mirror of
https://github.com/Doctorado-ML/Odte.git
synced 2025-07-11 16:22:00 +00:00
Become sklearn classifier
This commit is contained in:
parent
580c93d92a
commit
98a28cd271
@ -10,5 +10,3 @@ exclude_lines =
|
||||
if __name__ == .__main__.:
|
||||
ignore_errors = True
|
||||
omit =
|
||||
odte/tests/*
|
||||
odte/__init__.py
|
@ -219,7 +219,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Oblique Decision Tree Ensemble\n",
|
||||
"odte = Odte(random_state=random_state, n_estimators=10, max_features=None)"
|
||||
"odte = Odte(random_state=random_state, n_estimators=10, max_features=\"auto\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
137
odte/Odte.py
137
odte/Odte.py
@ -6,13 +6,15 @@ __version__ = "0.1"
|
||||
Build a forest of oblique trees based on STree
|
||||
"""
|
||||
|
||||
import random
|
||||
from typing import Union
|
||||
from itertools import combinations
|
||||
import numpy as np
|
||||
|
||||
from sklearn.utils import check_consistent_length
|
||||
from sklearn.metrics._classification import _weighted_sum, _check_targets
|
||||
from sklearn.utils.multiclass import check_classification_targets
|
||||
from sklearn.base import BaseEstimator, ClassifierMixin
|
||||
from scipy.stats import mode
|
||||
from sklearn.base import clone, ClassifierMixin
|
||||
from sklearn.ensemble import BaseEnsemble
|
||||
from sklearn.utils.validation import (
|
||||
check_X_y,
|
||||
check_array,
|
||||
@ -23,44 +25,30 @@ from sklearn.utils.validation import (
|
||||
from stree import Stree
|
||||
|
||||
|
||||
class Odte(BaseEstimator, ClassifierMixin):
|
||||
class Odte(BaseEnsemble, ClassifierMixin):
|
||||
def __init__(
|
||||
self,
|
||||
base_estimator=None,
|
||||
random_state: int = None,
|
||||
C: int = 1,
|
||||
max_features: Union[str, int, float] = 1.0,
|
||||
max_samples: Union[int, float] = None,
|
||||
n_estimators: int = 100,
|
||||
max_iter: int = 1000,
|
||||
max_depth: int = None,
|
||||
min_samples_split: int = 0,
|
||||
split_criteria: str = "min_distance",
|
||||
criterion: str = "gini",
|
||||
tol: float = 1e-4,
|
||||
gamma="scale",
|
||||
degree: int = 3,
|
||||
kernel: str = "linear",
|
||||
max_features="auto",
|
||||
max_samples=None,
|
||||
splitter: str = "random",
|
||||
):
|
||||
base_estimator = (
|
||||
Stree(random_state=random_state)
|
||||
if base_estimator is None
|
||||
else base_estimator
|
||||
)
|
||||
super().__init__(
|
||||
base_estimator=base_estimator, n_estimators=n_estimators,
|
||||
)
|
||||
self.n_estimators = n_estimators
|
||||
self.random_state = random_state
|
||||
self.max_features = max_features
|
||||
self.max_samples = max_samples # size of bootstrap
|
||||
self.estimator_params = dict(
|
||||
C=C,
|
||||
random_state=random_state,
|
||||
min_samples_split=min_samples_split,
|
||||
max_depth=max_depth,
|
||||
split_criteria=split_criteria,
|
||||
criterion=criterion,
|
||||
kernel=kernel,
|
||||
max_iter=max_iter,
|
||||
tol=tol,
|
||||
degree=degree,
|
||||
gamma=gamma,
|
||||
splitter=splitter,
|
||||
max_features=max_features,
|
||||
)
|
||||
|
||||
def _more_tags(self) -> dict:
|
||||
return {"requires_y": True}
|
||||
|
||||
def _initialize_random(self) -> np.random.mtrand.RandomState:
|
||||
if self.random_state is None:
|
||||
@ -77,6 +65,12 @@ class Odte(BaseEstimator, ClassifierMixin):
|
||||
else:
|
||||
return sample_weight.copy()
|
||||
|
||||
def _validate_estimator(self):
|
||||
"""Check the estimator and set the base_estimator_ attribute."""
