Files
mufs/mfs/tests/Metrics_test.py

90 lines
3.2 KiB
Python
Executable File

import unittest
from sklearn.datasets import load_iris
from mdlp import MDLP
from ..Selection import Metrics
class Metrics_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
mdlp = MDLP(random_state=1)
X, self.y = load_iris(return_X_y=True)
self.X = mdlp.fit_transform(X, self.y).astype("int64")
self.m, self.n = self.X.shape
# @classmethod
# def setup(cls):
def test_entropy(self):
metric = Metrics()
datasets = [
([0, 0, 0, 0, 1, 1, 1, 1], 2, 1.0),
([0, 1, 0, 2, 1, 2], 3, 1.0),
([0, 0, 0, 0, 0, 0, 0, 2, 2, 2], 2, 0.8812908992306927),
([1, 1, 1, 5, 2, 2, 3, 3, 3], 4, 0.9455305560363263),
([1, 1, 1, 2, 2, 3, 3, 3, 5], 4, 0.9455305560363263),
([1, 1, 5], 2, 0.9182958340544896),
(self.y, 3, 0.999999999),
]
for dataset, base, entropy in datasets:
computed = metric.entropy(dataset, base)
self.assertAlmostEqual(entropy, computed)
def test_conditional_entropy(self):
metric = Metrics()
results_expected = [
0.490953458537736,
0.7110077966379169,
0.15663362014829718,
0.13032469395094992,
]
for expected, col in zip(results_expected, range(self.n)):
computed = metric.conditional_entropy(self.X[:, col], self.y, 3)
self.assertAlmostEqual(expected, computed)
self.assertAlmostEqual(
0.6309297535714573,
metric.conditional_entropy(
[1, 3, 2, 3, 2, 1], [1, 2, 0, 1, 1, 2], 3
),
)
# https://planetcalc.com/8414/?joint=0.4%200%0A0.2%200.4&showDetails=1
self.assertAlmostEqual(
0.5509775004326938,
metric.conditional_entropy([1, 1, 2, 2, 2], [0, 0, 0, 2, 2], 2),
)
def test_information_gain(self):
metric = Metrics()
results_expected = [
0.5090465414622638,
0.28899220336208287,
0.8433663798517026,
0.8696753060490499,
]
for expected, col in zip(results_expected, range(self.n)):
computed = metric.information_gain(self.X[:, col], self.y, 3)
self.assertAlmostEqual(expected, computed)
# https://planetcalc.com/8419/
# ?_d=FrDfFN2COAhqh9Pb5ycqy5CeKgIOxlfSjKgyyIR.Q5L0np-g-hw6yv8M1Q8_
results_expected = [
0.806819679,
0.458041805,
1.336704086,
1.378402748,
]
for expected, col in zip(results_expected, range(self.n)):
computed = metric.information_gain(self.X[:, col], self.y, 2)
self.assertAlmostEqual(expected, computed)
def test_symmetrical_uncertainty(self):
metric = Metrics()
results_expected = [
0.33296547388990266,
0.19068147573570668,
0.810724587460511,
0.870521418179061,
]
for expected, col in zip(results_expected, range(self.n)):
computed = metric.symmetrical_uncertainty(self.X[:, col], self.y)
self.assertAlmostEqual(expected, computed)