Fix entroy and information_gain functions

This commit is contained in:
2020-06-16 13:56:02 +02:00
parent a20e45e8e7
commit 3e52a4746c
3 changed files with 156 additions and 51 deletions

View File

@@ -10,6 +10,7 @@ import os
import numbers
import random
import warnings
from math import log
from itertools import combinations
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
@@ -163,10 +164,10 @@ class Splitter:
f"criterion must be gini or entropy got({criterion})"
)
if criteria not in ["min_distance", "max_samples"]:
if criteria not in ["min_distance", "max_samples", "max_distance"]:
raise ValueError(
f"split_criteria has to be min_distance or \
max_samples got ({criteria})"
"split_criteria has to be min_distance "
f"max_distance or max_samples got ({criteria})"
)
if splitter_type not in ["random", "best"]:
@@ -186,24 +187,47 @@ class Splitter:
@staticmethod
def _entropy(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
proportion = count / np.sum(count)
return -np.sum(proportion * np.log2(proportion))
n_labels = len(y)
if n_labels <= 1:
return 0
counts = np.bincount(y)
proportions = counts / n_labels
n_classes = np.count_nonzero(proportions)
if n_classes <= 1:
return 0
entropy = 0.0
# Compute standard entropy.
for prop in proportions:
if prop != 0.0:
entropy -= prop * log(prop, n_classes)
return entropy
def information_gain(
self, labels_up: np.array, labels_dn: np.array
self, labels: np.array, labels_up: np.array, labels_dn: np.array
) -> float:
card_up = labels_up.shape[0] if labels_up is not None else 0
imp_prev = self.criterion_function(labels)
card_up = card_dn = imp_up = imp_dn = 0
if labels_up is not None:
card_up = labels_up.shape[0]
imp_up = self.criterion_function(labels_up)
if labels_dn is not None:
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_dn = self.criterion_function(labels_dn)
samples = card_up + card_dn
up = card_up / samples * self.criterion_function(labels_up)
dn = card_dn / samples * self.criterion_function(labels_dn)
return up + dn
if samples == 0:
return 0
else:
result = (
imp_prev
- (card_up / samples) * imp_up
- (card_dn / samples) * imp_dn
)
return result
def _select_best_set(
self, dataset: np.array, labels: np.array, features_sets: list
) -> list:
min_impurity = 1
max_gain = 0
selected = None
warnings.filterwarnings("ignore", category=ConvergenceWarning)
for feature_set in features_sets:
@@ -213,11 +237,12 @@ class Splitter:
)
self.partition(dataset, node)
y1, y2 = self.part(labels)
impurity = self.information_gain(y1, y2)
if impurity < min_impurity:
min_impurity = impurity
gain = self.information_gain(labels, y1, y2)
if gain > max_gain:
max_gain = gain
selected = feature_set
return selected
return selected if selected is not None else feature_set
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
@@ -226,7 +251,8 @@ class Splitter:
features_sets = list(combinations(features, max_features))
if len(features_sets) > 1:
if self._splitter_type == "random":
return features_sets[random.randint(0, len(features_sets) - 1)]
index = random.randint(0, len(features_sets) - 1)
return features_sets[index]
else:
return self._select_best_set(dataset, labels, features_sets)
else:
@@ -248,6 +274,14 @@ class Splitter:
[data[x, y] for x, y in zip(range(len(data[:, 0])), indices)]
)
@staticmethod
def _max_distance(data: np.array, _) -> np.array:
# chooses the greatest distance of every sample
indices = np.argmax(np.abs(data), axis=1)
return np.array(
[data[x, y] for x, y in zip(range(len(data[:, 0])), indices)]
)
@staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array:
# select the class with max number of samples

