mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-18 17:06:01 +00:00
Implement optimized predict and new predict_proba
This commit is contained in:
@@ -135,7 +135,7 @@ class Snode:
|
|||||||
if not self.is_leaf():
|
if not self.is_leaf():
|
||||||
return
|
return
|
||||||
classes, card = np.unique(self._y, return_counts=True)
|
classes, card = np.unique(self._y, return_counts=True)
|
||||||
self._proba = np.zeros((num_classes,))
|
self._proba = np.zeros((num_classes,), dtype=np.int64)
|
||||||
for c, n in zip(classes, card):
|
for c, n in zip(classes, card):
|
||||||
self._proba[c] = n
|
self._proba[c] = n
|
||||||
try:
|
try:
|
||||||
|
104
stree/Strees.py
104
stree/Strees.py
@@ -367,28 +367,66 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
@staticmethod
|
def __predict_class(self, X: np.array) -> np.array:
|
||||||
def _reorder_results(y: np.array, indices: np.array) -> np.array:
|
def compute_prediction(xp, indices, node):
|
||||||
"""Reorder an array based on the array of indices passed
|
if xp is None:
|
||||||
|
return
|
||||||
|
if node.is_leaf():
|
||||||
|
# set a class for indices
|
||||||
|
result[indices] = node._proba
|
||||||
|
return
|
||||||
|
self.splitter_.partition(xp, node, train=False)
|
||||||
|
x_u, x_d = self.splitter_.part(xp)
|
||||||
|
i_u, i_d = self.splitter_.part(indices)
|
||||||
|
compute_prediction(x_u, i_u, node.get_up())
|
||||||
|
compute_prediction(x_d, i_d, node.get_down())
|
||||||
|
|
||||||
|
# setup prediction & make it happen
|
||||||
|
result = np.zeros((X.shape[0], self.n_classes_))
|
||||||
|
indices = np.arange(X.shape[0])
|
||||||
|
compute_prediction(X, indices, self.tree_)
|
||||||
|
return result
|
||||||
|
|
||||||
|
def check_predict(self, X) -> np.array:
|
||||||
|
check_is_fitted(self, ["tree_"])
|
||||||
|
# Input validation
|
||||||
|
X = check_array(X)
|
||||||
|
if X.shape[1] != self.n_features_:
|
||||||
|
raise ValueError(
|
||||||
|
f"Expected {self.n_features_} features but got "
|
||||||
|
f"({X.shape[1]})"
|
||||||
|
)
|
||||||
|
return X
|
||||||
|
|
||||||
|
def predict_proba(self, X: np.array) -> np.array:
|
||||||
|
"""Predict class probabilities of the input samples X.
|
||||||
|
|
||||||
|
The predicted class probability is the fraction of samples of the same
|
||||||
|
class in a leaf.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
y : np.array
|
X : dataset of samples.
|
||||||
data untidy
|
|
||||||
indices : np.array
|
|
||||||
indices used to set order
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
np.array
|
proba : array of shape (n_samples, n_classes)
|
||||||
array y ordered
|
The class probabilities of the input samples.
|
||||||
|
|
||||||
|
Raises
|
||||||
|
------
|
||||||
|
ValueError
|
||||||
|
if dataset with inconsistent number of features
|
||||||
|
NotFittedError
|
||||||
|
if model is not fitted
|
||||||
"""
|
"""
|
||||||
# return array of same type given in y
|
|
||||||
y_ordered = y.copy()
|
X = self.check_predict(X)
|
||||||
indices = indices.astype(int)
|
# return # of samples of each class in leaf node
|
||||||
for i, index in enumerate(indices):
|
values = self.__predict_class(X)
|
||||||
y_ordered[index] = y[i]
|
normalizer = values.sum(axis=1)[:, np.newaxis]
|
||||||
return y_ordered
|
normalizer[normalizer == 0.0] = 1.0
|
||||||
|
return values / normalizer
|
||||||
|
|
||||||
def predict(self, X: np.array) -> np.array:
|
def predict(self, X: np.array) -> np.array:
|
||||||
"""Predict labels for each sample in dataset passed
|
"""Predict labels for each sample in dataset passed
|
||||||
@@ -410,40 +448,8 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
NotFittedError
|
NotFittedError
|
||||||
if model is not fitted
|
if model is not fitted
|
||||||
"""
|
"""
|
||||||
|
X = self.check_predict(X)
|
||||||
def predict_class(
|
return self.classes_[np.argmax(self.__predict_class(X), axis=1)]
|
||||||
xp: np.array, indices: np.array, node: Snode
|
|
||||||
) -> np.array:
|
|
||||||
if xp is None:
|
|
||||||
return [], []
|
|
||||||
if node.is_leaf():
|
|
||||||
# set a class for every sample in dataset
|
|
||||||
prediction = np.full((xp.shape[0], 1), node._class)
|
|
||||||
return prediction, indices
|
|
||||||
self.splitter_.partition(xp, node, train=False)
|
|
||||||
x_u, x_d = self.splitter_.part(xp)
|
|
||||||
i_u, i_d = self.splitter_.part(indices)
|
|
||||||
prx_u, prin_u = predict_class(x_u, i_u, node.get_up())
|
|
||||||
prx_d, prin_d = predict_class(x_d, i_d, node.get_down())
|
|
||||||
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
|
|
||||||
|
|
||||||
# sklearn check
|
|
||||||
check_is_fitted(self, ["tree_"])
|
|
||||||
# Input validation
|
|
||||||
X = check_array(X)
|
|
||||||
if X.shape[1] != self.n_features_:
|
|
||||||
raise ValueError(
|
|
||||||
f"Expected {self.n_features_} features but got "
|
|
||||||
f"({X.shape[1]})"
|
|
||||||
)
|
|
||||||
# setup prediction & make it happen
|
|
||||||
indices = np.arange(X.shape[0])
|
|
||||||
result = (
|
|
||||||
self._reorder_results(*predict_class(X, indices, self.tree_))
|
|
||||||
.astype(int)
|
|
||||||
.ravel()
|
|
||||||
)
|
|
||||||
return self.classes_[result]
|
|
||||||
|
|
||||||
def nodes_leaves(self) -> tuple:
|
def nodes_leaves(self) -> tuple:
|
||||||
"""Compute the number of nodes and leaves in the built tree
|
"""Compute the number of nodes and leaves in the built tree
|
||||||
|
@@ -695,7 +695,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
)
|
)
|
||||||
expected_tail = (
|
expected_tail = (
|
||||||
' [shape=box style=filled label="class=1 impurity=0.000 '
|
' [shape=box style=filled label="class=1 impurity=0.000 '
|
||||||
'counts=[0. 1. 0.]"];\n}\n'
|
'counts=[0 1 0]"];\n}\n'
|
||||||
)
|
)
|
||||||
self.assertEqual(clf.graph(), expected_head + "}\n")
|
self.assertEqual(clf.graph(), expected_head + "}\n")
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
@@ -715,7 +715,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
)
|
)
|
||||||
expected_tail = (
|
expected_tail = (
|
||||||
' [shape=box style=filled label="class=1 impurity=0.000 '
|
' [shape=box style=filled label="class=1 impurity=0.000 '
|
||||||
'counts=[0. 1. 0.]"];\n}\n'
|
'counts=[0 1 0]"];\n}\n'
|
||||||
)
|
)
|
||||||
self.assertEqual(clf.graph("Sample title"), expected_head + "}\n")
|
self.assertEqual(clf.graph("Sample title"), expected_head + "}\n")
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
|
Reference in New Issue
Block a user