Files
mufs/mfs/tests/MFS_test.py

149 lines
5.0 KiB
Python
Executable File

import unittest
from mdlp import MDLP
from sklearn.datasets import load_wine, load_iris
from ..Selection import MFS
class MFS_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
mdlp = MDLP(random_state=1)
self.X_wc, self.y_w = load_wine(return_X_y=True)
self.X_w = mdlp.fit_transform(self.X_wc, self.y_w).astype("int64")
self.X_ic, self.y_i = load_iris(return_X_y=True)
mdlp = MDLP(random_state=1)
self.X_i = mdlp.fit_transform(self.X_ic, self.y_i).astype("int64")
def assertListAlmostEqual(self, list1, list2, tol=7):
self.assertEqual(len(list1), len(list2))
for a, b in zip(list1, list2):
self.assertAlmostEqual(a, b, tol)
def test_initialize(self):
mfs = MFS()
mfs.fcbf(self.X_w, self.y_w, 0.05)
mfs._initialize(self.X_w, self.y_w)
self.assertIsNone(mfs.get_results())
self.assertListEqual([], mfs.get_scores())
self.assertDictEqual({}, mfs._su_features)
self.assertIsNone(mfs._su_labels)
def test_csf_wine(self):
mfs = MFS()
expected = [6, 12, 9, 4, 10, 0]
self.assertListAlmostEqual(
expected, mfs.cfs(self.X_w, self.y_w).get_results()
)
expected = [
0.5218299405215557,
0.602513857132804,
0.4877384978817362,
0.3743688234383051,
0.28795671854246285,
0.2309165735173175,
]
self.assertListAlmostEqual(expected, mfs.get_scores())
def test_csf_wine_cont(self):
mfs = MFS(discrete=False)
expected = [10, 6, 0, 2, 11, 9]
self.assertListEqual(
expected, mfs.cfs(self.X_wc, self.y_w).get_results()
)
expected = [
0.735264150416997,
0.8321684551546848,
0.7439915858469107,
0.6238883340158233,
0.513637402071709,
0.41596400981378984,
]
self.assertListAlmostEqual(expected, mfs.get_scores())
def test_csf_max_features(self):
mfs = MFS(max_features=3)
expected = [6, 12, 9]
self.assertListAlmostEqual(
expected, mfs.cfs(self.X_w, self.y_w).get_results()
)
expected = [
0.5218299405215557,
0.602513857132804,
0.4877384978817362,
]
self.assertListAlmostEqual(expected, mfs.get_scores())
def test_csf_iris(self):
mfs = MFS()
expected = [3, 2, 0, 1]
computed = mfs.cfs(self.X_i, self.y_i).get_results()
self.assertListAlmostEqual(expected, computed)
expected = [
0.870521418179061,
0.8968651482682227,
0.5908278453318913,
0.40371971570693366,
]
self.assertListAlmostEqual(expected, mfs.get_scores())
def test_fcbf_wine(self):
mfs = MFS()
computed = mfs.fcbf(self.X_w, self.y_w, threshold=0.05).get_results()
expected = [6, 9, 12, 0, 11, 4]
self.assertListAlmostEqual(expected, computed)
expected = [
0.5218299405215557,
0.46224298637417455,
0.44518278979085646,
0.38942355544213786,
0.3790082191220976,
0.24972405134844652,
]
self.assertListAlmostEqual(expected, mfs.get_scores())
def test_fcbf_max_features(self):
mfs = MFS(max_features=3)
computed = mfs.fcbf(self.X_w, self.y_w, threshold=0.05).get_results()
expected = [6, 9, 12]
self.assertListAlmostEqual(expected, computed)
expected = [
0.5218299405215557,
0.46224298637417455,
0.44518278979085646,
]
self.assertListAlmostEqual(expected, mfs.get_scores())
def test_fcbf_iris(self):
mfs = MFS()
computed = mfs.fcbf(self.X_i, self.y_i, threshold=0.05).get_results()
expected = [3, 2]
self.assertListAlmostEqual(expected, computed)
expected = [0.870521418179061, 0.810724587460511]
self.assertListAlmostEqual(expected, mfs.get_scores())
def test_compute_su_labels(self):
mfs = MFS()
mfs.fcbf(self.X_i, self.y_i, threshold=0.05)
expected = [0.0, 0.0, 0.810724587460511, 0.870521418179061]
self.assertListAlmostEqual(expected, mfs._compute_su_labels().tolist())
mfs._su_labels = [1, 2, 3, 4]
self.assertListAlmostEqual([1, 2, 3, 4], mfs._compute_su_labels())
def test_invalid_threshold(self):
mfs = MFS()
with self.assertRaises(ValueError):
mfs.fcbf(self.X_i, self.y_i, threshold=1e-15)
def test_fcbf_exit_threshold(self):
mfs = MFS()
computed = mfs.fcbf(self.X_w, self.y_w, threshold=0.4).get_results()
expected = [6, 9, 12]
self.assertListAlmostEqual(expected, computed)
expected = [
0.5218299405215557,
0.46224298637417455,
0.44518278979085646,
]
self.assertListAlmostEqual(expected, mfs.get_scores())