|
||||
super()._validate_estimator(
|
||||
default=Stree(random_state=self.random_state)
|
||||
)
|
||||
|
||||
def fit(
|
||||
self, X: np.array, y: np.array, sample_weight: np.array = None
|
||||
) -> "Odte":
|
||||
@ -89,9 +83,16 @@ class Odte(BaseEstimator, ClassifierMixin):
|
||||
# the rest of parameters are checked in estimator
|
||||
check_classification_targets(y)
|
||||
X, y = check_X_y(X, y)
|
||||
sample_weight = _check_sample_weight(sample_weight, X)
|
||||
sample_weight = _check_sample_weight(
|
||||
sample_weight, X, dtype=np.float64
|
||||
)
|
||||
check_classification_targets(y)
|
||||
# Initialize computed parameters
|
||||
# Build the estimator
|
||||
self.n_features_in_ = X.shape[1]
|
||||
self.n_features = X.shape[1]
|
||||
self.max_features_ = self._initialize_max_features()
|
||||
self._validate_estimator()
|
||||
self.classes_, y = np.unique(y, return_inverse=True)
|
||||
self.n_classes_ = self.classes_.shape[0]
|
||||
self.estimators_ = []
|
||||
@ -107,15 +108,17 @@ class Odte(BaseEstimator, ClassifierMixin):
|
||||
boot_samples = self._get_bootstrap_n_samples(n_samples)
|
||||
for _ in range(self.n_estimators):
|
||||
# Build clf
|
||||
clf = Stree().set_params(**self.estimator_params)
|
||||
clf = clone(self.base_estimator_)
|
||||
# clf.set_params(**self.estimator_params)
|
||||
self.estimators_.append(clf)
|
||||
# bootstrap
|
||||
indices = random_box.randint(0, n_samples, boot_samples)
|
||||
# update weights with the chosen samples
|
||||
weights_update = np.bincount(indices, minlength=n_samples)
|
||||
features = self.get_subspace(X, y)
|
||||
current_weights = weights * weights_update
|
||||
# train the classifier
|
||||
clf.fit(X[indices, :], y[indices], current_weights[indices])
|
||||
clf.fit(X[indices, features], y[indices], current_weights[indices])
|
||||
|
||||
def _get_bootstrap_n_samples(self, n_samples) -> int:
|
||||
if self.max_samples is None:
|
||||
@ -137,15 +140,69 @@ class Odte(BaseEstimator, ClassifierMixin):
|
||||
{type(self.max_samples)}"
|
||||
)
|
||||
|
||||
def _initialize_max_features(self) -> int:
|
||||
if isinstance(self.max_features, str):
|
||||
if self.max_features == "auto":
|
||||
max_features = max(1, int(np.sqrt(self.n_features_)))
|
||||
elif self.max_features == "sqrt":
|
||||
max_features = max(1, int(np.sqrt(self.n_features_)))
|
||||
elif self.max_features == "log2":
|
||||
max_features = max(1, int(np.log2(self.n_features_)))
|
||||
else:
|
||||
raise ValueError(
|
||||
"Invalid value for max_features. "
|
||||
"Allowed string values are 'auto', "
|
||||
"'sqrt' or 'log2'."
|
||||
)
|
||||
elif self.max_features is None:
|
||||
max_features = self.n_features_
|
||||
elif isinstance(self.max_features, int):
|
||||
max_features = self.max_features
|
||||
else: # float
|
||||
if self.max_features > 0.0:
|
||||
max_features = max(
|
||||
1, int(self.max_features * self.n_features_)
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Invalid value for max_features."
