Fix problem in _min_distance

Remove grapher (moved to another repo)
This commit is contained in:
2020-06-12 00:50:25 +02:00
parent 647d21bdb5
commit 1bfe273a70
11 changed files with 147 additions and 846 deletions

297
stree/tests/Stree_test.py Normal file
View File

@@ -0,0 +1,297 @@
import os
import unittest
import numpy as np
from sklearn.datasets import load_iris
from stree import Stree, Snode
from .utils import get_dataset
class Stree_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
self._kernels = ["linear", "rbf", "poly"]
super().__init__(*args, **kwargs)
@classmethod
def setUp(cls):
os.environ["TESTING"] = "1"
def _check_tree(self, node: Snode):
"""Check recursively that the nodes that are not leaves have the
correct number of labels and its sons have the right number of elements
in their dataset
Arguments:
node {Snode} -- node to check
"""
if node.is_leaf():
return
y_prediction = node._clf.predict(node._X)
y_down = node.get_down()._y
y_up = node.get_up()._y
# Is a correct partition in terms of cadinality?
# i.e. The partition algorithm didn't forget any sample
self.assertEqual(node._y.shape[0], y_down.shape[0] + y_up.shape[0])
unique_y, count_y = np.unique(node._y, return_counts=True)
_, count_d = np.unique(y_down, return_counts=True)
_, count_u = np.unique(y_up, return_counts=True)
#
for i in unique_y:
try:
number_down = count_d[i]
except IndexError:
number_down = 0
try:
number_up = count_u[i]
except IndexError:
number_up = 0
self.assertEqual(count_y[i], number_down + number_up)
# Is the partition made the same as the prediction?
# as the node is not a leaf...
_, count_yp = np.unique(y_prediction, return_counts=True)
self.assertEqual(count_yp[0], y_up.shape[0])
self.assertEqual(count_yp[1], y_down.shape[0])
self._check_tree(node.get_down())
self._check_tree(node.get_up())
def test_build_tree(self):
"""Check if the tree is built the same way as predictions of models
"""
import warnings
warnings.filterwarnings("ignore")
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
clf.fit(*get_dataset(self._random_state))
self._check_tree(clf.tree_)
def _find_out(
self, px: np.array, x_original: np.array, y_original
) -> list:
"""Find the original values of y for a given array of samples
Arguments:
px {np.array} -- array of samples to search for
x_original {np.array} -- original dataset
y_original {[type]} -- original classes
Returns:
np.array -- classes of the given samples
"""
res = []
for needle in px:
for row in range(x_original.shape[0]):
if all(x_original[row, :] == needle):
res.append(y_original[row])
return res
def test_single_prediction(self):
X, y = get_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
yp = clf.fit(X, y).predict((X[0, :].reshape(-1, X.shape[1])))
self.assertEqual(yp[0], y[0])
def test_multiple_prediction(self):
# First 27 elements the predictions are the same as the truth
num = 27
X, y = get_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
yp = clf.fit(X, y).predict(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp.tolist())
def test_score(self):
X, y = get_dataset(self._random_state)
accuracies = [
0.9506666666666667,
0.9606666666666667,
0.9433333333333334,
]
for kernel, accuracy_expected in zip(self._kernels, accuracies):
clf = Stree(random_state=self._random_state, kernel=kernel,)
clf.fit(X, y)
accuracy_score = clf.score(X, y)
yp = clf.predict(X)
accuracy_computed = np.mean(yp == y)
self.assertEqual(accuracy_score, accuracy_computed)
self.assertAlmostEqual(accuracy_expected, accuracy_score)
def test_single_vs_multiple_prediction(self):
"""Check if predicting sample by sample gives the same result as
predicting all samples at once
"""
X, y = get_dataset(self._random_state)
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
clf.fit(X, y)
# Compute prediction line by line
yp_line = np.array([], dtype=int)
for xp in X:
yp_line = np.append(
yp_line, clf.predict(xp.reshape(-1, X.shape[1]))
)
# Compute prediction at once
yp_once = clf.predict(X)
self.assertListEqual(yp_line.tolist(), yp_once.tolist())
def test_iterator_and_str(self):
"""Check preorder iterator