View File

@@ -46,7 +46,11 @@ class Splitter_test(unittest.TestCase):
self.build(clf=None)
for splitter_type in ["best", "random"]:
for criterion in ["gini", "entropy"]:
for criteria in ["min_distance", "max_samples"]:
for criteria in [
"min_distance",
"max_samples",
"max_distance",
]:
tcl = self.build(
splitter_type=splitter_type,
criterion=criterion,
@@ -57,30 +61,66 @@ class Splitter_test(unittest.TestCase):
self.assertEqual(criteria, tcl._criteria)
def test_gini(self):
y = [0, 1, 1, 1, 1, 1, 0, 0, 0, 1]
expected = 0.48
self.assertEqual(expected, Splitter._gini(y))
expected_values = [
([0, 1, 1, 1, 1, 1, 0, 0, 0, 1], 0.48),
([0, 1, 1, 2, 2, 3, 4, 5, 3, 2, 1, 1], 0.7777777777777778),
([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2], 0.520408163265306),
([0, 0, 1, 1, 1, 1, 0, 0], 0.5),
([0, 0, 1, 1, 2, 2, 3, 3], 0.75),
([0, 0, 1, 1, 1, 1, 1, 1], 0.375),
([0], 0),
([1, 1, 1, 1], 0),
]
for labels, expected in expected_values:
self.assertAlmostEqual(expected, Splitter._gini(labels))
tcl = self.build(criterion="gini")
self.assertEqual(expected, tcl.criterion_function(y))
self.assertAlmostEqual(expected, tcl.criterion_function(labels))
def test_entropy(self):
y = [0, 1, 1, 1, 1, 1, 0, 0, 0, 1]
expected = 0.9709505944546686
self.assertAlmostEqual(expected, Splitter._entropy(y))
expected_values = [
([0, 1, 1, 1, 1, 1, 0, 0, 0, 1], 0.9709505944546686),
([0, 1, 1, 2, 2, 3, 4, 5, 3, 2, 1, 1], 0.9111886696810589),
([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2], 0.8120406807940999),
([0, 0, 1, 1, 1, 1, 0, 0], 1),
([0, 0, 1, 1, 2, 2, 3, 3], 1),
([0, 0, 1, 1, 1, 1, 1, 1], 0.8112781244591328),
([1], 0),
([0, 0, 0, 0], 0),
]
for labels, expected in expected_values:
self.assertAlmostEqual(expected, Splitter._entropy(labels))
tcl = self.build(criterion="entropy")
self.assertEqual(expected, tcl.criterion_function(y))
self.assertAlmostEqual(expected, tcl.criterion_function(labels))
def test_information_gain(self):
yu = np.array([0, 1, 1, 1, 1, 1])
yd = np.array([0, 0, 0, 1])
values_expected = [
("gini", 0.31666666666666665),
("entropy", 0.7145247027726656),
expected_values = [
(
[0, 1, 1, 1, 1, 1],
[0, 0, 0, 1],
0.16333333333333333,
0.25642589168200297,
),
(
[0, 1, 1, 2, 2, 3, 4, 5, 3, 2, 1, 1],
[5, 3, 2, 1, 1],
0.007381776239907684,
-0.03328610916207225,
),
([], [], 0.0, 0.0),
([1], [], 0.0, 0.0),
([], [1], 0.0, 0.0),
([0, 0, 0, 0], [0, 0], 0.0, 0.0),
([], [1, 1, 1, 2], 0.0, 0.0),
]
for criterion, expected in values_expected:
tcl = self.build(criterion=criterion)
computed = tcl.information_gain(yu, yd)
self.assertAlmostEqual(expected, computed)
for yu, yd, expected_gini, expected_entropy in expected_values:
yu = np.array(yu, dtype=np.int32)
yd = np.array(yd, dtype=np.int32)
tcl = self.build(criterion="gini")
computed = tcl.information_gain(np.append(yu, yd), yu, yd)
self.assertAlmostEqual(expected_gini, computed)
tcl = self.build(criterion="entropy")
computed = tcl.information_gain(np.append(yu, yd), yu, yd)
self.assertAlmostEqual(expected_entropy, computed)
def test_max_samples(self):
tcl = self.build(criteria="max_samples")
@@ -113,27 +153,52 @@ class Splitter_test(unittest.TestCase):
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
def test_max_distance(self):
tcl = self.build(criteria="max_distance")
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
]
)
expected = np.array([-0.3, 0.7, -0.9, 0.3])
computed = tcl._max_distance(data, None)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
def test_splitter_parameter(self):
expected_values = [
[1, 7, 9],
[1, 7, 9],
[1, 7, 9],
[1, 7, 9],
[0, 5, 6],
[0, 5, 6],
[0, 5, 6],
[0, 5, 6],
[1, 5, 6], # random gini min_distance
[1, 2, 3], # random gini max_samples
[0, 2, 3], # random gini max_distance
[2, 4, 6], # random entropy min_distance
[2, 5, 6], # random entropy max_samples
[0, 4, 6], # random entropy max_distance
[3, 4, 6], # best gini min_distance
[3, 4, 6], # best gini max_samples
[1, 4, 6], # best gini max_distance
[3, 4, 6], # best entropy min_distance
[3, 4, 6], # best entropy max_samples
[1, 4, 6], # best entropy max_distance
]
X, y = load_dataset(self._random_state, n_features=12)
for splitter_type in ["best", "random"]:
X, y = load_dataset(self._random_state, n_features=7, n_classes=3)
rn = 0
for splitter_type in ["random", "best"]:
for criterion in ["gini", "entropy"]:
for criteria in ["min_distance", "max_samples"]:
for criteria in [
"min_distance",
"max_samples",
"max_distance",
]:
tcl = self.build(
splitter_type=splitter_type,
criterion=criterion,
criteria=criteria,
random_state=self._random_state,
random_state=rn,
)
rn += 3
expected = expected_values.pop(0)
dataset, computed = tcl.get_subspace(X, y, max_features=3)
self.assertListEqual(expected, list(computed))

View File

@@ -239,6 +239,9 @@ class Stree_test(unittest.TestCase):
"min_distance linear": 0.9533333333333334,
"min_distance rbf": 0.836,
"min_distance poly": 0.9473333333333334,
"max_distance linear": 0.9533333333333334,
"max_distance rbf": 0.836,
"max_distance poly": 0.9473333333333334,
},
"Iris": {
"max_samples linear": 0.98,
@@ -247,11 +250,14 @@ class Stree_test(unittest.TestCase):
"min_distance linear": 0.98,
"min_distance rbf": 1.0,
"min_distance poly": 1.0,
"max_distance linear": 0.98,
"max_distance rbf": 1.0,
"max_distance poly": 1.0,
},
}
for name, dataset in datasets.items():
px, py = dataset
for criteria in ["max_samples", "min_distance"]:
for criteria in ["max_samples", "min_distance", "max_distance"]:
for kernel in self._kernels:
clf = Stree(
C=1e4,