|
||||
"Allowed float must be in range (0, 1] "
|
||||
f"got ({self.max_features})"
|
||||
)
|
||||
return max_features
|
||||
|
||||
def _get_subspaces_set(
|
||||
self, dataset: np.array, labels: np.array
|
||||
) -> np.array:
|
||||
features = range(dataset.shape[1])
|
||||
features_sets = list(combinations(features, self.max_features_))
|
||||
if len(features_sets) > 1:
|
||||
index = random.randint(0, len(features_sets) - 1)
|
||||
return features_sets[index]
|
||||
else:
|
||||
return features_sets[0]
|
||||
|
||||
def get_subspace(self, dataset: np.array, labels: np.array) -> list:
|
||||
"""Return the best subspace to build a tree
|
||||
"""
|
||||
indices = self._get_subspaces_set(dataset, labels)
|
||||
return dataset[:, indices], indices
|
||||
|
||||
def predict(self, X: np.array) -> np.array:
|
||||
# todo
|
||||
proba = self.predict_proba(X)
|
||||
return self.classes_.take((np.argmax(proba, axis=1)), axis=0)
|
||||
|
||||
def predict_proba(self, X: np.array) -> np.array:
|
||||
check_is_fitted(self, ["estimators_"])
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
result = np.empty((X.shape[0], self.n_estimators))
|
||||
for index, tree in enumerate(self.estimators_):
|
||||
result[:, index] = tree.predict(X)
|
||||
return mode(result, axis=1).mode.ravel()
|
||||
for tree in self.estimators_:
|
||||
n_samples = X.shape[0]
|
||||
result = np.zeros((n_samples, self.n_classes_))
|
||||
predictions = tree.predict(X)
|
||||
for i in range(n_samples):
|
||||
result[i, predictions[i]] += 1
|
||||
return result
|
||||
|
||||
def score(
|
||||
self, X: np.array, y: np.array, sample_weight: np.array = None
|
||||
|
@ -62,9 +62,13 @@ class Odte_test(unittest.TestCase):
|
||||
warnings.filterwarnings("ignore", category=ConvergenceWarning)
|
||||
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
||||
X, y = [[1, 2], [5, 6], [9, 10], [16, 17]], [0, 1, 1, 2]
|
||||
expected = [0, 1, 1, 0]
|
||||
tclf = Odte(
|
||||
random_state=self._random_state, n_estimators=10, kernel="rbf"
|
||||
expected = [1, 1, 1, 1]
|
||||
tclf = Odte(random_state=self._random_state, n_estimators=10,)
|
||||
tclf.set_params(
|
||||
**dict(
|
||||
base_estimator__kernel="rbf",
|
||||
base_estimator__random_state=self._random_state,
|
||||
)
|
||||
)
|
||||
computed = tclf.fit(X, y).predict(X)
|
||||
self.assertListEqual(expected, computed.tolist())
|
||||
@ -77,32 +81,47 @@ class Odte_test(unittest.TestCase):
|
||||
tclf = Odte(
|
||||
random_state=self._random_state,
|
||||
max_features=None,
|
||||
kernel="linear",
|
||||
max_samples=0.1,
|
||||
)
|
||||
tclf.set_params(**dict(base_estimator__kernel="linear",))
|
||||
computed = tclf.fit(X, y).predict(X)
|
||||
self.assertListEqual(expected[:27].tolist(), computed[:27].tolist())
|
||||
|
||||
def test_score(self):
|
||||
X, y = load_dataset(self._random_state)
|
||||
expected = 0.9526666666666667
|
||||
expected = 0.948
|
||||
tclf = Odte(
|
||||
random_state=self._random_state, max_features=None, n_estimators=10
|
||||
random_state=self._random_state,
|
||||
max_features=None,
|
||||
n_estimators=10,
|
||||
)
|
||||
computed = tclf.fit(X, y).score(X, y)
|
||||
self.assertAlmostEqual(expected, computed)
|
||||
|
||||
def test_score_splitter_max_features(self):
|
||||
X, y = load_dataset(self._random_state, n_features=12, n_samples=150)
|
||||
results = [1.0, 0.94, 0.9933333333333333, 0.9933333333333333]
|
||||
results = [
|
||||
0.9866666666666667,
|
||||
0.9866666666666667,
|
||||
0.9866666666666667,
|
||||
0.9866666666666667,
|
||||
]
|
||||
for max_features in ["auto", None]:
|
||||
for splitter in ["best", "random"]:
|
||||
tclf = Odte(
|
||||
random_state=self._random_state,
|
||||
splitter=splitter,
|
||||
max_features=max_features,
|
||||
n_estimators=10,
|
||||
)
|
||||
tclf.set_params(**dict(base_estimator__splitter=splitter,))
|
||||
expected = results.pop(0)
|
||||
computed = tclf.fit(X, y).score(X, y)
|
||||
self.assertAlmostEqual(expected, computed)
|
||||
|
||||
@staticmethod
|
||||
def test_is_a_sklearn_classifier():
|
||||
warnings.filterwarnings("ignore", category=ConvergenceWarning)
|
||||
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
||||
from sklearn.utils.estimator_checks import check_estimator
|
||||
|
||||
check_estimator(Odte())
|
||||
|
Loading…
x
Reference in New Issue
Block a user