mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-16 07:56:06 +00:00
Fix precision issues in tests executed in Travis
This commit is contained in:
@@ -144,17 +144,21 @@ class Stree_test(unittest.TestCase):
|
|||||||
"""Check that element 28 has a prediction different that the current label
|
"""Check that element 28 has a prediction different that the current label
|
||||||
"""
|
"""
|
||||||
# Element 28 has a different prediction than the truth
|
# Element 28 has a different prediction than the truth
|
||||||
decimals = 8
|
decimals = 5
|
||||||
X, y = self._get_Xy()
|
X, y = self._get_Xy()
|
||||||
yp = self._clf.predict_proba(X[28, :].reshape(-1, X.shape[1]))
|
yp = self._clf.predict_proba(X[28, :].reshape(-1, X.shape[1]))
|
||||||
self.assertEqual(0, yp[0:, 0])
|
self.assertEqual(0, yp[0:, 0])
|
||||||
self.assertEqual(1, y[28])
|
self.assertEqual(1, y[28])
|
||||||
self.assertEqual(round(0.29026400766, decimals), round(yp[0, 1], decimals))
|
self.assertAlmostEqual(
|
||||||
|
round(0.29026400766, decimals),
|
||||||
|
round(yp[0, 1], decimals),
|
||||||
|
decimals
|
||||||
|
)
|
||||||
|
|
||||||
def test_multiple_predict_proba(self):
|
def test_multiple_predict_proba(self):
|
||||||
# First 27 elements the predictions are the same as the truth
|
# First 27 elements the predictions are the same as the truth
|
||||||
num = 27
|
num = 27
|
||||||
decimals = 8
|
decimals = 5
|
||||||
X, y = self._get_Xy()
|
X, y = self._get_Xy()
|
||||||
yp = self._clf.predict_proba(X[:num, :])
|
yp = self._clf.predict_proba(X[:num, :])
|
||||||
self.assertListEqual(y[:num].tolist(), yp[:, 0].tolist())
|
self.assertListEqual(y[:num].tolist(), yp[:, 0].tolist())
|
||||||
@@ -163,9 +167,10 @@ class Stree_test(unittest.TestCase):
|
|||||||
0.30756427, 0.8318412, 0.18981198, 0.15564624, 0.25740655, 0.22923355,
|
0.30756427, 0.8318412, 0.18981198, 0.15564624, 0.25740655, 0.22923355,
|
||||||
0.87365959, 0.49928689, 0.95574351, 0.28761257, 0.28906333, 0.32643692,
|
0.87365959, 0.49928689, 0.95574351, 0.28761257, 0.28906333, 0.32643692,
|
||||||
0.29788483, 0.01657364, 0.81149083]
|
0.29788483, 0.01657364, 0.81149083]
|
||||||
self.assertListEqual(
|
expected = np.round(expected_proba, decimals=decimals).tolist()
|
||||||
np.round(expected_proba, decimals=decimals).tolist(),
|
computed = np.round(yp[:, 1], decimals=decimals).tolist()
|
||||||
np.round(yp[:, 1], decimals=decimals).tolist())
|
for i in range(len(expected)):
|
||||||
|
self.assertAlmostEqual(expected[i], computed[i], decimals)
|
||||||
|
|
||||||
def build_models(self):
|
def build_models(self):
|
||||||
"""Build and train two models, model_clf will use the sklearn classifier to
|
"""Build and train two models, model_clf will use the sklearn classifier to
|
||||||
|
Reference in New Issue
Block a user