\n", - "ax = fig.gca(projection='3d')\n", - "\n", - "scale = 8\n", - "# Make data.\n", - "X = np.arange(-scale, scale, 0.25)\n", - "Y = np.arange(-scale, scale, 0.25)\n", - "X, Y = np.meshgrid(X, Y)\n", - "Z = X**2 + Y**2\n", - "\n", - "# Plot the surface.\n", - "surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,\n", - " linewidth=0, antialiased=False)\n", - "\n", - "# Customize the z axis.\n", - "ax.set_zlim(0, 100)\n", - "ax.zaxis.set_major_locator(LinearLocator(10))\n", - "ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))\n", - "\n", - "# rotate the axes and update\n", - "#for angle in range(0, 360):\n", - "# ax.view_init(30, 40)\n", - "\n", - "# Add a color bar which maps values to colors.\n", - "fig.colorbar(surf, shrink=0.5, aspect=5)\n", - "\n", - "plt.show()" + "for i in gr:\n", + " i.plot_hyperplane()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/tests/Stree_test.py b/tests/Stree_test.py index 4a8b235..e3736d5 100644 --- a/tests/Stree_test.py +++ b/tests/Stree_test.py @@ -144,15 +144,17 @@ class Stree_test(unittest.TestCase): """Check that element 28 has a prediction different that the current label """ # Element 28 has a different prediction than the truth + decimals = 8 X, y = self._get_Xy() yp = self._clf.predict_proba(X[28, :].reshape(-1, X.shape[1])) self.assertEqual(0, yp[0:, 0]) self.assertEqual(1, y[28]) - self.assertEqual(0.29026400766, round(yp[0, 1], 11)) + self.assertEqual(round(0.29026400766, decimals), round(yp[0, 1], decimals)) def test_multiple_predict_proba(self): # First 27 elements the predictions are the same as the truth num = 27 + decimals = 8 X, y = self._get_Xy() yp = self._clf.predict_proba(X[:num, :]) self.assertListEqual(y[:num].tolist(), yp[:, 0].tolist()) @@ -161,7 +163,9 @@ class Stree_test(unittest.TestCase): 0.30756427, 0.8318412, 0.18981198, 0.15564624, 0.25740655, 0.22923355, 0.87365959, 0.49928689, 0.95574351, 0.28761257, 0.28906333, 0.32643692, 0.29788483, 0.01657364, 0.81149083] - self.assertListEqual(expected_proba, np.round(yp[:, 1], decimals=8).tolist()) + self.assertListEqual( + np.round(expected_proba, decimals=decimals).tolist(), + np.round(yp[:, 1], decimals=decimals).tolist()) def build_models(self): """Build and train two models, model_clf will use the sklearn classifier to diff --git a/trees/Snode_graph.py b/trees/Snode_graph.py index 1b20fd1..ac6dc37 100644 --- a/trees/Snode_graph.py +++ b/trees/Snode_graph.py @@ -23,17 +23,26 @@ class Snode_graph(Snode): def set_plot_size(self, size): self._plot_size = size + def _is_pure(self) -> bool: + """is considered pure a leaf node with one label + """ + if self.is_leaf(): + return self._belief == 1. + return False + def plot_hyperplane(self): # get the splitting hyperplane def hyperplane(x, y): return (-self._interceptor - self._vector[0][0] * x - self._vector[0][1] * y) / self._vector[0][2] fig = plt.figure(figsize=self._plot_size) ax = fig.add_subplot(1, 1, 1, projection='3d') - tmpx = np.linspace(self._X[:, 0].min(), self._X[:, 0].max()) - tmpy = np.linspace(self._X[:, 1].min(), self._X[:, 1].max()) - xx, yy = np.meshgrid(tmpx, tmpy) - ax.plot_surface(xx, yy, hyperplane(xx, yy), alpha=.5, antialiased=True, - rstride=1, cstride=1, cmap='seismic') + if not self._is_pure(): + # Can't plot hyperplane of leaves with one label because it hasn't classiffier + tmpx = np.linspace(self._X[:, 0].min(), self._X[:, 0].max()) + tmpy = np.linspace(self._X[:, 1].min(), self._X[:, 1].max()) + xx, yy = np.meshgrid(tmpx, tmpy) + ax.plot_surface(xx, yy, hyperplane(xx, yy), alpha=.5, antialiased=True, + rstride=1, cstride=1, cmap='seismic') plt.title(self._title) self.plot_distribution(ax) return ax diff --git a/trees/Stree_grapher.py b/trees/Stree_grapher.py index 1b4f833..f43a32c 100644 --- a/trees/Stree_grapher.py +++ b/trees/Stree_grapher.py @@ -33,6 +33,9 @@ class Stree_grapher(Stree): def _copy_tree(self, node: Snode) -> Snode_graph: mirror = Snode_graph(node) + # clone node + mirror._class = node._class + mirror._belief = node._belief if node.get_down() is not None: mirror.set_down(self._copy_tree(node.get_down())) if node.get_up() is not None: