Fix entroy and information_gain functions

This commit is contained in:
2020-06-16 13:56:02 +02:00
parent a20e45e8e7
commit 3e52a4746c
3 changed files with 156 additions and 51 deletions

View File

@@ -10,6 +10,7 @@ import os
import numbers
import random
import warnings
from math import log
from itertools import combinations
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
@@ -163,10 +164,10 @@ class Splitter:
f"criterion must be gini or entropy got({criterion})"
)
if criteria not in ["min_distance", "max_samples"]:
if criteria not in ["min_distance", "max_samples", "max_distance"]:
raise ValueError(
f"split_criteria has to be min_distance or \
max_samples got ({criteria})"
"split_criteria has to be min_distance "
f"max_distance or max_samples got ({criteria})"
)
if splitter_type not in ["random", "best"]:
@@ -186,24 +187,47 @@ class Splitter:
@staticmethod
def _entropy(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
proportion = count / np.sum(count)
return -np.sum(proportion * np.log2(proportion))
n_labels = len(y)
if n_labels <= 1:
return 0
counts = np.bincount(y)
proportions = counts / n_labels
n_classes = np.count_nonzero(proportions)
if n_classes <= 1:
return 0
entropy = 0.0
# Compute standard entropy.
for prop in proportions:
if prop != 0.0:
entropy -= prop * log(prop, n_classes)
return entropy
def information_gain(
self, labels_up: np.array, labels_dn: np.array
self, labels: np.array, labels_up: np.array, labels_dn: np.array
) -> float:
card_up = labels_up.shape[0] if labels_up is not None else 0
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_prev = self.criterion_function(labels)
card_up = card_dn = imp_up = imp_dn = 0
if labels_up is not None:
card_up = labels_up.shape[0]
imp_up = self.criterion_function(labels_up)
if labels_dn is not None:
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_dn = self.criterion_function(labels_dn)
samples = card_up + card_dn
up = card_up / samples * self.criterion_function(labels_up)
dn = card_dn / samples * self.criterion_function(labels_dn)
return up + dn
if samples == 0:
return 0
else:
result = (
imp_prev
- (card_up / samples) * imp_up
- (card_dn / samples) * imp_dn
)
return result
def _select_best_set(
self, dataset: np.array, labels: np.array, features_sets: list
) -> list:
min_impurity = 1
max_gain = 0
selected = None
warnings.filterwarnings("ignore", category=ConvergenceWarning)
for feature_set in features_sets:
@@ -213,11 +237,12 @@ class Splitter:
)
self.partition(dataset, node)
y1, y2 = self.part(labels)
impurity = self.information_gain(y1, y2)
if impurity < min_impurity:
min_impurity = impurity
gain = self.information_gain(labels, y1, y2)
if gain > max_gain:
max_gain = gain
selected = feature_set
return selected
return selected if selected is not None else feature_set
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
@@ -226,7 +251,8 @@ class Splitter:
features_sets = list(combinations(features, max_features))
if len(features_sets) > 1:
if self._splitter_type == "random":
return features_sets[random.randint(0, len(features_sets) - 1)]
index = random.randint(0, len(features_sets) - 1)
return features_sets[index]
else:
return self._select_best_set(dataset, labels, features_sets)
else:
@@ -248,6 +274,14 @@ class Splitter:
[data[x, y] for x, y in zip(range(len(data[:, 0])), indices)]
)
@staticmethod
def _max_distance(data: np.array, _) -> np.array:
# chooses the greatest distance of every sample
indices = np.argmax(np.abs(data), axis=1)
return np.array(
[data[x, y] for x, y in zip(range(len(data[:, 0])), indices)]
)
@staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array:
# select the class with max number of samples