mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-17 00:16:07 +00:00
Implement split data with or without using predictions & some tests
This commit is contained in:
@@ -17,7 +17,7 @@ class Snode:
|
||||
self._y = y
|
||||
self._down = None
|
||||
self._up = None
|
||||
self._class = None
|
||||
self._class = None # really needed?
|
||||
|
||||
def set_down(self, son):
|
||||
self._down = son
|
||||
@@ -28,13 +28,13 @@ class Snode:
|
||||
def is_leaf(self,) -> bool:
|
||||
return self._up is None and self._down is None
|
||||
|
||||
def get_down(self):
|
||||
def get_down(self) -> 'Snode':
|
||||
return self._down
|
||||
|
||||
def get_up(self):
|
||||
def get_up(self) -> 'Snode':
|
||||
return self._up
|
||||
|
||||
def __str__(self):
|
||||
def __str__(self) -> str:
|
||||
if self.is_leaf():
|
||||
num = 0
|
||||
for i in np.unique(self._y):
|
||||
|
@@ -8,6 +8,7 @@ Uses LinearSVC
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import typing
|
||||
from sklearn.svm import LinearSVC
|
||||
|
||||
from trees.Snode import Snode
|
||||
@@ -15,45 +16,50 @@ from trees.Snode import Snode
|
||||
class Stree:
|
||||
"""
|
||||
"""
|
||||
def __init__(self, max_iter: int=1000, random_state: int=0):
|
||||
def __init__(self, max_iter: int=1000, random_state: int=0, use_predictions: bool=False):
|
||||
self._max_iter = max_iter
|
||||
self._random_state = random_state
|
||||
self._outcomes = None
|
||||
self._tree = None
|
||||
self.__folder = 'data/'
|
||||
self.__use_predictions = use_predictions
|
||||
|
||||
def _split_data(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray) -> list:
|
||||
# doesn't work with multiclass as each sample has to do inner product with its own coeficients
|
||||
# computes positition of every sample is w.r.t. the hyperplane
|
||||
coef = clf.coef_[0, :].reshape(-1, X.shape[1])
|
||||
intercept = clf.intercept_[0]
|
||||
res = X.dot(coef.T) + intercept
|
||||
down = res > 0
|
||||
if self.__use_predictions:
|
||||
yp = clf.predict(X)
|
||||
down = (yp == 1).reshape(-1, 1)
|
||||
else:
|
||||
# doesn't work with multiclass as each sample has to do inner product with its own coeficients
|
||||
# computes positition of every sample is w.r.t. the hyperplane
|
||||
coef = clf.coef_[0, :].reshape(-1, X.shape[1])
|
||||
intercept = clf.intercept_[0]
|
||||
res = X.dot(coef.T) + intercept
|
||||
down = res > 0
|
||||
up = ~down
|
||||
X_down = X[down[:, 0]] if any(down) else None
|
||||
y_down = y[down[:, 0]] if any(down) else None
|
||||
X_up = X[up[:, 0]] if any(up) else None
|
||||
y_up = y[up[:, 0]] if any(up) else None
|
||||
return X_up, y_up, X_down, y_down
|
||||
return [X_up, y_up, X_down, y_down]
|
||||
|
||||
def fit(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> list:
|
||||
def fit(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> 'Stree':
|
||||
self._tree = self.train(X, y, title)
|
||||
return self
|
||||
|
||||
def train(self: Snode, X: np.ndarray, y: np.ndarray, title: str='') -> list:
|
||||
|
||||
def train(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> Snode:
|
||||
if np.unique(y).shape[0] == 1:
|
||||
# onlyt 1 class => pure dataset
|
||||
return Snode(np.array([]), 0, X, y, title + f', <pure> class={np.unique(y)} items={y.shape[0]}')
|
||||
# only 1 class => pure dataset
|
||||
return Snode(np.array([]), 0, X, y, title + f', class={np.unique(y)}, items={y.shape[0]}, rest=0, <pure> ')
|
||||
# Train the model
|
||||
clf = LinearSVC(max_iter=self._max_iter, random_state=self._random_state)
|
||||
clf.fit(X, y)
|
||||
tree = Snode(clf.coef_, clf.intercept_, X, y, title)
|
||||
#plot_hyperplane(clf, X, y, title)
|
||||
X_T, y_t, X_O, y_o = self._split_data(clf, X, y)
|
||||
if X_T is None or X_O is None:
|
||||
X_U, y_u, X_D, y_d = self._split_data(clf, X, y)
|
||||
if X_U is None or X_D is None:
|
||||
# didn't part anything
|
||||
return Snode(clf.coef_, clf.intercept_, X, y, title + f', <couldn\'t go any further> classes={np.unique(y)} items<0>={y[y==0].shape[0]} items<1>={y[y==1].shape[0]}')
|
||||
tree.set_up( self.train(X_T, y_t, title + ' - Up'))
|
||||
tree.set_down(self.train(X_O, y_o, title + ' - Down'))
|
||||
return Snode(clf.coef_, clf.intercept_, X, y, title + f', classes={np.unique(y)}, items<0>={y[y==0].shape[0]}, items<1>={y[y==1].shape[0]}, <couldn\'t go any further>')
|
||||
tree.set_up(self.train(X_U, y_u, title + ' - Up' + str(np.unique(y_u, return_counts=True))))
|
||||
tree.set_down(self.train(X_D, y_d, title + ' - Down' + str(np.unique(y_d, return_counts=True))))
|
||||
return tree
|
||||
|
||||
def _print_tree(self, tree: Snode):
|
||||
@@ -67,4 +73,30 @@ class Stree:
|
||||
pointer = self._tree
|
||||
self._print_tree(pointer)
|
||||
|
||||
def _save_datasets(self, tree: Snode, catalog: typing.TextIO, number: int):
|
||||
"""Save the dataset of the node in a csv file
|
||||
|
||||
Arguments:
|
||||
tree {Snode} -- node with data to save
|
||||
number {int} -- a number to make different file names
|
||||
"""
|
||||
data = np.append(tree._X, tree._y.reshape(-1,1), axis=1)
|
||||
name = f"{self.__folder}dataset{number}.csv"
|
||||
np.savetxt(name, data, delimiter=",")
|
||||
catalog.write(f"{name}, - {str(tree)}\n")
|
||||
if tree.is_leaf():
|
||||
return
|
||||
self._save_datasets(tree.get_down(), catalog, number + 1)
|
||||
self._save_datasets(tree.get_up(), catalog, number + 2)
|
||||
|
||||
def get_catalog_name(self):
|
||||
return self.__folder + "catalog.txt"
|
||||
|
||||
def save_sub_datasets(self):
|
||||
"""Save the every dataset stored in the tree to check with manual classifier
|
||||
"""
|
||||
pointer = self._tree
|
||||
with open(self.get_catalog_name(), 'w', encoding = 'utf-8') as catalog:
|
||||
self._save_datasets(pointer, catalog, 1)
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user