"""
expected = [
"root",
"root - Down",
"root - Down - Down, <cgaf> - Leaf class=1 belief= 0.975989 counts"
"=(array([0, 1]), array([ 17, 691]))",
"root - Down - Up",
"root - Down - Up - Down, <cgaf> - Leaf class=1 belief= 0.750000 "
"counts=(array([0, 1]), array([1, 3]))",
"root - Down - Up - Up, <pure> - Leaf class=0 belief= 1.000000 "
"counts=(array([0]), array([7]))",
"root - Up, <cgaf> - Leaf class=0 belief= 0.928297 counts=(array("
"[0, 1]), array([725, 56]))",
]
computed = []
expected_string = ""
clf = Stree(kernel="linear", random_state=self._random_state)
clf.fit(*get_dataset(self._random_state))
for node in clf:
computed.append(str(node))
expected_string += str(node) + "\n"
self.assertListEqual(expected, computed)
self.assertEqual(expected_string, str(clf))
def test_is_a_sklearn_classifier(self):
import warnings
from sklearn.exceptions import ConvergenceWarning
warnings.filterwarnings("ignore", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
from sklearn.utils.estimator_checks import check_estimator
check_estimator(Stree())
def test_exception_if_C_is_negative(self):
tclf = Stree(C=-1)
with self.assertRaises(ValueError):
tclf.fit(*get_dataset(self._random_state))
def test_exception_if_bogus_split_criteria(self):
tclf = Stree(split_criteria="duck")
with self.assertRaises(ValueError):
tclf.fit(*get_dataset(self._random_state))
def test_check_max_depth_is_positive_or_None(self):
tcl = Stree()
self.assertIsNone(tcl.max_depth)
tcl = Stree(max_depth=1)
self.assertGreaterEqual(1, tcl.max_depth)
with self.assertRaises(ValueError):
tcl = Stree(max_depth=-1)
tcl.fit(*get_dataset(self._random_state))
def test_check_max_depth(self):
depths = (3, 4)
for depth in depths:
tcl = Stree(random_state=self._random_state, max_depth=depth)
tcl.fit(*get_dataset(self._random_state))
self.assertEqual(depth, tcl.depth_)
def test_unfitted_tree_is_iterable(self):
tcl = Stree()
self.assertEqual(0, len(list(tcl)))
def test_min_samples_split(self):
tcl_split = Stree(min_samples_split=3)
tcl_nosplit = Stree(min_samples_split=4)
dataset = [[1], [2], [3]], [1, 1, 0]
tcl_split.fit(*dataset)
self.assertIsNotNone(tcl_split.tree_.get_down())
self.assertIsNotNone(tcl_split.tree_.get_up())
tcl_nosplit.fit(*dataset)
self.assertIsNone(tcl_nosplit.tree_.get_down())
self.assertIsNone(tcl_nosplit.tree_.get_up())
def test_simple_muticlass_dataset(self):
for kernel in self._kernels:
clf = Stree(
kernel=kernel,
split_criteria="max_samples",
random_state=self._random_state,
)
px = [[1, 2], [5, 6], [9, 10]]
py = [0, 1, 2]
clf.fit(px, py)
self.assertEqual(1.0, clf.score(px, py))
self.assertListEqual(py, clf.predict(px).tolist())
self.assertListEqual(py, clf.classes_.tolist())
def test_muticlass_dataset(self):
datasets = {
"Synt": get_dataset(random_state=self._random_state, n_classes=3),
"Iris": load_iris(return_X_y=True),
}
outcomes = {
"Synt": {
"max_samples linear": 0.9533333333333334,
"max_samples rbf": 0.836,
"max_samples poly": 0.9473333333333334,
"min_distance linear": 0.9533333333333334,
"min_distance rbf": 0.836,
"min_distance poly": 0.9473333333333334,
},
"Iris": {
"max_samples linear": 0.98,
"max_samples rbf": 1.0,
"max_samples poly": 1.0,
"min_distance linear": 0.98,
"min_distance rbf": 1.0,
"min_distance poly": 1.0,
},
}
for name, dataset in datasets.items():
px, py = dataset
for criteria in ["max_samples", "min_distance"]:
for kernel in self._kernels:
clf = Stree(
C=1e4,
max_iter=1e4,
kernel=kernel,
random_state=self._random_state,
)
clf.fit(px, py)
outcome = outcomes[name][f"{criteria} {kernel}"]
self.assertAlmostEqual(outcome, clf.score(px, py))
def test_min_distance(self):
clf = Stree()
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
]
)
expected = np.array([-0.1, 0.01, 0.5, 0.1])
computed = clf._min_distance(data, None)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
def test_max_samples(self):
clf = Stree()
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
]
)
expected = np.array([0.2, 0.01, -0.9, 0.2])
y = [1, 2, 1, 0]
computed = clf._max_samples(data, y)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())