Combinatorial explosion (#19)

* Remove itertools combinations from subspaces

* Generates 5 random subspaces at most
This commit is contained in:
Ricardo Montañana Gómez
2021-01-10 13:32:22 +01:00
committed by GitHub
parent 475ad7e752
commit 36816074ff
3 changed files with 38 additions and 17 deletions

View File

@@ -10,8 +10,8 @@ import os
import numbers
import random
import warnings
from math import log
from itertools import combinations
from math import log, factorial
from typing import Optional
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.svm import SVC, LinearSVC
@@ -253,19 +253,32 @@ class Splitter:
selected = feature_set
return selected if selected is not None else feature_set
@staticmethod
def _generate_spaces(features: int, max_features: int) -> list:
comb = set()
# Generate at most 5 combinations
if max_features == features:
set_length = 1
else:
number = factorial(features) / (
factorial(max_features) * factorial(features - max_features)
)
set_length = min(5, number)
while len(comb) < set_length:
comb.add(
tuple(sorted(random.sample(range(features), max_features)))
)
return list(comb)
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
) -> np.array:
features = range(dataset.shape[1])
features_sets = list(combinations(features, max_features))
features_sets = self._generate_spaces(dataset.shape[1], max_features)
if len(features_sets) > 1:
if self._splitter_type == "random":
index = random.randint(0, len(features_sets) - 1)
return features_sets[index]
else:
# get only 3 sets at most
if len(features_sets) > 3:
features_sets = random.sample(features_sets, 3)
return self._select_best_set(dataset, labels, features_sets)
else:
return features_sets[0]
@@ -488,7 +501,7 @@ class Stree(BaseEstimator, ClassifierMixin):
sample_weight: np.ndarray,
depth: int,
title: str,
) -> Snode:
) -> Optional[Snode]:
"""Recursive function to split the original dataset into predictor
nodes (leaves)